首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The T-state crystal structure of the glucose-phosphorylase b complex has been used as a model for the design of glucose analogue inhibitors that may be effective in the regulation of blood glucose levels. Modeling studies indicated room for additional atoms attached at the C1-beta position of glucose and some scope for additional atoms at the C1-alpha position. Kinetic parameters were determined for alpha-D-glucose: Ki = 1.7 mM, Hill coefficient n = 1.5, and alpha (synergism with caffeine) = 0.2. For beta-D-glucose, Ki = 7.4 mM, n = 1.5, and alpha = 0.4. More than 20 glucose analogues have been synthesized and tested in kinetic experiments. Most were less effective inhibitors than glucose itself and the best inhibitor was alpha-hydroxymethyl-1-deoxy-D-glucose (Ki = 1.5 mM, n = 1.3, alpha = 0.4). The binding of 14 glucose analogues to glycogen phosphorylase b in the crystal has been studied at 2.4-A resolution and the structure have been refined to crystallographic R values of less than 0.20. The kinetic and crystallographic studies have been combined to provide rationalizations for the apparent affinities of glucose and the analogues. The results show the discrimination against beta-D-glucose in favor of alpha-D-glucose is achieved by an additional hydrogen bond made in the alpha-glucose complex through water to a protein group and an unfavorable environment for a polar group in the beta pocket. The compound alpha-hydroxymethyl-1-deoxy-D-glucose has an affinity similar to that of glucose and makes a direct hydrogen bond to a protein group. Comparison of analogues with substituent atoms that have flexible geometry (e.g., 1-hydroxyethyl beta-D-glucoside) with those whose substituent atoms are more rigid (e.g., beta-azidomethyl-1-deoxyglucose or beta-cyanomethyl-1-deoxyglucose) indicates that although all three compounds make similar polar interactions with the enzyme, those with more rigid substituent groups are better inhibitors. In another example, alpha-azidomethyl-1-deoxyglucose was a poor inhibitor. In the crystal structure the compound made several favorable interactions with the enzyme but bound in an unfavorable conformation, thus providing an explanation for its poor inhibition. Attempts to utilize a contact to a buried aspartate group were partially successful for a number of compounds (beta-aminoethyl, beta-mesylate, and beta-azidomethyl analogues). The beta pocket was shown to bind gentiobiose (6-O-beta-D-glucopyranosyl-D-glucose), indicating scope for binding of larger side groups for future studies.  相似文献   

2.
Two short chain dehydrogenase/reductases mediate naphthol reduction reactions in fungal melanin biosynthesis. An X-ray structure of 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR) complexed with NADPH and pyroquilon was determined for examining substrate and inhibitor specificities that differ from those of 1,3,8-trihydroxynaphthalene reductase (3HNR). The 1.5 A resolution structure allows for comparisons with the 1.7 A resolution structure of 3HNR complexed with the same ligands. The sequences of the two proteins are 46% identical, and they have the same fold. The 30-fold lower affinity of the 4HNR-NADPH complex for pyroquilon (a commercial fungicide that targets 3HNR) in comparison to that of the 3HNR-NADPH complex can be explained by unfavorable interactions between the anionic carboxyl group of the C-terminal Ile282 of 4HNR and CH and CH(2) groups of the inhibitor that are countered by favorable inhibitor interactions with 3HNR. 1,3,8-Trihydroxynaphthalene (3HN) and 1,3,6,8-tetrahydroxynaphthalene (4HN) were modeled onto the cyclic structure of pyroquilon in the 4HNR-NADPH-pyroquilon complex to examine the 300-fold preference of the enzyme for 4HN over 3HN. The models suggest that the C-terminal carboxyl group of Ile282 has a favorable hydrogen bonding interaction with the C6 hydroxyl group of 4HN and an unfavorable interaction with the C6 CH group of 3HN. Models of 3HN and 4HN in the 3HNR active site suggest a favorable interaction of the sulfur atom of the C-terminal Met283 with the C6 CH group of 3HN and an unfavorable one with the C6 hydroxyl group of 4HN, accounting for the 4-fold difference in substrate specificities. Thus, the C-terminal residues of the two naphthol reductase are determinants of inhibitor and substrate specificities.  相似文献   

