首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asian citrus psyllid Diaphorina citri is the vector of the citrus Huanglongbing (HLB) associated bacterial agent ‘Candidatus Liberibacter asiaticus’ (CLas). The molecular interactions between CLas and D. citri remain unclear. In the present study, protein profiles of mitochondrial, microsomal and cytosolic fractions from uninfected and CLas‐infected adult D. citri are investigated using two‐dimensional gel electrophoresis. The comparative analysis reveals a total of 18, 24 and 20 protein spots that are unique or differentially expressed in mitochondrial, microsomal and cytosolic proteins fractions respectively. These proteins are successfully identified by mass spectrometry. Among the 62 identified proteins, 30 are up‐regulated, whereas 32 are down‐regulated. These proteins include important components in energy metabolism such as ATP synthase, ATPase, ATP/ADP carrier protein, etc.; host stress responses such as heat shock proteins; host detoxification processes (i.e., cytochrome P450 and glutathione S‐transferase); and the cytoskeleton (such as actin, tubulin, myosin and tropomyosin). These data suggest that, after CLas infection, several proteins of D. citri, especially energy metabolism and protein biosynthesis, are altered, and extensive host defence responses are induced. In conclusion, the present study reports proteomic information that is helpful in understanding the vector–pathogen relationship between CLas and D. citri, and could be used to identify potential targets for limiting the spread of CLas, as well as to provide new insights into HLB management.  相似文献   

2.
The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is an insect vector that transmits the bacterial pathogen Candidatus Liberibacter asiaticus (CLas) associated with the destructive citrus disease, citrus huanglongbing (HLB). Currently, D. citri is the major target in HLB management, although insecticidal control and disruption of the D. citri–CLas interactions both face numerous challenges. The present study reports the subcellular proteomic profiles of D. citri, encompassing the three main subcellular protein fractions: cytosol, mitochondria and microsomes. After optimization, subcellular proteins of both high and low abundance are obtained by two‐dimensional gel electrophoresis (2‐DE). A total of 1170 spots are detected in the 2‐DE gels of the three subcellular fractions. One hundred and sixty‐four differentially expressed proteins are successfully identified using liquid chromatography‐dual mass spectroscopy. An efficient protocol for subcellular protein fractionation from D. citri is established and a clear protein separation is achieved with the chosen protein fractionation protocol. The identified cytosolic proteins are mainly metabolic enzymes, whereas a large portion of the identified proteins in the mitochondrial and microsomal fractions are involved in ATP biosynthesis and protein metabolism, respectively. Protein–protein interaction networks are predicted for some identified proteins known to be implicated in pathogen–vector interactions, such as actin, tubulin and ATP synthase, as well as insecticide resistance, such as the cytochrome P450 superfamily. The findings should provide useful information to help identify the mechanism responsible for the CLas–D. citri interactions and eventually contribute to D. citri control.  相似文献   

3.
Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Psyllidae) is a vector of huanglongbing, a disease of citrus that in Asia is caused by ‘Candidatus Liberibacter asiaticus’ (α‐Proteobacteria) (Las). Acquisition of Las by D. citri appears to be variable, and this variability may be due to the suitability of the host plants and their tissues for acquisition. Therefore, this study aimed to determine the effect of symptom severity of the disease on the feeding behaviour of D. citri. Use of an electrical penetration graph showed that the pathway phase of D. citri consisted of four waveforms, A, B, C, and D; waveforms A and B have not been reported for D. citri before. The remaining waveforms, E1, E2, and G, conform to those described before for D. citri. The duration of the non‐penetration period did not differ between healthy or infected plants. However, in moderately and severely symptomatic plants, the duration of the pathway phase increased, whereas the phloem phase was shorter. In all diseased plants, the times to first and sustained salivation in the phloem were longer than those in control plants, with the times being related to symptom severity. As symptom expression increased, the percentage of time spent by psyllids salivating during the phloem phase increased; however, the percentage of time spent in phloem activities reduced gradually from ca. 74% in the control plants to ca. 8% in the severely symptomatic plants. In contrast, the percentage of time spent on xylem activities increased, as did the proportion of psyllids feeding from xylem. The differences in the durations of the E waveforms on plants showing different levels of symptom expression may account for differences in acquisition found amongst studies; therefore, future work on the acquisition and transmission of Las needs to carefully document symptom expression.  相似文献   

