首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many plants employ indirect defenses against herbivores; often plants provide a shelter or nutritional resource to predators, increasing predator abundance, and lessening herbivory to the plant. Often, predators on the same plant represent different life stages and different species. In these situations intraguild predation (IGP) may occur and may decrease the efficacy of that defense. Recently, several sticky plants have been found to increase indirect defense by provisioning predatory insects with entrapped insects (hereafter: carrion). We conducted observational studies and feeding trials with herbivores and predators on two sticky, insect‐entrapping asters, Hemizonia congesta and Madia elegans, to construct food webs for these species and determine the prevalence of IGP in these carrion‐provisioning systems. In both systems, intraguild predation was the most common interaction observed. To determine whether IGP was driven by resource abundance, whether it reduced efficacy of this indirect defense and whether stickiness or predator attraction was induced by damage, we performed field manipulations on H. congesta. Carrion supplementation led to an increase in predator abundance and IGP. IGP was asymmetric within the predator guild: assassin bugs and spiders preyed on small stilt bugs but not vice versa. Despite increased IGP, carrion provisions decreased the abundance of the two most common herbivores (a weevil and a mealybug). Overall seed set was driven by plant size, but number of seeds produced per fruit significantly increased with increasing carrion, likely because of the reduction in the density of a seed‐feeding weevil. Observationally and experimentally, we found that carrion‐mediated indirect defense of tarweeds led to much intraguild predation, though predators effectively reduced herbivore abundance despite the increase in IGP.  相似文献   

2.
Plant‐provided foods for predatory arthropods such as extrafloral nectar and protein bodies provide indirect plant defence by attracting natural enemies of herbivores, enhancing top‐down control. Recently, ecologists have also recognised the importance of carrion as a food source for predators. Sticky plants are widespread and often entrap and kill small insects, which we hypothesised would increase predator densities and potentially affect indirect defence. We manipulated the abundance of this entrapped insect carrion on tarweed (Asteraceae: Madia elegans) plants under natural field conditions, and found that carrion augmentation increased the abundance of a suite of predators, decreased herbivory and increased plant fitness. We suggest that entrapped insect carrion may function broadly as a plant‐provided food for predators on sticky plants.  相似文献   

3.
Root herbivory induces an above-ground indirect defence   总被引:5,自引:0,他引:5  
Indirect plant defences have largely been studied within the scope of above‐ground interactions. Here we provide novel evidence that root herbivory can induce an above‐ground indirect defence. Cotton plants (Gossypium herbaceum) exposed to root‐feeding wireworms (Agriotes lineatus) increased their foliar extrafloral nectar production ten‐fold in comparison to undamaged control plants. Mechanical root damage also yielded an increase in nectar production. In nature, extrafloral nectar production allows plants to recruit predators, which in turn protect the plant against above‐ground insect herbivores. Our results show that root‐feeding herbivores may alter such above‐ground defensive interactions.  相似文献   

4.
1. Dead arthropods, entrapped by trichomes on plant surfaces, are an underappreciated form of plant-provided food. Specialist predatory arthropods able to manoeuvre on plants covered in trichomes facultatively scavenge on the alternative food resource, increasing their abundance and reducing plant damage by herbivores. 2. This protective mutualism dependent on arthropod carrion has been demonstrated in several plant species, but the mechanisms driving the increase in predator abundance have not been identified. Through a series of greenhouse and laboratory experiments, the effect of arthropod carrion on predator behaviour was assessed. 3. The predator Jalysus wickhami preferred Nicotiana tabacum plants augmented with arthropod carrion, spending significantly more time and laying more eggs on those plants than plants without arthropod carrion. 4. Under low J. wickhami densities, arthropod carrion did not reduce egg cannibalism by adults. Under high densities, egg cannibalism by J. wickhami adults was reduced in the presence of arthropod carrion, but cannibalism by fifth instars was not. 5. Arthropod carrion may be utilised by a wide range of predatory arthropods that facultatively scavenge, and this research demonstrates its potential for influencing arthropod–plant and arthropod–arthropod interactions.  相似文献   

