首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Evolutionary increases in dispersal‐related traits are frequently documented during range expansions. Investment in flight‐related traits is energetically costly and a trade‐off with fecundity may be expected during range expansion. 2. However, in contrast to wing‐dimorphic species, this trade‐off is not general in wing‐monomorphic species. In the absence of a dispersal‐‐fecundity trade‐off, an increased investment in clutch size at the expansion front is expected possibly at a cost of reduced offspring size. 3. The study evaluated investment in female flight morphology and fecundity‐related traits (clutch size, hatchling size) and potential trade‐offs among these traits in replicated populations of the poleward range‐expanding damselfly Coenagrion scitulum. 4. Females at the expansion front had a higher relative thorax length, indicating an increased investment in flight; this can be explained by spatial sorting of dispersal ability or in situ natural selection at the expansion front. Edge females produced larger hatchlings, however, this pattern was totally driven by the population‐specific thermal larval regimes and could not be attributed to the range expansion per se. By contrast, clutch sizes did not differ between core and edge populations. There was no signal of a dispersal–fecundity trade‐off either for a trade‐off between clutch size and hatchling size. 5. These results indicate that evolution of a higher dispersal ability at the expansion front of C. scitulum does not trade off with investment in fecundity, hence a dispersal–fecundity trade‐off is unlikely to slow down range expansion of this species.  相似文献   

2.
The great variability of the aphid life cycle and their tendency for host alternation gives rise to aphid clones and morphs. Inter‐ and intraclonal variability may be observed in the responses of aphids to various environmental factors. In this study we aimed to evaluate the influence of intrinsic factors (clone and morph type) on the intrinsic rate of increase (rm) of the English grain aphid, Sitobion avenae (Fabricius), and the bird cherry‐oat aphid, Rhopalosiphum padi (Linnaeus). For each species four apterous clones were collected from established laboratory colonies and compared to assess their relative fitness on high‐ and low‐nitrogen wheat plants under laboratory conditions. The clones had significantly different intrinsic rates of increase on high‐ and low‐nitrogen plants. All R. padi clones had a higher intrinsic rate of increase and mean relative growth rate than S. avenae. Experiments were also conducted to compare the mean fecundity of apterous and alate morphs of S. avenae and R. padi clones on high‐ and low‐nitrogen wheat plants. On high‐nitrogen plants the apterous morphs of S. avenae clones had significantly higher mean fecundity than alate morphs. There were no significant differences between the mean fecundity of alate morphs of the same species on high‐ and low‐nitrogen plants. The results support the idea of better fitness of specific clones/morphs on certain host plants due to higher and lower intrinsic rates of increase.  相似文献   

3.
1 A simulation model was developed to investigate the inter‐relationship of factors influencing the population dynamics of the bird cherry‐oat aphid (Rhopalosiphum padi (L.)) in barley crops during the autumn and winter. 2 The model incorporated algorithms describing alate immigration, development and survival of adults and nymphs, fecundity and morph determination in newly born nymphs. 3 The model was validated against pest outbreaks in barley fields in south‐east England. 4 It simulated accurately the size of the outbreaks with predictions of peak aphid populations within 20% of the observed in all but one case. Similarly, all but one of the year‐sowing date combination predictions of timing of peak abundance fell within 14 days of the observed. 5 A sensitivity analysis of the model highlighted the relative importance of various population processes in determining simulated aphid population dynamics; decreasing mortality rates of apterous nymphs by as little as 5% over the autumn and winter increased peak densities by as much as 60‐fold, whereas increasing daily temperatures by only 1 °C more than doubled peak aphid abundance. 6 The model identified our understanding of the mechanisms of aphid mortality as a limiting factor in the accurate prediction of R. padi outbreaks in the field.  相似文献   

4.
Experiments on the feeding preferences and relative fecundity of Aphis fabae among leaves of different ages and kinds were extended to the comparison of different forms of the aphid: apterous and alate virginoparae and gynoparae.
All three forms showed a preference for the primary host, Euonymus , over a secondary host, sugar beet, but this preference was strongest in the gynoparae, weaker in the alate virginoparae and weakest in the apterae. The relative fecundity of the aphids on the two kinds of leaf paralleled their feeding preferences most closely in the gynoparae, less so in the alate virginoparae and least in the apterae.
All three forms also showed some preference for growing over mature leaves of the same kind, but this preference was strongest in the apterous virginoparae, weaker in the alate virginoparae and weakest in the gynoparae. The relative fecundity of the aphids on the two ages of leaf paralleled their feeding preferences most closely in the apterae, less so in the alate virginoparae and least in the gynoparae.
The physiological, ecological and evolutionary significance of the results is discussed in the light of the dual discrimination theory of aphid host selection.  相似文献   