4.
Candidatus Liberibacter species are Gram‐negative bacteria that live as phloem‐limited obligate parasites in plants, and are associated with several plant diseases. These bacteria are transmitted by insects called psyllids, or jumping plant lice, which feed on plant phloem sap. Citrus huanglongbing (yellow shoot) or citrus greening disease is associated with three different species of Ca. Liberibacter – Ca. L. asiaticus, Ca. L. africanus and Ca. L. americanus – all originally found on different continents. Ca. L. asiaticus is the most severe pathogen, spread by Asian citrus psyllid Diaphorina citri and causing devastating epidemics in several countries. Ca. L. africanus occurs in Africa where it is spread by the African citrus psyllid Trioza erytreae. Ca. Liberibacter solanacearum is associated with diseases in several solanaceous plants, and transmitted by potato psyllid Bactericera cockerelli. Zebra chip disease is causing large damage in potato crops in North America. In Europe Ca. Liberibacter solanacearum is associated with diseases of the Apiaceae family of plants, carrot and celery, and transmitted by psyllids Trioza apicalis and Bactericera trigonica. When Ca. Liberibacter is suspected as the disease agent, the diagnosis is confirmed by DNA‐based detection methods. Ca. Liberibacter‐associated plant diseases can be controlled by using healthy plant propagation material, eradicating symptomatic plants, and by controlling the psyllid populations spreading the disease.  相似文献   

5.
Candidatus Liberibacter’ species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from ‘Candidatus Liberibacter asiaticus’ (Las). In order to gain greater insight into ‘Ca. Liberibacter’ biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse ‘Ca. Liberibacter’ species, including those that can infect citrus. Our phylogenetic analysis differentiates ‘Ca. Liberibacter’ species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic ‘Ca. Liberibacter’ species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of ‘Ca. Liberibacter’ species, the introduction of Las in the United States and identifies promising Las targets for disease management.  相似文献   

6.
The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies.  相似文献   

7.
Asian citrus psyllid Diaphorina citri Kuwayama is extremely problematic worldwide, particularly where Huanglongbing (HLB) disease, the most serious and devastating of citrus diseases, is found. The threat is a result of its ability to transmit the causal agent of HLB, Candidatus Liberibacter asiaticus (CLas) bacterium. Improvements in proteomics, mass spectrometry, bioinformatics tools and gene ontology annotation facilitate the mapping and large‐scale identification and quantification of proteins. To date, only a few comparative proteomic studies report the developmental proteomic changes of hemimetabolous and plant–disease vector insects. Two‐dimensional gel electrophoresis analysis of D. citri total protein is able to detect qualitative and quantitative developmental differences. Liquid chromatography‐tandem mass spectrometry identifies 89 protein spots. Most proteins are metabolism and bioenergetics‐related. Nineteen protein spots are found to be implicated in stress/defence/immunity; 7 in development regulation; 9 in nervous system functions; 4 in the reproductive system; 23 in cytoskeleton and muscle organization; and 4 in movement, flight and other processes. Significant increases in the level of proteins related to structural constitution of the skeleton, stress/defence/immunity, reproduction system, muscles, locomotion and flight are found in adults, consistent with the fact that D. citri is a hemimetabolous insect, whereas proteins involved in developmental regulation are higher in the nymphal stage. The identification of these variably expressed proteins between the nymph and adult stages, linked with the basis of their physiological roles, will lead to a better understanding of the factors influencing development in D. citri and the regulation of some crucial metabolic pathways. It may also help to identify targets for genetic manipulation using RNA interference or other techniques to disrupt Asian citrus psyllid development, lifespan or its ability to transmit CLas.  相似文献   

8.
Huanglongbing (HLB), also known as citrus greening, is currently the most destructive disease of citrus, responsible for huge economic losses in the world's major citrus production areas. The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), transmits ‘Candidatus Liberibacter asiaticus’ (Clas), the pathogen responsible to cause HLB. Understanding of vector, pathogen, and host plant interactions is important for the management of this vector‐disease complex. We used the direct‐current electrical penetration graph (DC‐EPG) system to evaluate feeding behavior of Clas‐infected D. citri adults, and their potential to transmit the pathogen to healthy citrus, Citrus reticulata Blanco cv. Sunki (Rutaceae), following a 24‐h inoculation access period. Plants were tested for the presence of Clas by qPCR 6 months after inoculation. Findings suggest that inoculation was associated with salivation into the phloem sieve elements (waveform E1). The minimum feeding time for successful transmission by a single adult was 88.8 min, with a minimum E1 duration of 5.1 min. Regression analysis indicated a significant relationship between E1 duration and transmission efficiency. The adults successful in transmitting Clas to healthy citrus were able to penetrate and feed in the phloem much earlier than those which did not transmit. The minimum duration of E1 for a female was shorter than that of a male, but transmission was higher. However, durations of other EPG parameters were not significantly different between male and female. Feeding by single Clas‐infected D. citri adults on 6‐month‐old plants (Sunki) resulted in 23% HLB‐positive plants 6 months after inoculation. Multiple nymphs or adults could transmit the pathogen more efficiently than individual adults in the field, and further enhance the severity of the disease. Effective tactics are warranted to control D. citri and disrupt transmission of Clas.  相似文献   

