首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four aromatic amines 1-amino-4-phenoxybenzene (A1), 4-(4-aminophenyloxy) biphenyl (A2), 1-(4-aminophenoxy) naphthalene (A3) and 2-(4-aminophenoxy) naphthalene (A4) were synthesized and characterized by elemental, spectroscopic (FTIR, NMR), mass spectrometric and single crystal X-ray diffraction methods. The compounds crystallized in monoclinic crystal system with space group P21. Intermolecular hydrogen bonds were observed between the amine group and amine/ether acceptors of neighboring molecules. Electrochemical investigations were done using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). CV studies showed that oxidation of aromatic amines takes place at about 0.9 V (vs. Ag/AgCl) and the electron transfer (ET) process has irreversible nature. After first scan reactive intermediate were generated electrochemically and some other cathodic and anodic peaks also appeared in the succeeding scans. DPV study revealed that ET process is accompanied by one electron. DNA binding study of aromatic amines was performed by CV and UV–visible spectroscopy. These investigations revealed groove binding mode of interaction of aromatic amines with DNA.  相似文献   

2.
3.
Benzyl methyl sulfides substituted with methyl, chloro, cyano, bromo, methoxy, nitro and amino groups in the ortho or meta positions of the aromatic ring have been converted to (S) sulfoxides by biotransformation using the fungal biocatalyst Helminthosporium species NRRL 4671. The enantiomeric excesses for meta-substituted examples were high in those cases where the substituent was of a polar nature, and comparable to those observed for the corresponding para-substituted substrates. With one exception (o-amino), the ortho-substituted examples gave sulfoxides of lower enantiomeric purity. The role of a suitably located polar substituent on an aryl ring of the substrate in ensuring a high enantiomeric excess in sulfoxidation by Helminthosporium species has been confirmed by the biotransformations of 4-(methylthiomethyl)benzyl alcohol and 2-(4-nitrophenyl) ethyl methyl sulfide, which give sulfoxides of much higher optical purity than those obtained from the corresponding unsubstituted substrates.  相似文献   

4.
White-rot Basidiomycetes promoted the oxidation of aromatic pro-chiral sulfides into sulfoxides with good enantioselectivity, conversion and a small production of sulfones. The reactions were carried out using whole cells of Irpex lacteus, Pycnoporus sanguineus, Trichaptum byssogenum, Trametes rigida, Trametes versicolor and Trametes villosa. The enantioselectivity for all the aryl alkyl sulfoxides was in favor of (S)-enantiomers. Oxidation of (phenylpropyl)sulfide produced (S)-(phenylpropyl)sulfoxide with high enantiomeric excess (e.e. ≥99%) by all the Basidiomycetes employed. Basidiomycetes isolated from Brazilian biomes were used as biocatalysts in the oxidation reaction.  相似文献   

5.
Previously, loss of 11β-hydroxylase activity when adrenocortical cells are incubated with the pseudosubstrate cortisol was found to be reduced when the concentration of oxygen was lowered, or when butylated hydroxyanisole (BHA) or dimethyl sulfoxide (Me2SO) were included in the medium. In the present experiments, we tested the hypothesis that Me2SO protects 11β-hydroxylase by scavenging OH? radicals. Substances known to react with OH? at high rates and non-toxic enough to be used at concentrations of 10–100 mM, including several alcohols, benzoate and radioprotectant thiols, did not prevent loss of activity of 11β-hydroxylase in the presence of 50 μM cortisol. Two of the alcohols, ethanol and glycerol, as well as Me2SO, were radioprotective in cultured bovine adrenocortical cells. Therefore free OH? radicals do not appear to be involved in loss of 11β-hydroxylase activity. When sulfoxides other than dimethyl sulfoxide were tested for their ability to protect 11β-hydroxylase in the presence of cortisol, several aryl sulfoxides, particularly dibenzyl sulfoxide, as well as dipropyl sulfoxide, were active at concentrations to 1200 of that required for Me2SO. Previously, we have demonstrated that 11β-hydroxylase inhibitors, particularly metyrapone, effectively protect against loss of 11β-hydroxylase activity in the presence of pseudosubstrates and therefore we examined whether sulfoxides may act by directly inhibiting 11β-hydroxylase. Me2SO showed an ED50 for inhibition of 11β-hydroxylase activity of > 1 M, in contrast to its ED50 for protection of 34 mM. For metyrapone, however, the ED50 for inhibition of the enzyme (250 nM) was close to that for protection of activity (270 nM). The other sulfoxides showed ED50-values for inhibition of 11β-hydroxylase that were substantially higher than the ED50-values for protection. Sulfoxides may have a mixed mode of action in protection of 11β-hydroxylase activity, as previously shown for phenols; they may protect by radical scavenging, but may also need to bind close to the active site of the enzyme where destructive radicals may be formed.  相似文献   