5.
桃蚜不同蚜型DNA多态性的RAPD研究   总被引:14,自引:2,他引:14  
采用RAPD方法,对全周期桃蚜的有翅产雌性母蚜、无翅性母蚜、雄蚜、卵、干母、干雌、有翅迁移蚜等蚜型的DNA遗传多态性进行了分析。结果表明:卵的DNA多态性最大,性蚜次之,孤雌生殖蚜最小;卵与其它蚜型之间在遗传上具最大差异,其中与孤雌生蚜的差异大于与性蚜的;干母、干雌和迁移蚜之间的遗传关系最近。  相似文献   

6.
Wing shape is related to flight performance, which is expected to be under selection for improving flight behaviours such as predator avoidance. Moreover, wing conspicuousness, usually involved in sexual selection processes, is also relevant in terms of predation risk. In this study, we examined how predation by a passerine bird, the white wagtail Motacilla alba, selects wing shape and wing colour patch size in males of the banded demoiselle Calopteryx splendens. The wing colour patch is intra‐ and intersexually selected in the study species. In a field study, we compared wings of live damselflies to wings of predated damselflies which are always discarded after predation. Based on aerodynamic theory and a previous study on wing shape of territorial tactics in damselflies, we predicted an overall short and broad wing, with a concave front margin shape to be selected by predation. This shape would be expected to improve escaping ability. Moreover, we predicted that wing patch size should be negatively selected by predation. We found that selection operated differently on fore‐ and hindwings. In contrast to our predictions, predation favoured a slender general forewing shape. However, the predicted wing shape was favoured in hindwings. We also found selection favouring a narrower wing colour patch. Our results suggest different roles of fore‐ and hindwings in flight, as previously suggested for Calopteryx damselflies and shown for butterflies and moths. Forewings would be more involved in sustained flight and hindwings in flight manoeuvrability. Our results differ somehow from a recently published work in the same study system, but using another population, suggesting that selection can fluctuate across space, despite the simplicity of this predator–prey system.  相似文献   

7.
The short‐term starvation tolerance of alate and apterous morphs and the effect of periods of starvation on the longevity and fecundity of alate adults were evaluated in the grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae). Alate adults exhibited a proportionally larger length of survival compared with apterous adults under continuous starvation conditions. Newly molted pre‐reproductive adults were starved for 0–96 h and their survival rate on the 1st day after recovering with food was not significantly different from that of control aphids. Starvation reduced lifetime fecundity, but increased the reproductive rate immediately after nutrition being improved. Fecundity and longevity after 24, 48, 72, and 96 h of starvation were significantly higher than after 120 or 144 h of starvation. However, no significant differences were observed for alate adults after 24, 48, 72, or 96 h of starvation. This study suggests that the ability of alatae to adapt to brief periods of starvation could be one of the important factors affecting the reproductive success of aphids during delays in locating host plants.  相似文献   

8.
Using a 30 day time series of aphid Aphis helianthi and coccinellid counts on 107 mapped racemes of Yucca glauca, we demonstrate progressive, predation‐induced self‐organization of aphid colonies on individual racemes into extremely low and extremely high population sizes. This was driven by a two‐attractor structure of density dependence that developed only in the presence of coccinellid predators. Foraging movements of the coccinellids among plants produced a power law relationship (average power = 0.142) between aphid and coccinellid numbers. This resulted in increased predation pressure on mid‐size colonies and decreased predation pressure on small and large populations. A field‐parameterized mathematical model predicts a two‐attractor structure in broad agreement with our observations. The overall system was integrated by the influence of the largest aphid populations, which determined the total number of coccinellids present, and thus the predation pressure throughout the system. Our study provides clear evidence of predator‐driven self‐organization of prey populations in a patchy environment.  相似文献   