3.
Tropinone reductase-II (TR-II) catalyzes the NADPH-dependent reduction of the carbonyl group of tropinone to a beta-hydroxyl group. The crystal structure of TR-II complexed with NADP+ and pseudotropine (psi-tropine) has been determined at 1.9 A resolution. A seven-residue peptide near the active site, disordered in the unliganded structure, is fixed in the ternary complex by participation of the cofactor and substrate binding. The psi-tropine molecule is bound in an orientation which satisfies the product configuration and the stereochemical arrangement toward the cofactor. The substrate binding site displays a complementarity to the bound substrate (psi-tropine) in its correct orientation. In addition, electrostatic interactions between the substrate and Glu156 seem to specify the binding position and orientation of the substrate. A comparison between the active sites in TR-II and TR-I shows that they provide different van der Waals surfaces and electrostatic features. These differences likely contribute to the correct binding mode of the substrates, which are in opposite orientations in TR-II and TR-I, and to different reaction stereospecificities. The active site structure in the TR-II ternary complex also suggests that the arrangement of the substrate, cofactor, and catalytic residues is stereoelectronically favorable for the reaction.  相似文献   

4.
The maize (Zea mays) beta-glucosidase Zm-p60.1 has been implicated in regulation of plant development by the targeted release of free cytokinins from cytokinin-O-glucosides, their inactive storage forms. The crystal structure of the wild-type enzyme was solved at 2.05-A resolution, allowing molecular docking analysis to be conducted. This indicated that the enzyme specificity toward substrates with aryl aglycones is determined by aglycone aromatic system stacking with W373, and interactions with edges of F193, F200, and F461 located opposite W373 in a slot-like aglycone-binding site. These aglycone-active site interactions recently were hypothesized to determine substrate specificity in inactive enzyme substrate complexes of ZM-Glu1, an allozyme of Zm-p60.1. Here, we test this hypothesis by kinetic analysis of F193I/Y/W mutants. The decreased K(m) of all mutants confirmed the involvement of F193 in determining enzyme affinity toward substrates with an aromatic aglycone. It was unexpected that a 30-fold decrease in k(cat) was found in F193I mutant compared with the wild type. Kinetic analysis and computer modeling demonstrated that the F193-aglycone-W373 interaction not only contributes to aglycone recognition as hypothesized previously but also codetermines catalytic rate by fixing the glucosidic bond in an orientation favorable for attack by the catalytic pair, E186 and E401. The catalytic pair, assigned initially by their location in the structure, was confirmed by kinetic analysis of E186D/Q and E401D/Q mutants. It was unexpected that the E401D as well as C205S and C211S mutations dramatically impaired the assembly of a catalysis-competent homodimer, suggesting novel links between the active site structure and dimer formation.  相似文献   

5.
The action of enzymes on soluble and insoluble substrate biopolymers is discussed, taking into account enzyme diffusion along the biopolymer “surface” and interaction with interspersed ligand groups that may be modified by the action of the enzyme. It is shown that movement of the enzyme under trhe combined effect of these two processes can be described as a diffusion process characterized by an apparent diffusion coefficient that generally depends on both time and position. Equations describing the system are formulated and some specific examples analyzed in terms of analytical or numerical solutions. The concentration distributions of both the enzyme and the substrate (or product ) were obtained for different systems for which the apparent diffusion coefficient is a function of time only, as well as of both time and position. The relevance of the formulation, as developed, to systems in which reduction in dimensionality leads to enhanced enzyme efficiency is discussed, and possible uses of the theory in studies of biopolymer structure and enzyme-biopolymer interactions are suggested.  相似文献   

6.
The rapid reaction kinetics of wild-type xanthine dehydrogenase from Rhodobacter capsulatus and variants at Arg-310 in the active site have been characterized for a variety of purine substrates. With xanthine as substrate, k(red) (the limiting rate of enzyme reduction by substrate at high [S]) decreased approximately 20-fold in an R310K variant and 2 x 10(4)-fold in an R310M variant. Although Arg-310 lies on the opposite end of the substrate from the C-8 position that becomes hydroxylated, its interaction with substrate still contributed approximately 4.5 kcal/mol toward transition state stabilization. The other purines examined fell into two distinct groups: members of the first were effectively hydroxylated by the wild-type enzyme but were strongly affected by the exchange of Arg-310 to methionine (with a reduction in k(red) greater than 10(3)), whereas members of the second were much less effectively hydroxylated by wild-type enzyme but also much less significantly affected by the amino acid exchanges (with a reduction in k(red) less than 50-fold). The effect was such that the 4000-fold range in k(red) seen with wild-type enzyme was reduced to a mere 4-fold in the R310M variant. The data are consistent with a model in which "good" substrates are bound "correctly" in the active site in an orientation that allows Arg-310 to stabilize the transition state for the first step of the overall reaction via an electrostatic interaction at the C-6 position, thereby accelerating the reaction rate. On the other hand, "poor" substrates bound upside down relative to this "correct" orientation. In so doing, they are unable to avail themselves of the additional catalytic power provided by Arg-310 in wild-type enzyme but, for this reason, are significantly less affected by mutations at this position. The kinetic data thus provide a picture of the specific manner in which the physiological substrate xanthine is oriented in the active site relative to Arg-310 and how this residue is used catalytically to accelerate the reaction rate (rather than simply bind substrate) despite being remote from the position that is hydroxylated.  相似文献   