6.
Incubation of alkyl aryl sulfides with growing cells of Corynebacterium equi IFO 3730 afforded the corresponding sulfoxides and sulfones. The selectivity for the formation of sulfoxides over sulfones was higher with sulfides which have shorter alkyl chains. When methyl sulfides were used as substrates, formation of the corresponding sulfones was completely suppressed. Sulfoxides were revealed to have 87 ~ 100% optical purities as to the (R) absolute configuration by HPLC analysis. The culture conditions seriously influenced the yield of oxidation products. High conversion of sulfides was attained when the reaction was carried out with growing cells in the logarithmic phase, in medium containing hexadecane as the carbon and energy source.  相似文献   

7.
Activation of polycyclic aromatic hydrocarbons (PAH) by horseradish peroxidase (HRP) with H2O2 has been studied as a model system for one-electron oxidation. This peroxidase has been used to catalyze binding of 6-[14C]methylbenzo[a]pyrene (BP-6-CH3) to DNA, which was purified, hydrolyzed to deoxyribonucleosides and analyzed by high pressure liquid chromatography (HPLC). The predominant hydrocarbon-DNA adduct observed was identified as BP-6-CH3 bound at the 6-methyl group to the 2-amino group of dG, confirming that activation by HRP occurs by one-electron oxidation. When DNA from mouse skin treated in vivo with [14C]BP-6-CH3 was purified, hydrolyzed and analyzed by HPLC, a profile was observed which was qualitatively similar to that from the peroxidase system. In particular, the identified adduct with the hydrocarbon bound at the 6-methyl group to the 2-amino group of dG was obtained. These results demonstrate that one-electron oxidation is the mechanism of activation by HRP for aromatic hydrocarbons and indicate that the same mechanism may occur in mouse skin, a target tissue for hydrocarbon carcinogenesis.  相似文献   

8.
9.
Replication protein A (RPA), the heterotrimeric single-stranded-DNA (ssDNA) binding protein (SSB) of eukaryotes, contains two homologous ssDNA binding domains (A and B) in its largest subunit, RPA1, and a third domain in its second-largest subunit, RPA2. Here we report that Saccharomyces cerevisiae RPA1 contains a previously undetected ssDNA binding domain (domain C) lying in tandem with domains A and B. The carboxy-terminal portion of domain C shows sequence similarity to domains A and B and to the region of RPA2 that binds ssDNA (domain D). The aromatic residues in domains A and B that are known to stack with the ssDNA bases are conserved in domain C, and as in domain A, one of these is required for viability in yeast. Interestingly, the amino-terminal portion of domain C contains a putative Cys4-type zinc-binding motif similar to that of another prokaryotic SSB, T4 gp32. We demonstrate that the ssDNA binding activity of domain C is uniquely sensitive to cysteine modification but that, as with gp32, ssDNA binding is not strictly dependent on zinc. The RPA heterotrimer is thus composed of at least four ssDNA binding domains and exhibits features of both bacterial and phage SSBs.  相似文献   

10.
The high-sulfur coal desulfurization process completed by A. ferrooxidans LY01 cells domesticated with either ferrous iron [Fe(II)] or pyrite (FeS2) was investigated in this article. The desulfurization rate for 13 d was as high as 67.8% for the LY01 cells domesticated with pyrite but was only 45.6% for the LY01 cells domesticated with Fe(II). Bacterial adsorption experiments indicated that the bacterial adsorption quantity onto the pyrite particles was similar to the desulfurization efficiency. FTIR analysis showed that chemical composition of the two cell types was similar, but the LY01 cells domesticated with pyrite had higher levels of hydrophobic aromatic R-O groups than cells domesticated with Fe(II). The amount of extracellular polymeric substances (EPS) from the pyrite-domesticated LY01 cells was 1820 μg C/1010 cells, which was five times more than the amount of EPS in the Fe(II)-domesticated cells; the EPS readily bound Fe(III) with a maximum binding capacity of 0.21 mg Fe(III) per mg C EPS. Strains of pyrite-domesticated LY01 with a high amount of Fe(III) in their EPS possess greater oxidation activity than Fe(II)-domesticated strains with fewer Fe(III). These experiments showed the importance of the substrate-specific differences in the oxidative activity of A. ferrooxidans LY01. In addition, this study provides theoretical guidance for the future optimization of the biodesulfurization process.  相似文献   