9.
This study investigated the effects of a strain of the fungus Lecanicillium lecanii (Zimm.) Zare and Gams (Hypocreales: Ascomycota) on the aphid Schizaphis graminum (Rondani) (Hemiptera: Aphididae). The fungus was administered to fourth instar nymphs and to alate and apterous adult morphs as a ground rice-kernel formulation. This study showed that L. lecanii formulation affected the survival of the aphids and interacted differently with the studied morphs, the Lethal Time values being lower for alate compared to apterous morphs and nymphs. The treatment also caused a significant reduction in the fecundity of the three treated aphid groups. Histological analysis revealed that the hyphae invaded the host hemocoel of a limited number of alate and apterous morphs: the fungus only entered through the spiracles. Scanning Electron Microscope observations revealed that L. lecanii adhered to the body surface of both adults and nymphs without differentiation. In conclusion, the present study suggests that this strain might be a good candidate for a programme of biological control of S. graminum and other aphid species.  相似文献   

10.
Abstract.Different stages of presumptive winged morphs (males, gynoparae and alate virginoparae) of the blackberry‐cereal aphid, Sitobion fragariae , were exposed to attack by Aphidius ervi . Even though the mechanism influencing wing development in the three aphid morphs differs, the effects of parasitism were similar. Alatiform structures were completely inhibited in all three morphs when the initial attack took place in their first or early second stadium. The disruption of wing development also resulted in apterous/alate‐intermediate forms when aphids were attacked from first (males and gynoparae) or early second (alate virginoparae) up to the fourth larval stadium. The fact that wing development was still disrupted when aphids with well developed wingbuds were parasitized indicates that the early stages of parasitization were influential. Thus, the morphogenetic effects may be exerted by the parasitoid egg or calyx fluid.  相似文献   

11.
Natural enemies suppress many aphid populations, and yet, population outbreaks sometimes occur. The reasons predation fails to suppress such outbreaks are not clearly understood. While manipulating predators to examine their role in soybean aphid population growth, a natural immigration of soybean aphids occurred that enabled us to compare the roles immigration and predation played in population growth. Using predator exclusion cages, we found that predation on the top of the plant accounted for 42.3 ± 11.4% (mean ± SE) reduction in aphid population growth rates. When 90–100% of the canopy was exposed, predation failed to reduce aphid population growth because winged immigrants colonized plants, with an observed 6‐fold increase in alates compared to plants completely covered or exposing only the top nodes (approximately 10% of the total canopy). We conclude that reproduction by immigrants contributed to population growth rates sufficiently to compensate for predation. These results demonstrate that immigration can counteract high levels of predation and lead to aphid population growth rates that could result in outbreak population densities.  相似文献   

12.
《Journal of Asia》2002,5(2):185-191
The vertical and temporal distribution of an aphid, Aphis gossypii Glover, and the coccinellid populations on six chilli varieties were studied. The total number of apterous aphid per plant stratum was significantly different among plant strata of a particular variety (treatment) as well as among the treatments. Generally, the total number of aphids was significantly greater in the lower stratum than in the middle and upper strata. However, the varieties with erect and open plant architecture (Kulai and MC 11) had significantly less number of apterous aphids at all strata as compared to varieties with compact or prostrate plant architectures. There was a significant difference in the total number of coccinellids per plant strata among the treatments but not within a treatment. The distribution of apterous aphid populations varied significantly among sampling periods and treatments. The temporal distribution of coccinellids showed a similar trend as that of apterous aphids. The total number of alate aphids caught per week was significantly different among the sampling periods. However, its population was significantly greater during the early season and gradually declined as the season progressed except during June 18 to 24. The importance of recording the most observed coccinellids species, which limit the aphid populations at each particular plant stratum per variety, and the conditions that favor natural enemies are also discussed.  相似文献   

13.
There is increasing evidence that top-down controls have strong non-consumptive effects on herbivore populations. However, little is known about how these non-consumptive effects relate to bottom-up influences. Using a series of field trials, we tested how changes in top-down and bottom-up controls at the within-plant scale interact to increase herbivore suppression. In the first experiment, we manipulated access of natural populations of predators (primarily lady beetles) to controlled numbers of A. glycines on upper (i.e. vigorous-growing) versus lower (i.e. slow-growing) soybean nodes and under contrasting plant ages. In a second experiment, we measured aphid dispersion in response to predation. Bottom-up and top-down controls had additive effects on A. glycines population growth. Plant age and within-plant quality had significant bottom-up effects on aphid size and population growth. However, top-down control was the dominant force suppressing aphid population growth, and completely counteracted bottom-up effects at the plant and within-plant scales. The intensity of predation was higher on upper than lower soybean nodes, and resulted in a non-consumptive reduction in aphid population growth because most of the surviving aphids were located on lower plant nodes, where rates of increase were reduced. No effects of predation on aphid dispersal among plants were detected, suggesting an absence of predator avoidance behavior by A. glycines. Our results revealed significant non-consumptive predator impacts on aphids due to the asymmetric intensity of predation at the within-plant scale, suggesting that low numbers of predators are highly effective at suppressing aphid populations.  相似文献   