9.
The Asian citrus psyllid (AsCP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a highly competent vector of the phloem-inhabiting bacterium Candidatus Liberibacter asiaticus associated with the citrus disease huanglongbing (HLB). Commonly referred to as citrus greening disease in the USA, HLB causes reduced fruit yields, quality, and ultimately tree death and is considered the most serious citrus disease. HLB has become a major limiting factor to the production of citrus worldwide. Studies of HLB have been impeded by the fact that C. Liberibacter has not yet been cultured on artificial nutrient media. After being acquired by a psyllid, C. Liberibacter asiaticus is reported to replicate within the psyllid and is retained by the psyllid throughout its life span. We therefore hypothesized that C. Liberibacter asiaticus could be cultured in vitro using psyllid cell cultures as the medium and investigated the establishment of a pure culture for AsCP cells. Several commercially available insect cell culture media along with some media we developed were screened for viability to culture cells from AsCP embryos. Cells from psyllid tissues adhered to the plate and migration was observed within 24 h. Cells were maintained at 20°C. We successfully established primary psyllid cell cultures, referred to as DcHH-1, for D. citri Hert-Hunter-1, with a new media, Hert-Hunter-70.  相似文献   

10.
11.
Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.  相似文献   

12.
The Asian citrus psyllid, Diaphorina citri Kuwayama, is among the most important pests of citrus. It is the main vector of the Huanglongbing (HLB) pathogen Candidatus Liberibacter asiaticus (CLas), which causes severe losses in citrus crops. Control of D. citri is therefore of paramount importance to reduce the spread of HLB. In this regard, using RNA interference (RNAi) to silence target genes is a useful strategy to control psyllids. In this study, using RNAi, we examined the biological functions of the V-ATPase subunit E (V-ATP-E) gene of D. citri, including its effect on acquisition of CLas. The amino acid sequence of V-ATP-E from D. citri had high homology with proteins from other insects. V-ATP-E was expressed at all D. citri life stages analyzed, and the expression level in mature adults was higher than that of teneral adults. Silencing of V-ATP-E resulted in a significant increase in mortality, reduced body weight, and induced cell apoptosis of the D. citri midgut. The reduced expression of V-ATP-E was indicated to inhibit CLas passing through the midgut and into the hemolymph, leading to a majority of CLas being confined to the midgut. In addition, double-stranded RNA of D. citri V-ATP-E was safe to non-target parasitic wasps. These results suggest that V-ATP-E is an effective RNAi target that can be used in D. citri control to block CLas infection.  相似文献   

13.
We carried out a quantitative detection of Candidatus Liberibacter asiaticus, the bacterium associated with the disease of huanglongbing, in the vector psyllid Diaphorina citri by using a TaqMan real‐time PCR assay. The concentration of the bacterium was monitored at 5‐day intervals for a period of 20 days after psyllids were exposed as fifth instar nymphs or adults to a Ca. L. asiaticus‐infected plant for an acquisition access period of 24 h. When adults fed on Ca. L. asiaticus‐infected plant, the concentration of the bacterium did not increase significantly and the pathogen was not transmitted to any citrus seedlings. In contrast, when psyllids fed on infected plant as nymphs, the concentration of the pathogen significantly increased by 25‐, 360‐ and 130‐fold from the initial acquisition day to 10, 15 and 20 days, respectively. Additionally, the pathogen was successfully transmitted to 67% of citrus seedlings by emerging adults. Our data suggested that multiplication of the bacterium into the psyllids is essential for an efficient transmission and show that it is difficult for adults to transmit the pathogen unless they acquire it as nymphs.  相似文献   

