首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The model system for the proton transfer on the amide atom of the substrate leaving group based on the existence of "charge relay system" in the serine type proteases was analysed by the CNDO/2 method. The unfitness of this model to explain the action mechanism of serine proteases was shown. The model system for proton transfer with the water molecule as the intermediate acceptor of the Ser-195 proton was suggested and analysed by the same method. The acylation activation barrier of this system was shown to localize on the stage of synchronous transfer of the Ser-195 alcoholic proton and the water molecule proton hydrogen bound to the His-57 N epsilon 2-atom on the water molecule oxygen atom and the N epsilon 2-atom, respectively. The protonation of substrate in the case of the model system with the water molecule as the intermediate acceptor of proton was demonstrated to begin before the completion of the tetrahedral intermediate substance and the protonated from of the tetrahedral intermediate was shown to form only. A hypothesis considering the role of this water molecule as the nucleophilic reagent on the deacylation stage is presented.  相似文献   

2.
Although the subject of many studies, detailed structural information on aspects of the catalytic cycle of serine proteases is lacking. Crystallographic analyses were performed in which an acyl-enzyme complex, formed from elastase and a peptide, was reacted with a series of nucleophilic dipeptides. Multiple analyses led to electron density maps consistent with the formation of a tetrahedral species. In certain cases, apparent peptide bond formation at the active site was observed, and the electron density maps suggested production of a cis-amide rather than a trans-amide. Evidence for a cis-amide configuration was also observed in the noncovalent complex between elastase and an alpha1-antitrypsin-derived tetrapeptide. Although there are caveats on the relevance of the crystallographic data to solution catalysis, the results enable detailed proposals for the pathway of the acylation step to be made. At least in some cases, it is proposed that the alcohol of Ser-195 may preferentially attack the carbonyl of the cis-amide form of the substrate, in a stereoelectronically favored manner, to give a tetrahedral oxyanion intermediate, which undergoes N-inversion and/or C-N bond rotation to enable protonation of the leaving group nitrogen. The mechanistic proposals may have consequences for protease inhibition, in particular for the design of high energy intermediate analogues.  相似文献   

3.
Both enantiomers of 3-benzyl-2-oxetanone (1) were found to be slowly hydrolyzed substrates of alpha-chymotrypsin having k(cat) values of 0.134+/-0.008 and 0.105+/-0.004 min(-1) for (R)-1 and (S)-1, respectively, revealing that alpha-CT is virtually unable to differentiate the enantiomers in the hydrolysis of 1. The initial step to form the acyl-enzyme intermediate by the attack of Ser-195 hydroxyl on the beta-lactone ring at the 2-position in the hydrolysis reaction may not be enzymatically driven, but the relief of high ring strain energy of beta-lactone may constitute a major driving force. The deacylation step is also attenuated, which is possibly due to the hydrogen bond that would be formed between the imidazole nitrogen of His-57 and the hydroxyl group generated during the acylation in the case of (R)-1, but in the alpha-CT catalyzed hydrolysis of (S)-1 the imidazole nitrogen may form a hydrogen bond with the ester carbonyl oxygen.  相似文献   

4.
The structure of the complex of bovine trypsin and bovine pancreatic trypsin inhibitor has been determined by crystal structure analysis at 2.8 Å resolution. The structure is closely similar to the model predicted from the structures of the components. The complex is a tetrahedral adduct with a covalent bond between the carbonyl carbon of Lys-15I of the inhibitor and the γ-oxygen of Ser-195 of the enzyme. The imidazole of His-57 is hydrogen-bonded to Asp-102 and the bound seryl γ-oxygen in accord with the histidine being charged. The negatively charged carbonyl oxygen of Lys-15I forms two hydrogen bonds with the amide nitrogens of Gly-193 and Ser-195. Protonation of the leaving group N-H of Ala-16I to form an acyl-complex requires a conformational change of the imidazole of His-57. The tetrahedral adduct is further stabilized by hydrogen bonds between groups at the leaving group side and inhibitor and enzyme, which would be weakened in the acyl-enzyme. The kinetic data of inhibitor-enzyme interaction are reconciled with the structural model, and relations between enzyme-inhibitor interaction and productive enzyme-substrate interaction are proposed.  相似文献   