5.
The defensive strategy known as masquerade, or camouflage without crypsis (a type of deception that partly overlaps mimicry) has received little scientific attention in animals, and concerning plants even less. Moreover, when cases of masquerade were described in plants, they were considered as camouflage or other types of defence through mimicry. Masquerade (including in plants) may operate not only through vision, but also via other senses. Here I review several types of published cases of masquerade in plants, although they were not defined as such when published, and propose that there are two different types of masquerade in plants: (1) non‐plant‐mimicking defensive masquerade, in which they look (or smell) like uninteresting objects to herbivores (look like a stone or an animal, or smell like droppings or carrion, etc.), and (2) plant‐mimicking defensive masquerade, in which plants or plant parts do not look appealing for herbivores, not being green, looking dead or old, harbouring insects, already attacked, less nutritious, etc. Defensive masquerade by plants may in many cases be non‐exclusive, but serve additional physiological and defensive functions or operate simultaneously with other defences. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 1162–1166.  相似文献   

6.
Many plants secrete nectar from extrafloral nectaries (EFNs), specialized structures that usually attract ants which can act as plant defenders. We examined the nectar-mediated interactions between Chamaecrista nictitans (Caesalpineaceae) and jumping spiders (Araneae, Salticidae) for 2 years in old fields in New Jersey, USA. Previous research suggests that spiders are entirely carnivorous, yet jumping spiders (Eris sp. and Metaphidippus sp.) on C. nictitans collected nectar in addition to feeding on herbivores, ants, bees, and other spiders. In a controlled-environment experiment, when given a choice between C. nictitans with or without active EFNs, foraging spiders spent 86% of their time on plants with nectar. C. nictitans with resident jumping spiders did set significantly more seed than plants with no spiders, indicating a beneficial effect from these predators. However, the presence of jumping spiders did not decrease numbers of Sennius cruentatus (Bruchidae), a specialist seed predator of C. nictitans. Jumping spiders may provide additional, unexpected defense to plants possessing EFNs. Plants with EFNs may therefore have beneficial interactions with other arthropod predators in addition to nectar-collecting ants. Received: 27 May 1998 / Accepted: 23 December 1998  相似文献   

7.
Extrafloral nectaries are secretory glands, usually found on leaves, that have been shown to promote ant defense against the insect herbivores of many modem day plants. Extrafloral nectaries were found on the 35-million-year-old fossil leaves of the extinct Populus crassa from Florissant, Colorado. Extinct ant species (belonging to five still extant genera that have modem ant-guard species), and other predators and parasitoids (whose modem relatives frequent extrafloral nectaries) also lived at Florissant. The extrafloral nectaries of P. crassa (and perhaps other plants) probably operated to attract ants and/or other arthropod defenders as early as the Oligocene.  相似文献   

8.
Adaptation to novel host plants is a much‐studied process in arthropod herbivores, but not in their predators. This is surprising, considering the attention that has been given to the role of predators in host range expansion in herbivores; the enemy‐free space hypothesis suggests that plants may be included in the host range of herbivores because of lower predation and parasitism rates on the novel host plants. This effect can only be important if natural enemies do not follow their prey to the novel host plant, at least not immediately, thus allowing the herbivores to adapt to the novel host plant. Hence, depending on the speed with which natural enemies follow their prey to a new host plant, enemy‐free space on novel host plants may only exist for a limited period. This situation may presently be occurring in a system consisting of the herbivorous moth Thyrinteina arnobia Stoll (Lepidoptera: Geometridae) that attacks various species of Myrtaceae, such as guava (Psidium guajava L.) and jaboticaba (Myrciaria spp.), in Brazil. Since the introduction of eucalyptus (Myrtaceae) species into this country some 100 years ago, the moth has included this plant species in its host range and frequently causes outbreaks, a phenomenon that does not occur on the native host plant species. This suggests that the natural enemies that attack the herbivore on native species are not very effective on the novel host. We tested this hypothesis by studying the searching behaviour of one of the natural enemies, the omnivorous predatory bug Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae). When offered a choice between plants of the two species, the predators (originally collected in eucalyptus plantations) preferred guava to eucalyptus when both plant species were clean, infested with herbivores, or damaged by herbivores but with herbivores removed prior to the experiments. The bugs preferred herbivore‐damaged to clean guava, and showed a slight preference for damaged to clean eucalyptus. These results may explain the lack of impact of predatory arthropods on herbivore populations on eucalyptus and suggests that eucalyptus may offer an enemy‐free space for herbivores.  相似文献   