7.
The fosfomycin resistance protein, FosX, catalyzes the hydration of the antibiotic fosfomycin, (1R,2S)-epoxypropylphosphonic acid. Genes encoding the enzyme are found in several pathogenic microorganisms. The structure and mechanism of action of the genomically encoded FosX enzyme from Listeria monocytogenes (FosXLMATCC) obtained from the American Type Culture Collection are reported. The gene harbors 31 point mutations, and as a consequence, the protein differs in 10 amino acid residues from the previously reported FosX encoded in the genome of the EGD strain of L. monocytogenes (FosXLMEGD). The FosXLMATCC enzyme is shown to catalyze the addition of water to the C1 position of the antibiotic with inversion of configuration at C1. The reaction involves Mn(II) activation of the oxirane oxygen and E44 acting as a general base. The structure of the enzyme has been determined from six different crystal forms of the protein. The structures of the enzyme without metal bound are similar but differ in the loop regions. Perhaps the most informative structure is the one with the product bound. This structure shows that the phosphonate group of the product is bound in an orientation that is different than that of fosfomycin bound to the related enzyme, FosA. The implication is that the substrate may also be bound in a different orientation in FosX. A high-resolution structure (1.44 A resolution) of the enzyme reveals a unique conformation in which the C-terminal tail of the protein coordinates to the Mn(II) center via the carboxylate of E126. The kinetic characterization of the E126Q mutant indicates that this conformation of the protein is probably not relevant to the function of the enzyme. Kinetic analysis of mutants of active site residue E44 is consistent with its proposed roll as a general base catalyst in the addition of water to the antibiotic.  相似文献   

8.
Variation in the kinetic parameters, kcat and Km, with pH has been used to obtain evidence for significant acid-dissociation processes in the hydrolysis of octapeptide substrates by three aspartic proteinases. These substrates are all cleaved at the peptide bond between a Phe (P1) and a p-nitroPhe (P1') residue resulting in a shift in absorbance at 300 nm that facilitates kinetic measurements. The substrates differ in the amino-acid residues present in the P3 and the P2 positions. Porcine pepsin, calf chymosin, and the aspartic proteinase from Endothia parasitica all show pH dependencies that imply that favorable or unfavorable interactions can occur with the S3 or S2 areas of the enzyme-active site. Examination of the crystallographically determined structure of the E. parasitica proteinase and consideration of the amino-acid sequence differences between the three enzymes suggests that the origin of the pH effects arises from favorable interactions between Glu-13 (COO-) of pig pepsin and Thr (OH) or His (ImH+) in P3 of a substrate. Similarly, Lys-220 (NH3+) of chymosin and a Glu (COO-) in P2 of a substrate may produce a favorable interaction and Asp-77 (COO-) of E. parasitica proteinase and a Glu (COO-) in P2 of a substrate may produce an unfavorable interaction. These results lead to possible explanations for subtle specificity differences within a family of homologous enzymes, and suggest loci for study by site-directed mutagenesis.  相似文献   

9.
E A Sergienko  F Jordan 《Biochemistry》2001,40(25):7382-7403
The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid-base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes.  相似文献   

10.
Human estrogenic dehydrogenase (17β-HSD1) catalyses the last step in the biosynthesis of the active estrogens that stimulate the proliferation of breast cancer cells. While the primary substrate for the enzyme is estrone, the enzyme has some activity for the non-estrogenic substrates. To better understand the structure–function relationships of 17β-HSD1 and to provide a better ground for the design of inhibitors, we have determined the crystal structures of 17β-HSD1 in complex with different steroids.