5.
Despite the availability of many experimental data and some modeling studies, questions remain as to the precise mechanism of the serine proteases. Here we report molecular dynamics simulations on the acyl-enzyme complex and the tetrahedral intermediate during the deacylation step in elastase catalyzed hydrolysis of a simple peptide. The models are based on recent crystallographic data for an acyl-enzyme intermediate at pH 5 and a time-resolved study on the deacylation step. Simulations were carried out on the acyl enzyme complex with His-57 in protonated (as for the pH 5 crystallographic work) and deprotonated forms. In both cases, a water molecule that could provide the nucleophilic hydroxide ion to attack the ester carbonyl was located between the imidazole ring of His-57 and the carbonyl carbon, close to the hydrolytic position assigned in the crystal structure. In the "neutral pH" simulations of the acyl-enzyme complex, the hydrolytic water oxygen was hydrogen bonded to the imidazole ring and the side chain of Arg-61. Alternative stable locations for water in the active site were also observed. Movement of the His-57 side-chain from that observed in the crystal structure allowed more solvent waters to enter the active site, suggesting that an alternative hydrolytic process directly involving two water molecules may be possible. At the acyl-enzyme stage, the ester carbonyl was found to flip easily in and out of the oxyanion hole. In contrast, simulations on the tetrahedral intermediate showed no significant movement of His-57 and the ester carbonyl was constantly located in the oxyanion hole. A comparison between the simulated tetrahedral intermediate and a time-resolved crystallographic structure assigned as predominantly reflecting the tetrahedral intermediate suggests that the experimental structure may not precisely represent an optimal arrangement for catalysis in solution. Movement of loop residues 216-223 and P3 residue, seen both in the tetrahedral simulation and the experimental analysis, could be related to product release. Furthermore, an analysis of the geometric data obtained from the simulations and the pH 5 crystal structure of the acyl-enzyme suggests that since His-57 is protonated, in some aspects, this crystal structure resembles the tetrahedral intermediate.  相似文献   

6.
M N James  A R Sielecki 《Biochemistry》1985,24(14):3701-3713
The X-ray crystal structures of native penicillopepsin and of its complex with a synthetic analogue of the inhibitor pepstatin have been refined recently at 1.8-A resolution. These highly refined structures permit a detailed examination of peptide hydrolysis in the aspartic proteinases. Complexes of penicillopepsin with substrate and catalytic intermediates were modeled, by using computer graphics, with minimal perturbation of the observed inhibitor complex. A thallium ion binding experiment shows that the position of solvent molecule O39, between Asp-33(32) and Asp-213(215) in the native structure, is favorable for cations, a fact that places constraints on possible mechanisms. A mechanism for hydrolysis is proposed in which Asp-213(215) acts as an electrophile by protonating the carbonyl oxygen of the substrate, thereby polarizing the carbon-oxygen bond, a water molecule bound to Asp-33(32) (O284 in the native structure) attacks the carbonyl carbon as the nucleophile in a general-base mechanism, the newly pyramidal peptide nitrogen is protonated, either from the solvent after nitrogen inversion or by an internal proton transfer via Asp-213(215) from a hydroxyl of the tetrahedral carbon, and the tetrahedral intermediate breaks down in a manner consistent with the stereoelectronic hypothesis. The models permit the rationalization of observed subsite preferences for substrates and may be useful in predicting subsite preferences of other aspartic proteinases.  相似文献   