11.
Molecularly ordered composites of polyvinylimidazole‐[Os(bipyridine)2Cl] (PVI‐[Os(bpy)2Cl]) and glucose oxidase (GOD) are assembled inside a film of aligned carbon nanotubes. The structure of the prepared GOD/PVI‐[Os(bpy)2Cl]/CNT composite film is entirely uniform and stable; more than 90% bioelectrocatalytic activity could be maintained even after storage for 6 d. Owing to the ideal positional relationship achieved between enzyme, mediator, and electrode, the prepared film shows a high bioelectrocatalytic activity for glucose oxidation (ca. 15 mA cm?2 at 25 °C) with an extremely high electron‐transfer turnover rate (ca. 650 s?1) comparable to the value for GOD solutions, indicating almost every enzyme molecule entrapped within the ensemble (ca. 3 × 1012 enzymes in a 1 mm × 1 mm film) can work to the fullest extent. This free‐standing, flexible composite film can be used by winding on a needle device; as an example, a self‐powered sugar monitor is demonstrated.  相似文献   

12.
Washed-cell preparations of recombinant Escherichia coli JM109(pDTG141), engineered to express the naphthalene dioxygenase (NDO) gene from Pseudomonas sp. NCIB 9816-4, have been used to biooxidise a range of aryl alkyl-, dialkyl- and bicyclic sulfides. A series of 16 phenyl alkyl sulfides was oxidised to equivalent sulfoxides, typically with moderate to high (>90%) yield and high enantioselectivity (>85% ee), the (S)-enantiomer being the predominant product, with little if any further oxidation. The addition of some electron-donating or electron-withdrawing groups to the phenyl ring decreased yield and/or stereoselectivity of the NDO-catalysed biotransformation, whereas increasing the size of the alkyl chain (nC3H7, iC3H7 and nC4H9) resulted in a notable inversion in selectivity to yield (R)-series sulfoxides (>74% ee) as the predominant products. The addition of one or more methylene groups between the phenyl ring and sulfur atom resulted in notable reductions in both the yield and stereoselectivity of the (S)-predominant sulfoxidations. With the exception of cyclohexyl- and n-hexyl methyl sulfide which both gave (S)-sulfoxides with good stereoselectivity and yield, other dialkyl- and bicyclic sulfides were poor substrates for sulfoxidation by NDO. Both the close agreement with data obtained using purified NDO and the absence of stereoselective sulfoxidation in equivalent controls with the E. coli JM109 host support the contribution made by the cloned NDO carried on the pDTG141 plasmid.  相似文献   

13.
The interest of simultaneously combining chemical (Fenton’s reaction) and biological treatments for the degradation of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) has been studied in laboratory tests. An optimal concentration of 1.5 × 10−3 M H2O2 as Fenton’s reagent was firstly determined as being compatible with the growth of Fusarium solani, the Deuteromycete fungus used in the biodegradation process. For the enhancement of BaP solubilisation, cyclodextrins were also used in the performed tests. The best degradation performance was achieved through the use of 5 × 10−3 M hydroxypropyl-β-cyclodextrin (HPBCD) in comparison with randomly methylated-β-cyclodextrin (RAMEB). When Fenton’s treatment was combined with biodegradation, a beneficial effect on BaP degradation (25%) was obtained in comparison with biodegradation alone (8%) or with chemical oxidation alone (16%) in the presence of HPBCD for 12 days of incubation.  相似文献   

14.
This study investigates the biological significance of carotenoid oxidation products using inhibition of Na+-K+-ATPase activity as an index. β-Carotene was completely oxidized by hypochlorous acid and the oxidation products were analyzed by capillary gasliquid chromatography and high performance liquid chromatography. The Na+-K+-ATPase activity was assayed in the presence of these oxidized carotenoids and was rapidly and potently inhibited. This was demonstrated for a mixture of β-carotene oxidative breakdown products, β-Apo-10′-carotenal and retinal. Most of the β-carotene oxidation products were identified as aldehydic. The concentration of the oxidized carotenoid mixture that inhibited Na+-K+-ATPase activity by 50% (IC50) was equivalent to 10μM non-degraded β-carotene, whereas the IC50 for 4-hydroxy-2-nonenal, a major lipid peroxidation product, was 120 μM. Carotenoid oxidation products are more potent inhibitors of Na+-K+-ATPase than 4-hydroxy-2-nonenal. Enzyme activity was only partially restored with hydroxylamine and/or β-mercaptoethanol. Thus, in vitro binding of carotenoid oxidation products results in strong enzyme inhibition. These data indicate the potential toxicity of oxidative carotenoid metabolites and their activity on key enzyme regulators and signal modulators.  相似文献   