14.
Plants can defend themselves against herbivores through activation of defensive pathways and attraction of third‐trophic‐level predators and parasites. Trophic cascades that mediate interactions in the phytobiome are part of a larger dynamic including the pathogens of the plant itself, which are known to greatly influence plant defenses. As such, we investigated the impact of a phloem‐limited bacterial pathogen, Candidatus Liberibacter asiaticus (CLas), in cultivated citrus rootstock on a well‐studied belowground tritrophic interaction involving the attraction of an entomopathogenic nematode (EPN), Steinernema diaprepesi, to their root‐feeding insect hosts, Diaprepes abbreviatus larvae. Using belowground olfactometers, we show how CLas infection interferes with this belowground interaction by similarly inducing the release of a C12 terpene, pregeijerene, and disconnecting the association of the terpene with insect presence. D. abbreviatus larvae that were not feeding but in the presence of a CLas‐infected plant were more likely to be infected by EPN than those near uninfected plants. Furthermore, nonfeeding larvae associated with CLas‐infected plants were just as likely to be infected by EPN as those near noninfected plants with D. abbreviatus larval damage. Larvae of two weevil species, D. abbreviatus and Pachnaeus litus, were also more attracted to plants with infection than to uninfected plants. D. abbreviatus larvae were most active when exposed to pregeijerene at a concentration of 0.1 μg/μl. We attribute this attraction to CLas‐infected plants to the same signal previously thought to be a herbivore‐induced plant volatile specifically induced by root‐feeding insects, pregeijerene, by assessing volatiles collected from the roots of infected plants and uninfected plants with and without feeding D. abbreviatus. Synthesis. Phytopathogens can influence the structuring of soil communities extending to the third trophic level. Field populations of EPN may be less effective at host‐finding using pregeijerene as a cue in citrus grove agroecosystems with high presence of CLas infection.  相似文献   

15.
16.
Huanglongbing (HLB) is currently considered the most destructive disease of citrus worldwide. In the major citrus-growing areas in Asia and the US, the major causal agent of HLB is the bacterial pathogen Candidatus Liberibacter asiaticus (CLas). CLas is vectored by the Asian citrus psyllid, Diaphorina citri, in a persistent propagative manner. CLas cannot be cultured in vitro because of its unclear growth factors, leading to uncertainty in the infection mechanism of CLas at the cellular level in citrus and in D. citri. To characterize the detailed infection of CLas in the host and vector, the incidence of HLB was first investigated in citrus-growing fields in Fujian Province, China. It was found that the positive association of the level of CLas infection in the leaves correlated with the symptoms. Then antibodies against peptides of the outer membrane protein (OMP) of CLas were prepared and tested. The antibodies OMP-225, OMP-333 and OMP724 showed specificity to citrus plants in western blot analyses, whereas the antibodies OMP-47 and OMP-225 displayed specificity to the D. citri vector. The application of OMP-225 in the immunofluorescence assay indicated that CLas was located in and distributed throughout the phloem sieve cells of the leaf midribs and axile placenta of the fruit. CLas also infected the epithelial cells and visceral muscles of the alimentary canal of D. citri. The application of OMP-333 in immunoelectron microscopy indicated the round or oval CLas in the sieve cells of leaf midribs and axile placenta of fruit as well as in the epithelial cells and reticular tissue of D. citri alimentary canal. These results provide a reliable means for HLB detection, and enlighten a strategy via neutralizing OMP to control HLB. These findings also provide insight for the further investigation on CLas infection and pathogenesis, as well as CLas–vector interaction.  相似文献   

17.
《Journal of Asia》2022,25(2):101884
The Asian citrus psyllid (Diaphorina citri) is a major pest of the citrus industry and is also the vector for Candidatus Liberibacter asiaticus (CLas), a destructive Huanglongbing (HLB) disease of citrus trees. Insect endosymbionts and gut bacteria play important roles in vector-pathogen interactions and host immunity. Thus, our aim was to evaluate the correlation between CLas infection and the microbiome in D. citri by conducting 16S rRNA amplification sequencing on insects successfully and unsuccessfully infected with CLas (CLas-infected and non-infected). Genera Candidatus Profftella, Wolbachia, and Candidatus Carsonella were highly abundant genera in all tested samples. Compared with the non-infected and control groups, CLas-infected samples harboured more observed OTUs and showed higher alpha diversity metrics. Principal coordinate analysis based on beta-diversity metrics indicated two distinct clusters between the CLas-infected samples and non-infected/control samples. Subsequent LEfSe analysis revealed that Candidatus Profftella was more abundant in the non-infected group than in the control and CLas-infected groups. The interaction network also indicated a co-exclusion relationship between Candidatus Profftella and CLas, while CLas co-existed with Wolbachia, several Enterobacteriaceae spp., and multiple other bacteria. Our study provides insight into the interaction between the microbiome community in D. citri and CLas, which can facilitate the management of this pest and its associated pathogen.  相似文献   