7.
Citrate synthase forms citrate by deprotonation of acetyl-CoA followed by nucleophilic attack of this substrate on oxaloacetate, and subsequent hydrolysis. The rapid reaction rate is puzzling because of the instability of the postulated nucleophilic intermediate, the enolate of acetyl-CoA. As alternatives, the enol of acetyl-CoA, or an enolic intermediate sharing a proton with His-274 in a “low-barrier” hydrogen bond have been suggested. Similar problems of intermediate instability have been noted in other enzymic carbon acid deprotonation reactions. Quantum mechanical/molecular mechanical calculations of the pathway of acetyl-CoA enolization within citrate synthase support the identification of Asp-375 as the catalytic base. His-274, the proposed general acid, is found to be neutral. The acetyl-CoA enolate is more stable at the active site than the enol, and is stabilized by hydrogen bonds from His-274 and a water molecule. The conditions for formation of a low-barrier hydrogen bond do not appear to be met, and the calculated hydrogen bond stabilization in the reaction is less than the gas-phase energy, due to interactions with Asp-375 at the active site. The enolate character of the intermediate is apparently necessary for the condensation reaction to proceed efficiently. Proteins 27:9–25 © 1997 Wiley-Liss, Inc.  相似文献   

8.
The initial nucleophilic substitution step of biapenem hydrolysis catalyzed by a subclass B2 metallo-beta-lactamase (CphA from Aeromonas hydrophila) is investigated using hybrid quantum mechanical/molecular mechanical methods and density functional theory. We focused on a recently proposed catalytic mechanism that involves a non-metal-binding water nucleophile in the active site of the monozinc CphA. Both theoretical models identified a single transition state featuring nearly concomitant nucleophilic addition and elimination steps, and the activation free energy from the potential of mean force calculations was estimated to be approximately 14 kcal/mol. The theoretical results also identified the general base for activating the water nucleophile to be the metal-binding Asp-120 rather than His-118, as suggested earlier. The protonation of Asp-120 leads to cleavage of the O(delta2)-Zn coordination bond, whereas the negatively charged nitrogen leaving group resulting from the ring opening replaces Asp-120 as the fourth ligand of the sole zinc ion. The electrophilic catalysis by the metal ion provides sufficient stabilization for the leaving group to avoid a tetrahedral intermediate. The theoretical studies provided detailed insights into the catalytic strategy of this unique metallo-beta-lactamase.  相似文献   

9.
Based on available three-dimensional structures of enzyme-inhibitor complexes, the mechanism of the reaction catalysed by HIV protease is studied using molecular dynamics simulations with molecular mechanics and combined quantum-mechanics/molecular-mechanics potential energy functions. The results support the general acid/general base catalysis mechanism, with Asp25′ protonated in the enzyme-substrate complex. In the enzyme-substrate complex, the lytic water molecule binds at a position different from the positions of the hydroxyl groups in various aspartic protease-inhibitor complexes. The carboxyl groups at the active site also adopt a different orientation. However, when the lytic water molecule approaches the scissile peptide, the reaction centre changes gradually to a conformation close to that derived from X-ray diffraction studies of various enzyme-inhibitor complexes. The proton transfer processes can take place only after the lytic water molecule has approached the scissile peptide bond to a certain degree. Qualitatively, the free-energy barrier associated with the nucleophilic attack step, which takes place at physiological pH, is comparable with the acid or base-catalysed reactions of model systems. The structure of the tetrahedral intermediate resulting from the nucleophilic attack step also indicates a straightforward pathway of the next reaction step, i.e. the breaking of the C-N bond.  相似文献   