14.
Michael Coslovsky  Heinz Richner 《Oikos》2012,121(10):1691-1701
Experimental studies incorporating multiple trophic levels are scarce but of increasing interest for understanding ecological communities. Here we investigated interactive effects of perceived predation risk and parasite pressure on life‐history traits in a hole‐nesting bird, and the effects of predation risk on parasite success. In a 3 × 2 experimental design we increased perceived predation risk for breeding great tits Parus major via simulations of either nest‐predators (woodpeckers) or post‐fledging predators (sparrowhawks) close to nests, and used a non‐predatory species (song thrush) as a control. Concurrently, half of the nests in each treatment were either infested with ectoparasites, or kept parasite‐free. Regarding the predation risk – parasite interaction, exposure to nest‐predators tended to lower wing and sternum growth rates of nestlings in the absence, but not the presence, of parasites. In the presence of parasites, exposure to a post‐fledging, but not to a nest‐predator, led to significantly reduced wing growth. Mass and tarsus length were not affected by predator exposure, but ectoparasites had slight positive effects on mass gain. In the last third of the nestling period, overall nestling size was significantly smaller when exposed to a post‐fledging predator than to a nest‐predator, but neither differed from the control. Parental feeding rates were not affected by the treatments, but parents became less selective towards food items under either predation risk. Hen‐flea population sizes (adult or larvae) in nests were not affected by predation risk treatment of hosts. In summary, we found some evidence for an interactive effect of predation risk and parasite pressure on nestling growth. The complexity of the interaction, combined with certain inconsistencies of the effects and potential statistical artifacts, prevent however a straightforward interpretation of the results. The insights from the study are useful for designing additional experiments to further investigate the complexity of predator–parasite interactions in wild populations.  相似文献   

15.
Knowledge of the vertical and horizontal distribution of Aphis gossypii Glover (Hemiptera: Aphididae) on genetically modified cotton plants over time could help optimize decision-making in integrated cotton aphid management programs. Therefore, the aim of the present study was to determine the vertical and horizontal distribution of A. gossypii in non-transgenic Bt cotton and transgenic Bt-cotton over time during two cotton seasons by examining plants throughout the seasons. There was no significant interaction between years and cotton cultivar treatments for apterous or alate aphids. Considering year-to-year data, analyses on season-long averages of apterous or alate aphids showed that aphid densities per plant did not differ among years. The number of apterous aphids found per plant for the Bt transgenic cultivar (2427 apterous aphids per plant) was lower than for its isoline (3335 apterous aphids per plant). The number of alate aphids found per plant on the Bt transgenic cultivar (12.28 alate aphids per plant) was lower than for the isoline (140.56 alate aphids per plant). With regard to the vertical distribution of apterous aphids or alate aphids, there were interactions between cotton cultivar, plant age and plant region. We conclude that in comparison to non-Bt cotton (DP 4049), Bt cotton (DP 404 BG (Bollgard)) has significant effects on the vertical, horizontal, spatial and temporal distribution patterns of A. gossypii, showing changes in its distribution behaviour inside the plant as the cotton crop develops. The results of our study are relevant for understanding the vertical and horizontal distribution of A. gossypii on Bt cotton cultivar (DP 404 BG (Bollgard)) and on its isoline (DP 4049), and could be useful in decision-making, implementing controls and determining the timing of population peaks of this insect.  相似文献   

16.
Although all Tuberculatus aphids possess wings, some species associated with ants exhibit extremely low levels of dispersal compared with those not associated with ants. Furthermore, phylogenetic interspecific comparisons find significantly higher wing loading (i.e. higher ratio of body volume to wing area) in ant‐attended species. This observation indicates that ant‐attended species may allocate more of their body resources to reproductive traits (i.e. embryos) rather than flight apparatus (i.e. wings, flight muscle and lipid). The present study focuses on two sympatric aphid species and aims to investigate the hypothesized trade‐off in resource investment between fecundity and the flight apparatus; specifically, the ant‐attended Tuberculatus quercicola (Matsumura) and non‐attended Tuberculatus paiki Hille Ris Lambers. Species differences are compared in: (i) morphology, (ii) embryo production, (iii) triacylglycerol levels and (iv) wing loading and flight muscle. The results show that T. quercicola has a larger body volume, higher fecundity and higher wing loading compared with T. paiki, which has a smaller, slender‐shaped body, lower fecundity and lower wing loading. No significant difference is found between the species with respect to the percentage of triacylglycerol content in dry body weight. The flight muscle development is significantly lower in T. quercicola than in T. paiki. These results indicate that the additive effect of higher wing loading and the lower amount of flight muscle development in T. quercicola may increase the physical difficulty of flight, and hence be responsible for its lower dispersal ability. The trade‐off between fecundity and dispersal documented in wing‐dimorphic insects may therefore be applicable to T. quercicola, which has fully developed wings.  相似文献   