9.
Although considerable evidence has accumulated on the defensive activity of plant volatile organic compounds against pathogens and insect herbivores, less is known about the significance of volatile organic compounds emitted by plants under abiotic stress. Here, we report that green leaf volatiles (GLVs), which were previously shown to prime plant defences against insect herbivore attack, also protect plants against cold stress (4 °C). We show that the expression levels of several cold stress‐related genes are significantly up‐regulated in maize (Zea mays) seedlings treated with physiological concentrations of the GLV, (Z)‐3‐hexen‐1‐yl acetate (Z‐3‐HAC), and that seedlings primed with Z‐3‐HAC exhibit increased growth and reduced damage after cold stress relative to unprimed seedlings. Together, these data demonstrate the protective and priming effect of GLVs against cold stress and suggest an activity of GLVs beyond the activation of typical plant defence responses against herbivores and pathogens.  相似文献   

10.
The success of exotic plants may be due to lower herbivore loads than those on native plants (Enemies Release Hypothesis). Predictions of this hypothesis include lower herbivore abundances, diversity, and damage on introduced plant species compared to native ones. Greater density or diversity of predators and parasitoids on exotic versus native plants may also reduce regulation of exotic plants by herbivores. To test these predictions, we measured arthropod abundance, arthropod diversity, and foliar damage on invasive Chinese tallow tree (Triadica sebifera) and three native tree species: silver maple (Acer saccharinum), sycamore (Platanus occidentalis), and sweetgum (Liquidambar styraciflua). Arthropod samples were collected with canopy sweep nets from six 20 year old monoculture plots of each species at a southeast Texas site. A total of 2,700 individuals and 285 species of arthropods were caught. Overall, the species richness and abundance of arthropods on tallow tree were similar to the natives. But, ordination (NMS) showed community composition differed on tallow tree compared to all three native trees. It supported an arthropod community that had relatively lower herbivore abundance but relatively more predator species compared to the native species examined. Leaves were collected to determine damage. Tallow tree experienced less mining damage than native trees. The results of this study supported the Enemies Release Hypothesis predictions that tallow tree would have low herbivore loads which may contribute to its invasive success. Moreover, a shift in the arthropod community to fewer herbivores without a reduction in predators may further limit regulation of this exotic species by herbivores in its introduced range.  相似文献   

11.
12.
13.
How do predators cope with chemically defended foods?   总被引:1,自引:0,他引:1  
Many prey species (including plants) deter predators with defensive chemicals. These defensive chemicals act by rendering the prey's tissues noxious, toxic, or both. Here, I explore how predators cope with the presence of these chemicals in their diet. First, I describe the chemosensory mechanisms by which predators (including herbivores) detect defensive chemicals. Second, I review the mechanisms by which predators either avoid or tolerate defensive chemicals in prey. Third, I examine how effectively free-ranging predators can overcome the chemical defenses of prey. The available evidence indicates that predators have mixed success overcoming these defenses. This conclusion is based on reports of free-ranging predators rejecting unpalatable but harmless prey, or voluntarily ingesting toxic prey.  相似文献   

14.
It has been sustained that the sticky traps present in some carnivorous plants could have evolved from ancestor species bearing leaves covered with secreting glands formerly associated with a defensive function. In this study, we evaluated the interaction of the carnivorous plant Pinguicula moranensis with its insect herbivores to assess the defensive role of the glandular trichomes. Firstly, we estimated the standing levels of insect herbivory in field conditions. We also evaluated the response of herbivore insects to the removal of the secreting glands from the leaves of P. moranensis in field and laboratory conditions. The mean damage was 1.61%, and half of the sampled plants showed no damage. The low level of herbivory in the field suggests that P. moranensis has an efficient defense ability. In the field experiment, after 25 d of exposure to natural damage, treated glandless plants received 18 times more damage than control plants. In the laboratory, the consumption of glandless tissue was three times higher during a 6 h evaluation period. Overall, our results provide evidence that secreting trichomes in Pinguicula are not only associated with prey capture but also have a defensive role. The defensive function could have favored the evolution of the sticky traps, the most extended prey‐capture strategy among carnivorous plants.  相似文献   