10.
The motions of water molecules, the acyl moiety, the catalytic triad, and the oxyanion binding site of acyl-chymotrypsin were studied by means of a stochastic boundary molecular dynamics simulation. A water molecule that could provide the nucleophilic OH? for the deacylation stage of the catalysis was found to be trapped between the imidazole ring of His-57 and the carbonyl carbon of the acyl group. It makes a hydrogen bond with the Nε2 of His-57 and is heldin place through a network of hydrogen-bonded water molecules in theactive site. The water molecule was found as close as 2.8 Å to the carbonyl carbon. This appears to be due to the constraints imposed by nonbonded interaction in the active site. Configurations were found in which one hydrogen of the trapped water shared a bifurcated hydrogen bond with His-57-Nε2 and Ser-195-0γ with the water oxygen very close to the carbonyl carbon. The existence of such a water molecule suggests that large movement of the His-57 imidazole ring between positions suitable for providing general-base catalyzed assistance and for providing general-acid catalyzed assistance may notbe required during the reaction. The simulation indicates that the side chains of residues involved in catalysis (i.e., His-57, Ser-195, and Asp-102) are significantly less flexible than other side chains in the protein. The 40% reduction in rms fluctuations is consistent with a comparable reduction calculated from the temperature factors obtained in the X-ray crystal-lographic data of γ-chymotrypsin. The greater rigidity of active site residues seems to result from interconnected hydrogen bonding networks among the residues and between the residues and the solvent water in the active site. © Wiley-Liss, Inc.  相似文献   

11.
The reaction mechanism of the dinuclear zinc enzyme human renal dipeptidase is investigated using hybrid density functional theory. This enzyme catalyzes the hydrolysis of dipeptides and β-lactam antibiotics. Two different protonation states in which the important active site residue Asp288 is either neutral or ionized were considered. In both cases, the bridging hydroxide is shown to be capable of performing the nucleophilic attack on the substrate carbonyl carbon from its bridging position, resulting in the formation of a tetrahedral intermediate. This step is followed by protonation of the dipeptide nitrogen, coupled with C-N bond cleavage. The calculations establish that both cases have quite feasible energy barriers. When the Asp288 is neutral, the hydrolytic reaction occurs with a large exothermicity. However, the reaction becomes very close to thermoneutral with an ionized Asp288. The two zinc ions are shown to play different roles in the reaction. Zn1 binds the amino group of the substrate, and Zn2 interacts with the carboxylate group of the substrate, helping in orienting it for the nucleophilic attack. In addition, Zn2 stabilizes the oxyanion of the tetrahedral intermediate, thereby facilitating the nucleophilic attack.  相似文献   

12.
The properties of a-chymotrypsin methylated at histidine-57 were examined to explain the mechanism of this enzyme which is about 105 times less active than chymotrypsin. Studies on the protein showed (i) an alteration in the acyl and leaving group specificity, (ii) decreased binding of some protein protease inhibitors by methyl chymotrypsin, (iii) lack of dimerization of methyl chymotrypsin at low pH, (iv) decreased stability of methyl chymotrypsin in urea, (v) a larger solvent deuterium isotope effect with methyl chymotrypsin, and (vi) decreased binding of a tetrahedral intermediate analog to methyl chymotrypsin. These properties suggest that while only subtle alterations occur in the active site upon methylation of His-57, the transition state and the tetrahedral intermediate are destabilized but not to the same extent. General base catalysis remains an integral feature of the hydrolytic mechanism of the modified chymotrypsin, and the base appears to be the methylated nitrogen of the imidazole moiety of His-57.  相似文献   

13.
We have provided a quantum mechanical model for proteinase-catalyzed peptide, amide and ester hydrolysis. The model rests on electron and atom transfer theory, but incorporates the dynamics of conformational nuclear modes as a new element. The model is applied to acylation, but can straightaway be extended to deacylation, and is substantiated by recent structural and kinetic data for proteinase enzyme catalysis. The role of the conformational modes is found to be two-fold. First, the crystallographic distances for the proton transfers involved are far too large for direct transfer. His-57 mobility, handled stochastically, to bring the donor and acceptor groups within suitable reach, is therefore a crucial element of the theory. Secondly, the charge alignment in the Asp-102/His-57/tetrahedral intermediate system implies that the curvature of the potential surface along the conformational coordinates in this state is much lower than in the initial enzyme-substrate and final acyl states. A consequence of this is that the activation energy liberated after the first proton transfer is not dissipated, but stored in the conformational system and used in the second proton transfer step.  相似文献   