18.
The Asian citrus psyllid, Diaphorina citri Kuwayama, vectors the causal pathogen of huanglongbing (HLB), which is likely the most important disease affecting worldwide citrus production. Interplanting citrus with guava, Psidium guajava L., was reported to reduce D. citri populations and incidence of HLB. We describe a series of investigations on the response of D. citri to citrus volatiles with and without guava leaf volatiles and to synthetic dimethyl disulphide (DMDS), in laboratory olfactometers and in the field. Volatiles from guava leaves significantly inhibited attraction of D. citri to normally attractive host‐plant (citrus) volatiles. A similar level of inhibition was recorded when synthetic DMDS was co‐released with volatiles from citrus leaves. In addition, the volatile mixture emanating from a combination of intact citrus and intact guava leaves induced a knock‐down effect on adult D. citri. Compounds similar to DMDS including dipropyl disulphide, ethyl‐1‐propyl disulphide, and diethyl disulphide did not affect the behavioural response of D. citri to attractive citrus host plant volatiles. Head‐space volatile analyses were conducted to compare sulphur volatile profiles of citrus and guava, used in our behavioural assays, with a gas chromatography‐pulsed flame photometric detector. DMDS, produced by wounded guava in our olfactometer assays, was not produced by similarly wounded citrus. The airborne concentration of DMDS that induced the behavioural effect in the 4‐choice olfactometer was 107 pg/ml. In a small plot field experiment, populations of D. citri were significantly reduced by deployment of synthetic DMDS from polyethylene vials compared with untreated control plots. Our results verify that guava leaf volatiles inhibit the response of D. citri to citrus host plant volatiles and suggest that the induced compound, DMDS, may be partially responsible for this effect. Also, we show that field deployment of DMDS reduces densities of D. citri and thus may have potential as a novel control strategy.  相似文献   

19.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important insect pest of citrus. It is the vector of ‘Candidatus’ Liberibacter asiaticus, a phloem‐limited bacterium that infects citrus, resulting in the disease Huanglongbing (HLB). Disease management relies heavily on suppression of D. citri populations with insecticides, including pyrethroids. In recent annual surveys to monitor insecticide resistance, reduced susceptibility to fenpropathrin was identified in several field populations of D. citri. The primary target of pyrethroids is the voltage‐gated sodium channel (VGSC). The VGSC is prone to target‐site insensitivity because of mutations that either reduce pyrethroid binding and/or alter gating kinetics. These mutations, known as knockdown resistance or kdr, have been reported in a wide diversity of arthropod species. Alternative splicing, in combination with kdr mutations, has been also associated with reduced pyrethroid efficacy. Here we report the molecular characterization of the VGSC in D. citri along with a survey of alternative splicing across developmental stages of this species. Previous studies demonstrated that D. citri has an exquisite enzymatic arsenal to detoxify insecticides resulting in reduced efficacy. The results from the current investigation demonstrate that target‐site insensitivity is also a potential basis for insecticide resistance to pyrethroids in D. citri. The VGSC sequence and its molecular characterization should facilitate early elucidation of the underlying cause of an established case of resistance to pyrethroids. This is the first characterization of a VGSC from a hemipteran to this level of detail, with the majority of the previous studies on dipterans and lepidopterans.  相似文献   

20.
Zou  Xiuping  Bai  Xiaojing  Wen  Qingli  Xie  Zhu  Wu  Liu  Peng  Aihong  He  Yongrui  Xu  Lanzhen  Chen  Shanchun 《Journal of Plant Growth Regulation》2019,38(4):1516-1528

Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus (Las), is the most devastating disease of citrus worldwide. Tolerance to HLB has been observed in some citrus varieties, but its molecular mechanisms are not well understood. Methyl salicylate (MeSA), involved in salicylic acid (SA) signaling, is a critical mobile signal for plant systematic acquired resistance (SAR). This study compared the response of tolerant sour pomelo (Citrus grandis Osbeck) and susceptible Jincheng orange (Citrus sinensis Osbeck) to Las infection. During 18 months of resistance evaluation, sour pomelo displayed significantly delayed and milder symptoms, and tolerated higher levels of Las growth, compared with Jincheng orange. High levels of MeSA were detected in sour pomelo and MeSA responded positively to Las infection. Little MeSA was found in Jincheng orange regardless of Las infection. Correspondingly, the SA content in sour pomelo was significantly higher than that in Jincheng orange. During Las infection, SA levels decreased significantly in sour pomelo but increased in Jincheng orange. These data indicated that MeSA was correlated with tolerance to HLB in citrus. Gene expression analysis showed that CsSAMT1 and CsSABP2-1, involved in the interconversion of MeSA and SA, were related to MeSA accumulation in sour pomelo, and sour pomelo possesses a strong SAR response. Our study indicates that MeSA-mediated SAR plays an important role in citrus tolerance to HLB. This study provides new insights into HLB tolerance in citrus and useful guidance for improving citrus resistance to HLB by manipulation of MeSA signaling in the future.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号