15.
16.
The structures of the cyclic hexapeptide cyclo(-Gly-Tyr-Val-Pro-Met-Leu-) ( 1 ) and its phosphotyrosyl (pTyr) derivative cyclo[-Gly-Tyr(PO3H2)-Val-Pro-Met-Leu-] ( 2 ), designed as constrained models of a sequence that interacts with the src homology 2 (SH2) region of the p85 subunit of phosphatidylinositol-3-OH kinase (PI-3 kinase), were studied in methanol/water solutions by 500 MHz nmr spectroscopy. Compound 1 was found to exist as a 2:1 mixture of isomers about the Val-Pro bond (trans and cis prolyl) between 292–330 K in 75% CD3O (D,H)/(D,H)2O solutions. A third species of undetermined structure (ca. 5%) was also observed. Compound 2, a model of phosphorylated peptide ligand that binds to the PI-3 kinase SH2 domain, exhibited similar conformational isomerism. When either compound was dissolved in pure solvent [i.e., 100% CD3O(H,D) or (H,D)2O] the ratio of cis to trans isomers was ca 1:1. A battery of one- and two-dimensional nmr experiments at different temperatures and solvent compositions allowed a complete assignment of both the cis and trans forms of 1 and indicated the trans compound to be the major isomer. The spectral properties of the phosphorylated derivative 2 paralleled those of 1 , indicating like conformations for the two compounds. Analysis of rotating frame Overhauser spectroscopy data, coupling constants, amide proton temperature dependence, and amide proton exchange rates generated a set of constraints that were employed in energy minimization and molecular dynamics calculations using the CHARMM force field. The trans isomer exists with the tyrosine and C-terminal Tyr(+3) (Met) residues at opposite corners of the 18-membered ring separated by a distance of 16–18 Å, in contrast with the cis isomer where the side chains of these residues are much closer in space (7–14 Å). It was previously shown that the pTyr and the third amino acid C-terminal to this residue are the critical recognition elements for pTyr-peptide binding to the PI-3 kinase SH2 domain. Such cyclic structures may offer appropriate scaffolding for positioning important amino acid side chains of pTyr-containing peptides as a means of increasing their binding affinities to SH2 domains, and in turn provide a conceptual approach toward the design of SH2 domain directed peptidomimetics. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
We present evidence that the oxidation of Mn(II) in a zone above the O2/H2S interface in the water column of Saanich Inlet, British Columbia, Canada, is microbially catalyzed. We measured the uptake of 54Mn(II) in water samples under in situ conditions of pH and temperature and in the presence and absence of oxygen. Experiments in the absence of oxygen provided a measure of the exchange of the tracer between the dissolved and solid pools of Mn(II); we interpret the difference between experiments in the presence and absence of oxygen to be a measure of Mn(II) oxidation. Using this method we examined the effect of oxygen tension, Mn(II) concentration, and temperature on the initial in situ Mn(II) oxidation rate (V0). Mn(II) oxidation was almost twice as fast under conditions of 67% air saturation (V0=5.5 nM h−1) as with the in situ concentration of 15 μM (5% air saturation; V0=3.1 nM h−1). Additions of ca. 18 μM Mn(II) completely inhibited all Mn(II) oxidation at three different depths in the oxidizing zone, and there was a temperature optimum for Mn(II) oxidation of around 20°C. These results are consistent with biologically mediated Mn(II) oxidation and indicate that the rate is limited by both oxygen and the concentration of microbial binding sites in this environment.  相似文献   