14.
Dienelactone hydrolase (DLH), an enzyme from the β-ketoadipate pathway, catalyzes the hydrolysis of dienelactone to maleylacetate. Our inhibitor binding studies suggest that its substrate, dienelactone, is held in the active site by hydrophobic interactions around the lactone ring and by the ion pairs between its carboxylate and Arg-81 and Arg-206. Like the cysteine/serine proteases, DLH has a catalytic triad (Cys-123, His-202, Asp-171) and its mechanism probably involves the formation of covalently bound acyl intermediate via a tetrahedral intermediate. Unlike the proteases, DLH seems to protonate the incipient leaving group only after the collapse of the first tetrahedral intermediate, rendering DLH incapable of hydrolyzing amide analogues of its ester substrate. In addition, the triad His probably does not protonate the leaving group (enolate) or deprotonate the water for deacylation; rather, the enolate anion abstracts a proton from water and, in doing so, supplies the hydroxyl for deacylation. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Martí-Arbona R  Raushel FM 《Biochemistry》2006,45(48):14256-14262
N-Formimino-l-glutamate iminohydrolase (HutF) from Pseudomonas aeruginosa catalyzes the deimination of N-formimino-l-glutamate in the histidine degradation pathway. An amino acid sequence alignment between HutF and members of the amidohydrolase superfamily containing mononuclear metal centers indicated that residues Glu-235, His-269, and Asp-320 are involved in substrate binding and activation of the nucleophilic water molecule. The purified enzyme contained up to one equivalent of zinc. The metal was removed by dialysis against the metal chelator dipicolinate with the complete loss of catalytic activity. Enzymatic activity was restored by incubation of the apoprotein with Zn2+, Cd2+, Ni2+, or Cu2+. The mutation of Glu-235, His-269, or Asp-320 resulted in the diminution of catalytic activity by two to six orders of magnitude. Bell-shaped profiles were observed for kcat and kcat/Km as a function of pH. The pKa of the group that must be unprotonated for catalytic activity was consistent with the ionization of His-269. This residue is proposed to function as a general base in the abstraction of a proton from the metal-bound water molecule. In the proposed catalytic mechanism, the reaction is initiated by the abstraction of a proton from the metal-bound water molecule by the side chain imidazole of His-269 to generate a tetrahedral intermediate of the substrate. The collapse of the tetrahedral intermediate commences with the abstraction of a second proton via the side chain carboxylate of Asp-320. The C-N bond of the substrate is subsequently cleaved with proton transfer from His-269 to form ammonia and the N-formyl product. The postulated role of the invariant Glu-235 is to ion pair with the positively charged formimino group of the substrate.  相似文献   

16.
The glyoxalase system catalyzes the conversion of toxic methylglyoxal to nontoxic d-lactic acid using glutathione (GSH) as a coenzyme. Glyoxalase II (GlxII) is a binuclear Zn enzyme that catalyzes the second step of this conversion, namely the hydrolysis of S-d-lactoylglutathione, which is the product of the Glyoxalase I (GlxI) reaction. In this paper we use density functional theory method to investigate the reaction mechanism of GlxII. A model of the active site is constructed on the basis of the X-ray crystal structure of the native enzyme. Stationary points along the reaction pathway are optimized and the potential energy surface for the reaction is calculated. The calculations give strong support to the previously proposed mechanism. It is found that the bridging hydroxide is capable of performing nucleophilic attack at the substrate carbonyl to form a tetrahedral intermediate. This step is followed by a proton transfer from the bridging oxygen to Asp58 and finally C-S bond cleavage. The roles of the two zinc ions in the reaction mechanism are analyzed. Zn2 is found to stabilize the charge of tetrahedral intermediate thereby lowering the barrier for the nucleophilic attack, while Zn1 stabilizes the charge of the thiolate product, thereby facilitating the C-S bond cleavage. Finally, the energies involved in the product release and active-site regeneration are estimated and a new possible mechanism is suggested.  相似文献   