15.
In monocotyledonous plants, 1,4‐benzoxazin‐3‐ones, also referred to as benzoxazinoids or hydroxamic acids, are one of the most important chemical barriers against herbivores. However, knowledge about their behavior after attack, mode of action and potential detoxification by specialized insects remains limited. We chose an innovative analytical approach to understand the role of maize 1,4‐benzoxazin‐3‐ones in plant–insect interactions. By combining unbiased metabolomics screening and simultaneous measurements of living and digested plant tissue, we created a quantitative dynamic map of 1,4‐benzoxazin‐3‐ones at the plant–insect interface. Hypotheses derived from this map were tested by specifically developed in vitro assays using purified 1,4‐benzoxazin‐3‐ones and active extracts from mutant plants lacking 1,4‐benzoxazin‐3‐ones. Our data show that maize plants possess a two‐step defensive system that effectively fends off both the generalist Spodoptera littoralis and the specialist Spodoptera frugiperda. In the first step, upon insect attack, large quantities of 2‐β‐d ‐glucopyranosyloxy‐4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one (HDMBOA‐Glc) are formed. In the second step, after tissue disruption by the herbivores, highly unstable 2‐hydroxy‐4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one (HDMBOA) is released by plant‐derived β‐glucosidases. HDMBOA acts as a strong deterrent to both S. littoralis and S. frugiperda. Although constitutively produced 1,4‐benzoxazin‐3‐ones such as 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one (DIMBOA) are detoxified via glycosylation by the insects, no conjugation of HDMBOA in the insect gut was found, which may explain why even the specialist S. frugiperda has not evolved immunity against this plant defense. Taken together, our results show the benefit of using a plant–insect interface approach to elucidate plant defensive processes and unravel a potent resistance mechanism in maize.  相似文献   

16.
Insect parasitoids can play ecologically important roles in virtually all terrestrial plant–insect herbivore interactions, yet whether parasitoids alter the defensive traits that underlie interactions between plants and their herbivores remains a largely unexplored question. Here, we examined the reciprocal trophic interactions among populations of the wild cabbage Brassica oleracea that vary greatly in their production of defensive secondary compounds – glucosinolates (GSs), a generalist herbivore, Trichoplusia ni, and its polyembryonic parasitoid Copidosoma floridanum. In a greenhouse environment, plants were exposed to either healthy (unparasitized), parasitized, or no herbivores. Feeding damage by herbivores induced higher levels of the indole GSs, glucobrassicin and neoglucobrassicin, but not any of the other measured GSs. Herbivores parasitized by C. floridanum induced cabbage plants to produce 1.5 times more indole GSs than levels induced by healthy T. ni and five times more than uninduced plants. As a gregarious endoparasitoid, C. floridanum causes its host T. ni to feed more than unparasitized herbivores resulting in increased induction of indole GSs. In turn, herbivore fitness parameters (including differential effects on male and female contributions to lifetime fecundity in the herbivore) were negatively correlated with the aliphatic GSs, sinigrin and gluconapin, whereas parasitoid fitness parameters were negatively correlated with the indole GSs, glucobrassicin and neoglucobrassicin. That herbivores and their parasitoids appear to be affected by different sets of GSs was unexpected given the intimate developmental associations between host and parasitoid. This study is the first to demonstrate that parasitoids, through increasing feeding by their herbivorous hosts, can induce higher levels of non‐volatile plant chemical defenses. While parasitoids are widely recognized to be ubiquitous in most terrestrial insect herbivore communities, their role in influencing plant–insect herbivore relationships is still vastly underappreciated.  相似文献   

17.
Anthropogenic nitrogen deposition has shifted many ecosystems from nitrogen (N) limitation to phosphorus (P) limitation. Although well documented in plants, no study to date has explored whether N deposition exacerbates P limitation at higher trophic levels, or focused on the effects of induced plant P limitation on trophic interactions. Insect herbivores exhibit strict N : P homeostasis, and should therefore be very sensitive to variations in plant N : P stoichiometry and prone to experiencing deposition‐induced P limitation. In the current study, we investigated the effects of N deposition and P availability on a plant‐herbivorous insect system. Using common milkweed (Asclepias syriaca) and two of its specialist herbivores, the monarch caterpillar (Danaus plexippus) and milkweed aphid (Aphis asclepiadis) as our study system, we found that experimental N deposition caused P limitation in milkweed plants, but not in either insect species. However, the mechanisms for the lack of P limitation were different for each insect species. The body tissues of A. asclepiadis always exhibited higher N : P ratios than that of the host plant, suggesting that the N demand of this species exceeds P demand, even under high N deposition levels. For D. plexippus, P addition increased the production of latex, which is an important defense negatively affecting D. plexippus growth rate. As a result, we illustrate that P limitation of herbivores is not an inevitable consequence of anthropogenic N deposition in terrestrial systems. Rather, species‐specific demands for nutrients and the defensive responses of plants combine to determine the responses of herbivores to P availability under N deposition.  相似文献   