The structure of the complex of estradiol with the enzyme determined previously (Azzi et al., Nature Structural Biology 3, 665–668) showed that the narrow active site was highly complementary to the substrate. The substrate specificity is due to a combination of hydrogen bonding and hydrophobic interactions between the steroid and the enzyme binding pocket. We have now determined structures of 17β-HSD1 in complex with dihydrotestosterone and 20-OH-progesterone. In the case of the C19 androgen, several residues within the enzyme active site make some small adjustments to accommodate the increased bulk of the substrate. In addition, the C19 steroids bind in a slightly different position from estradiol with shifts in positions of up to 1.4 Å. The altered binding position avoids unfavorable steric interactions between Leu 149 and the C19 methyl group (Han et al., unpublished). The known kinetic parameters for these substrates can be rationalized in light of the structures presented. These results give evidence for the structural basis of steroid recognition by 17β-HSD1 and throw light on the design of new inhibitors for this pivotal steroid enzyme.  相似文献   


11.
This article focuses on the second step of the catalytic mechanism for the reduction of ribonucleotides catalyzed by the enzyme Ribonucleotide Reductase (RNR). This step corresponds to the protonation/elimination of the substrate's C-2' hydroxyl group. Protonation is accomplished by the neighbor Cys-225, leading to the formation of one water molecule. This is a very relevant step since most of the known inhibitors of this enzyme, which are already used in the fight against certain forms of cancer, are 2'-substituted substrate analogs. Even though some theoretical studies have been performed in the past, they have modeled the enzyme with minimal gas-phase models, basically represented by a part of the side chain of the relevant amino acids, disconnected from the protein backbone. This procedure resulted in a limited accuracy in the position and/or orientation of the participating residues, which can result in erroneous energetics and even mistakes in the choice of the correct mechanism for this step. To overcome these limitations we have used a very large model, including a whole R1 model with 733 residues plus the substrate and 10 A thick shell of water molecules, instead of the minimal gas-phase models used in previous works. The ONIOM method was employed to deal with such a large system. This model can efficiently account for the restrained mobility of the reactive residues, as well as the long-range enzyme-substrate interactions. The results gave additional information about this step, which previous small models could not provide, allowing a much clearer evaluation of the role of the enzyme. The interaction energy between the enzyme and the substrate along the reaction coordinate and the substrate steric strain energy have been obtained. The conclusion was that the barrier obtained with the present model was very similar to the one previously determined with minimal gas-phase models. Therefore, the role of the enzyme in this step was concluded to be mainly entropic, rather than energetic, by placing the substrate and the two reactive residues in a position that allows for the highly favorable concerted trimolecular reaction, and to protect the enzyme radical from the solvent.  相似文献   

12.
Kinetic experiments with a substrate series of phenylacetyl-arylamides reveal that at least one polar group in the amine moiety is required for the proper orientation of the substrate in the large nucleophile-binding subsite of penicillin acylase of Escherichia coli. Quantum mechanical molecular modelling of enzyme-substrate interactions in the enzyme active site shows that in the case of substrates lacking local symmetry, the productive binding implies two nonsymmetrical arrangements with respect to the two positively charged guanidinium residues of ArgA145 and ArgB263. This indicates a crucial role of the specified arginine pair in the substrate- and stereoselectivity of penicillin acylase.  相似文献   

13.
Kinetic measurements were made with cortisone reductase (20-dihydrocortisone-NAD(+) oxidoreductase, EC 1.1.1.53) and a series of substrates which differed in shape, size and electronic character in the region adjacent to C-11, C-14 and C-18. Structural changes at C-11 in these substrates resulted in up to 660-fold changes in the apparent K(m) value, up to 200-fold changes in the apparent V(max.) value and up to 800-fold changes in the ratio of these kinetic constants. It is suggested that interactions important for substrate function normally occur between the enzyme and the C ring in the region of C-11, that these interactions arise from so-called hydrophobic forces between the generally hydrophobic C ring portion of the substrate and a hydrophobic region of the enzyme, but that when the substrate contains a polar substituent in this portion of the molecule, then polar interactions with polar moieties of the enzyme can also be important. It is further suggested that the part of the enzyme that interacts with the region of C-11 in the substrate is flexible, and that substrate binding involves at least some degree of induced fit.  相似文献   