18.
Aging of aqueous guaiacol (o-methoxyphenol) solutions over a period of several months led to the spontaneous formation of peroxidatic compound(s) and other unidentified oxidation products of guaiacol. This accelerated the oxidation of guaiacol catalyzed by lactoperoxidase (LPO) severalfold depending on the pH of the reaction mixture. The peroxide(s) acted like H2O2 while the aromatic oxidation products may be more reactive than guaiacol. Five- to 12-month-old 20 mm stock solutions contained even 0.05-0.3% of H2O2 equivalents. The formation of the peroxidatic compound(s) was found to be a photochemical process which progressed in a few hours at 254 nm and slowly (detectable in 2-week-old solutions) in regular glass bottles kept under normal laboratory illumination. The kinetics and pH dependence of the oxidation of aged guaiacol solutions by LPO were distinctly different from those found with fresh substrate. The spontaneously formed peroxidatic compound is possibly a better oxygen donor in LPO assays than H2O2. The spontaneously formed aromatic oxidation products of guaiacol may include compounds that contain diphenoquinone groups. The complexity of the oxidation of guaiacol and the multitude of reaction products formed require special consideration in kinetic studies of LPO. The use of 2,2′-azino-di(3-ethylbenzthiazoline-6-sulfonic acid) as a LPO substrate was studied. The published method utilizing this substrate was modified into a more sensitive procedure by readjusting some of the reaction conditions.  相似文献   

19.
The objective of the present study is to delineate the role of active site arginine and histidine residues of horseradish peroxidase (HRP) in controlling iodide oxidation using chemical modification technique. The arginine specific reagent, phenylglyoxal (PGO) irreversibly blocks iodide oxidation following pseudofirst order kinetics with second order rate constant of 25.12 min-1 M-1. Radiolabelled PGO incorporation studies indicate an essential role of a single arginine residue in enzyme inactivation. The enzyme can be protected both by iodide and an aromatic donor such as guaiacol. Moreover, guaiacol-protected enzyme can oxidise iodide and iodide-protected enzyme can oxidise guaiacol suggesting the regulatory role of the same active site arginine residue in both iodide and guaiacol binding. The protection constant (Kp) for iodide and guaiacol are 500 and 10 M respectively indicating higher affinity of guaiacol than iodide at this site. Donor binding studies indicate that guaiacol competitively inhibits iodide binding suggesting their interaction at the same binding site. Arginine-modified enzyme shows significant loss of iodide binding as shown by increased Kd value to 571 mM from the native enzyme (Kd = 150 mM). Although arginine-modified enzyme reacts with H2O2 to form compound II presumably at a slow rate, the latter is not reduced by iodide presumably due to low affinity binding.The role of the active site histidine residue in iodide oxidation was also studied after disubstitution reaction of the histidine imidazole nitrogens with diethylpyrocarbonate (DEPC), a histidine specific reagent. DEPC blocks iodide oxidation following pseudofirst order kinetics with second order rate constant of 0.66 min-1 M-1. Both the nitrogens (, ) of histidine imidazole were modified as evidenced by the characteristic peak at 222 nm. The enzyme is not protected by iodide suggesting that imidazolium ion is not involved in iodide binding. Moreover, DEPC-modified enzyme binds iodide similar to the native enzyme. However, the modified enzyme does not form compound II but forms compound I only with higher concentration of H2O2 suggesting the catalytic role of this histidine in the formation and autoreduction of compound I. Interestingly, compound I thus formed is not reduced by iodide indicating block of electron transport from the donor to the compound I. We suggest that an active site arginine residue regulates iodide binding while the histidine residue controls the electron transfer to the heme ferryl group during oxidation.  相似文献   

20.
Oxidation of the heme-thiolate enzyme chloroperoxidase (CPO) from Caldariomyces fumago with peroxynitrite (PN) gave the Compound II intermediate, which was photo-oxidized with 365 nm light to give a reactive oxidizing species. Cryo-solvents at pH ≈ 6 were employed, and reactions were conducted at temperatures as low as − 50 °C. The activity of CPO as evaluated by the chlorodimedone assay was unaltered by treatment with PN or by production of the oxidizing transient and subsequent reaction with styrene. EPR spectra at 77 K gave the amount of ferric protein at each stage in the reaction sequence. The PN oxidation step gave a 6:1 mixture of Compound II and ferric CPO, the photolysis step gave an approximate 1:1 mixture of active oxidant and ferric CPO, and the final mixture after reaction with excess styrene contained ferric CPO in 80% yield. In single turnover reactions at − 50 °C, styrene was oxidized to styrene oxide in high yield. Kinetic studies of styrene oxidation at − 50 °C displayed saturation kinetics with an equilibrium constant for formation of the complex of Kbind = 3.8 × 104 M− 1 and an oxidation rate constant of kox = 0.30 s− 1. UV-Visible spectra of mixtures formed in the photo-oxidation sequence at ca. − 50 °C did not contain the signature Q-band absorbance at 690 nm ascribed to CPO Compound I prepared by chemical oxidation of the enzyme, indicating that different species were formed in the chemical oxidation and the photo-oxidation sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号