18.
1. Plants take nutrients for their growth and reproduction from not only soil but also symbiotic microbes in the rhizosphere, and therefore below‐ground microbes may indirectly influence the above‐ground arthropod community through changes in the quality and quantity of plants. 2. Rhizobia are root‐nodulating bacteria that provide NH4+ to legume plants. We examined bottom‐up effects of rhizobia on the community properties of the arthropods on host plants, using a root‐nodulating soybean strain (R+) and a non‐nodulating strain (R?) in a common garden. 3. R+ plants grew larger and produced a greater number of leaves than R? plants. We observed 28 species of herbivores and three taxonomic groups of predators on R+ and R? plants. The herbivorous species were classified into sap feeders (12 species) and chewers (16 species). 4. The species richness of overall herbivores, sap feeders, and chewers on R+ plants was greater than that on R? plants. Rhizobia positively affected the abundance of chewers. 5. The community composition of herbivores was significantly different between R? and R+ plants, although species diversity and evenness did not differ. 6. Rhizobia‐induced bottom‐up effects were transmitted to the third trophic level. The abundance, taxonomic richness, and diversity of the predators on R+ plants were greater but evenness was lower than those on R? plants. The community composition of predators was not affected by rhizobia. 7. These results indicate that the below‐ground microbes initiated bottom‐up effects on above‐ground herbivores and predators through trophic levels.  相似文献   

19.
Jennifer A. Lau 《Oikos》2013,122(3):474-480
As invasive species become integrated into existing communities, they engage in a wide variety of trophic interactions with other community members. Many of these interactions are direct (e.g. predator–prey interactions or interference competition), but invasive species also can affect native community members indirectly, by influencing the abundances of intermediary species in trophic webs. Observational studies suggest that invasive plant species affect herbivorous arthropod communities and that these effects may flow up trophic webs to influence the abundance of predators. However, few studies have experimentally manipulated the presence of invasive plants to quantify the effects of plant invasion on higher trophic levels. Here, I use comparisons across sites that have or have not been invaded by the invasive plant Medicago polymorpha, combined with experimental removals of Medicago and insect herbivores, to investigate how a plant invasion affects the abundance of predators. Both manipulative and observational experiments showed that Medicago increased the abundance of the exotic herbivore Hypera and predatory spiders, suggesting positive bottom–up effects of plant invasions on higher trophic levels. Path analyses conducted on data from natural habitats revealed that Medicago primarily increased spider abundance through herbivore‐mediated indirect pathways. Specifically, Medicago density was positively correlated with the abundance of the dominant herbivore Hypera, and increased Hypera densities were correlated with increased spider abundance. Smaller‐scale experimental studies confirmed that Medicago may increase spider abundance through herbivore‐mediated indirect pathways, but also showed that the effects of Medicago varied across sites, including having no effect or having direct effects on spider abundance. If effects of invasive species commonly flow through trophic webs, then invasive species have the potential to affect numerous species throughout the community, especially those species whose dynamics are tightly connected to highly‐impacted community members through trophic linkages.  相似文献   

20.
We tested integrative bottom-up and top-down trophic cascade hypotheses with manipulative experiments in a tropical wet forest, using the ant-plant Piper cenocladum and its associated arthropod community. We examined enhanced nutrients and light along with predator and herbivore exclusions as sources of variation in the relative biomass of plants, their herbivores (via rates of herbivory), and resident predaceous ants. The combined manipulations of secondary consumers, primary consumers, and plant resources allowed us to examine some of the direct and indirect effects on each trophic level and to determine the relative contributions of bottom-up and top-down cascades to the structure of the community. We found that enhanced plant resources (nutrients and light) had direct positive effects on plant biomass. However, we found no evidence of indirect (cascading through the herbivores) effects of plant biomass on predators or top predators. In contrast, ants had indirect effects on plant biomass by decreasing herbivory on the plants. This top-down cascade occurred whether or not plant resources were enriched, conditions which are expected to modify top-down forces. Received: 9 August 1998 / Accepted: 1 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号