14.
The ligand binding and kinetic behaviour of butyrylcholinesterase (EC 3.1.1.8, acylcholine acylhydrolase) from human plasma was studied at 35 degrees C under high hydrostatic pressure. The binding of phenyltrimethylammonium was studied by affinity electrophoresis at various pressures ranging from 10(-3) to 2 kbar. The kinetics of enzyme carbamylation with N-methyl(7-dimethylcarbamoxy)quinolinium iodide was studied in single-turnover conditions up to 1.2 kbar using a high-pressure stopped-flow fluorimeter. Experiments were carried out in different media: 1 mM Tris-HCl (pH 8) with water, water containing 0.1 M lithium chloride and deuterium oxide as solvents. The volume changes (delta V and delta V++) associated with each process were determined from the pressure-dependence of the binding and kinetic constants. Kinetic data show that the binding of substrate to the enzyme leads to a pressure-sensitive enzyme conformational state which cannot accomplish the catalytic act. The pressure-induced inhibitory effect is highly cooperative; it depends on both the nature (charged or neutral) and the concentration of the substrate. Also, large solvent effects indicate that enzyme sensitivity to pressure depends on the solvent structure. This findings suggests that the substrate-dependent pressure effect is modulated by the solvation state of the enzyme.  相似文献   

15.
Xylose reductase has been purified to apparent homogeneity from cell extracts of the fungus Cryptococcus flavus grown on D-xylose as carbon source. The enzyme, the first of its kind from the phylum Basidiomycota, is a functional dimer composed of identical subunits of 35.3 kDa mass and requires NADP(H) for activity. Steady-state kinetic parameters for the reaction, D-xylose + NADPH + H(+)<--> xylitol + NADP(+), have been obtained at pH 7.0 and 25 degrees C. The catalytic efficiency for reduction of D-xylose is 150 times that for oxidation of xylitol. This and the 3-fold tighter binding of NADPH than NADP(+) indicate that the enzyme is primed for unidirectional metabolic function in microbial physiology. Kinetic analysis of enzymic reduction of aldehyde substrates differing in hydrophobic and hydrogen bonding capabilities with binary enzyme-NADPH complex has been used to characterize the substrate-binding pocket of xylose reductase. Total transition state stabilization energy derived from bonding with non-reacting sugar hydroxyls is approximately 15 kJ/mol, with a major contribution of 5-8 kJ/mol made by interactions with the C-2(R) hydroxy group. The aldehyde binding site is approximately 1.2 times more hydrophobic than n-octanol and can accommodate linear alkyl chains of 相似文献   

16.
1. Some aspects of the substrate specificities of liver and yeast alcohol dehydrogenases have been investigated with pentan-3-ol, heptan-4-ol, (+)-butan-2-ol, (+/-)-butan-2-ol, (+/-)-hexan-3-ol and (+/-)-octan-2-ol as potential substrates. The liver enzyme is active with all substrates tested, including both isomers of each optically active alcohol. In contrast, the yeast enzyme is completely inactive towards those secondary alcohols where both alkyl groups are larger than methyl and active with only the (+)-isomers of butan-2-ol and octan-2-ol. 2. The absence of stereospecificity of liver alcohol dehydrogenase towards optically active secondary alcohols and its broad specificity towards secondary alcohols in general are explained in terms of an alkyl-binding site that will react with a variety of alkyl groups and the ability of the enzyme to accommodate a fairly large unbound alkyl group in an active enzyme-NAD(+)-secondary alcohol ternary complex. The absolute optical specificity of the yeast enzyme towards n-alkylmethyl carbinols and its unreactivity towards pentan-3-ol, hexan-3-ol and heptan-4-ol are explained by its inability to accept alkyl groups larger than methyl in the unbound position in a viable ternary complex. 3. Comparison of the known configurations of the n-alkylmethyl carbinols and [1-(2)H]ethanol and [1-(3)H]geraniol, which have been used in stereospecificity studies with these enzymes by other workers, provides strong evidence for which alkyl group of the substrate is bound to the enzyme in the oxidation of n-alkylmethyl carbinols. The conclusions reached are, for butan-2-ol oxidation with the liver enzyme, confirmed by deductions from kinetic data obtained with (+)-butan-2-ol and a sample of butan-2-ol containing 66% of (-)-butan-2-ol. 4. Initial-rate parameters for the oxidations of (+)-butan-2-ol, 66% (-)-butan-2-ol and pentan-3-ol by NAD with liver alcohol dehydrogenase are presented. The data are completely consistent with a general mechanism of catalysis previously proposed for this enzyme.  相似文献   