17.
Ab initio molecular orbital calculations have been performed on the reaction profile for the addition/elimination reaction between ammonia and formic acid, proceeding via a tetrahedral intermediate: NH3 + HCO2H----H2NCH(OH)2----NH2CHO + H2O. Calculated transition state energies for the first addition step of the reaction revealed that a lone pair on the oxygen of the OH group, which is antiperiplanar to the attacking nitrogen, stabilized the transition state by 3.9 kcal/mol, thus supporting the hypothesis of stereoelectronic control for this reaction. In addition, a secondary, counterbalancing stereoelectronic effect stabilizes the second step, water elimination, transition state by 3.1 kcal/mol if the lone pair on the leaving water oxygen is not antiperiplanar to the C-N bond. The best conformation for the transition states was thus one with a lone pair antiperiplanar to the adjacent scissile bond and also one without a lone-pair orbital on the scissile bond oxygen or nitrogen antiperiplanar to the adjacent polar bond. The significance of these stereoelectronic effects for the mechanism of action of serine proteases is discussed.  相似文献   

18.
We report the X-ray analysis at 2.0 A resolution for crystals of the aspartic proteinase endothiapepsin (EC 3.4.23.6) complexed with a potent difluorostatone-containing tripeptide renin inhibitor (CP-81,282). The scissile bond surrogate, an electrophilic ketone, is hydrated in the complex. The pro-(R) (statine-like) hydroxyl of the tetrahedral carbonyl hydrate is hydrogen-bonded to both active-site aspartates 32 and 215 in the position occupied by a water in the native enzyme. The second hydroxyl oxygen of the hydrate is hydrogen-bonded only to the outer oxygen of Asp 32. These experimental data provide a basis for a model of the tetrahedral intermediate in aspartic proteinase-mediated cleavage of the amide bond. This indicates a mechanism in which Asp 32 is the proton donor and Asp 215 carboxylate polarizes a bound water for nucleophilic attack. The mechanism involves a carboxylate (Asp 32) that is stabilized by extensive hydrogen bonding, rather than an oxyanion derivative of the peptide as in serine proteinase catalysis.  相似文献   

19.
The participation of a low-barrier hydrogen bond (LBHB) in the mechanism of action of chymotrypsin introduces a new role for Asp 102 and His 57 in catalysis [C. S. Cassidy, J. Lin, and P. A. Frey (1997) Biochemistry 36, 4576-4584]. It is postulated that the LBHB increases the basicity of His 57-N(epsilon2) in the transition state, thereby facilitating the abstraction of a proton from Ser 195, and stabilizes the tetrahedral intermediate in the acylation step. Evidence for this mechanism includes the downfield chemical shift of the proton bridging His 57 and Asp 102 in transition-state analog complexes and the low deuterium fractionation factors for this proton in the same complexes. We present additional spectroscopic evidence supporting the assignment of an LBHB between His 57 and Asp 102. The tetrahedral addition complex between Ser 195 of chymotrypsin and N-acetyl-l-leucyl-l-phenylalanyl trifluoromethylketone is regarded as a close structural analog of a tetrahedral intermediate. The deuterium NMR signal for the downfield deuteron bridging His 57 and Asp 102 in D(2)O has now been observed as a broad band centered at 17.8 +/- 0.5 ppm. The proton NMR signal in H(2)O is centered at 18.9 +/- 0.05 ppm. The two signals are clearly separated corresponding to a deuterium isotope effect of Delta[delta(H) - delta(D)] = 1.1 +/- 0.5 ppm. Deuterium isotope effects in this range are characteristic of LBHBs, and this observation provides further support for the assignment of the proton bridging His 57 and Asp 102 in transition-state analog complexes as an LBHB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号