17.
Clostridium perfringens sialidase was purified by affinity chromatography. Kinetic properties of the enzyme were examined with sialyllactose and with mixed sialoglycolipids (gangliosides) as substrates. With the latter substrate in 0.01 M Tris-acete in the absence of strong electrolyte, the pH optimum for enzymatic activity was 6.8. Addition of strong electrolyte (0.01 to 0.10 M Nac1) to the reaction medium caused an acidic shift and a broadening of the pH optimum, Enzymatic activity at pH 5.8 rose approximately 2.5-fold; a concomitant loss of activity at pH 6.8 was also observed. The alteration of enzymatic activity caused by strong electrolyte were dependent upon changes in Vmax. Km remained nearly invariant. Thus, a reversible transition of the enzyme from a relatively inactive to a highly active form occurred as a function of strong electrolyte concentration. Determination of the pK values of the active functional groups of C. perfringens sialidase revealed that the effects of strong electrolyte were exerted upon the pKa group of the enzyme. Strong electrolyte appeared to shield unfavorable electrostatic interactions between polyanionic sialoglycolipid micelles and the enzyme molecule, thus protecting the pKa group from inactivation. In comparision with the effects of strong electrolyte upon enzymatic activity toward the sialoglycolipid substrate, those observed with the monovalent substrate, sialyllacthose, were minor. Collectively, these findings indicate that ionic environment may effectively control the activity and relative substrate specificity of C. perfringens sialidase at a given pH. Furthermore, they explain the low pH optima and skewed pH profiles previously reported for enzymatic activity toward high molecular weight substrates.  相似文献   

18.
In order to characterize the active site of yeast dipeptidase in more detail, kinetic studies with a variety of dipeptide substrates and substrate analogs were performed. To analyze kinetic data, computer programs were developed which first calculate initial velocities from progress curves and then evaluate the kinetic parameters by nonlinear regression analysis. A free carboxyl group is a prerequisite for binding of dipeptidase substrates; its position relative to the peptide bond must not deviate from the normal L-dipeptide conformation. The spatial arrangement of the terminal ammonium ion seems to be less crucial. The enzyme's substrate specificity clearly reflects the interactions of the substrate amino acid side chains with complementary dipeptidase subsites. The domain of the enzyme in contact with the C-terminal substrate side chain seems to be an open structure of moderately hydrophobic character. In contrast, the binding site for the amino-terminal side chain is a more strongly hydrophobic "pocket" of limited dimensions. The kinetics of inhibition by free amino acids points to an ordered release of products from the enzyme.  相似文献   

19.
Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I) bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymase complexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most activecompound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitory mechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes.  相似文献   

20.
The crystal structure of the acyl enzyme formed upon inhibition of porcine pancreatic elastase (PPE) by 4-chloro-3-ethoxy-7-guanidinoisocoumarin has been determined at a 1.85-A effective resolution. The chlorine atom is still present in this acyl enzyme, in contrast to the previously reported structure of the 7-amino-4-chloro-3-methoxyisocoumarin-PPE complex where the chlorine atom has been replaced by an acetoxy group. The guanidino group forms hydrogen bonds with the carbonyl group and side-chain hydroxyl group of Thr-41, and the acyl carbonyl group has been twisted out of the oxyanion hole. Molecular modeling indicates that the orientation of the initial Michaelis enzyme-inhibitor complex is quite different from that of the acyl enzyme since simple reconstruction of the isocoumarin ring would result in unfavorable interactions with Ser-195 and His-57. Molecular models were used to design a series of new 7-(alkylureido)- and 7-(alkylthioureido)-substituted derivatives of 3-alkoxy-7-amino-4-chloroisocoumarin as PPE inhibitors. All the 3-ethoxyisocoumarins were better inhibitors than those in the 3-methoxy series due to better interactions with the S1 pocket of PPE. The best ureido inhibitor also contained a tert-butylureido group at the 7-position of the isocoumarin. Due to a predicted interaction with a small hydrophobic pocket on the surface of PPE, this isocoumarin and a related phenylthioureido derivative are among the best irreversible inhibitors thus far reported for PPE (kobs/[I] = 8100 M-1 s-1 and 12,000 M-1 s-1). Kinetic studies of the stability of enzyme-inhibitor complexes suggest that many isocoumarins are alkylating the active site histidine at pH 7.5 via a quinone imine methide intermediate, while at pH 5.0, the predominant pathway appears to be simple formation of a stable acyl enzyme derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号