17.
Kunert G  Weisser WW 《Oecologia》2003,135(2):304-312
Natural enemies not only influence prey density but they can also cause the modification of traits in their victims. While such non-lethal effects can be very important for the dynamic and structure of prey populations, little is known about their interaction with the density-mediated effects of natural enemies. We investigated the relationship between predation rate, prey density and trait modification in two aphid-aphid predator interactions. Pea aphids (Acyrthosiphon pisum, Harris) have been shown to produce winged dispersal morphs in response to the presence of ladybirds or parasitoid natural enemies. This trait modification influences the ability of aphids to disperse and to colonise new habitats, and hence has a bearing on the population dynamics of the prey. In two experiments we examined wing induction in pea aphids as a function of the rate of predation when hoverfly larvae (Episyrphus balteatus) and lacewing larvae (Chrysoperla carnea) were allowed to forage in pea aphid colonies. Both hoverfly and lacewing larvae caused a significant increase in the percentage of winged morphs among offspring compared to control treatments, emphasising that wing induction in the presence of natural enemies is a general response in pea aphids. The percentage of winged offspring was, however, dependent on the rate of predation, with a small effect of predation on aphid wing induction at very high and very low predation rates, and a strong response of aphids at medium predation rates. Aphid wing induction was influenced by the interplay between predation rate and the resultant prey density. Our results suggests that density-mediated and trait-mediated effects of natural enemies are closely connected to each other and jointly determine the effect of natural enemies on prey population dynamics.  相似文献   

18.
【目的】研究筛选对桃蚜Myzus persicae有致死作用的安全微波频率和照射时长,以为探究新型物理防蚜技术,弥补化学防治上的缺陷提供参考依据。【方法】在暗箱中,应用微波发射仪分别发射1375, 2 750, 5 500和11 000 MHz 4个不同频率的微波照射桃蚜1日龄无翅成蚜,每个频率的照射时长分别为15, 30, 60和120 s;照射后在人工气候箱中饲养,分别于照射后8, 24, 48和72 h观察其生长发育及繁殖状况,统计桃蚜死亡率、繁殖力(累计产蚜量)及子代有翅蚜率。【结果】4个不同频率的微波分别在4个不同照射时长下,对桃蚜1日龄无翅成蚜的死亡率、繁殖力和子代翅型分化都有不同程度的影响。照射后72 h, 5 500 MHz微波照射时间为15 s时对桃蚜1日龄无翅成蚜的致死作用最强,死亡率达到55.00%,在照射时间为30和120 s时可抑制子代桃蚜向有翅蚜的分化。2 750 MHz微波照射30和60 s时促进桃蚜1日龄成蚜繁殖,照射30 s时繁殖力最强,而照射15和120 s时却表现为抑制繁殖,且2 750 MHz微波照射30 s能抑制子代桃蚜向有翅蚜分化。【结论】微波辐射能够影响桃蚜1日龄成蚜的存活、繁殖和子代翅型分化。本研究初步筛选出了对桃蚜1日龄无翅成蚜有致死作用的微波频率和照射时长。  相似文献   

19.
Predation is a strong selective force in most natural systems, potentially fueling evolutionary changes in prey morphology, life history and behaviour. Recent work has suggested that contrasting predation pressures may lead to population differentiation in personality traits. However, there are indications that these personality traits also differ between sexes and not necessarily in a consistent way between populations. We used an integrative approach to quantify boldness (latency to emerge from a shelter) in wild‐caught guppies in relation to predation pressure, population origin, sex and size. In addition we quantified the repeatability of these personality traits. We show that predation regime had significant effects on emergence time. In general, fish from high predation localities emerged sooner from the shelter compared to those from low predation localities. We found strong sex differences; males were significantly bolder than females. The relationship between emergence time and body size was non‐significant in all populations. We discuss what responses to expect from predator‐naïve versus predator‐experienced individuals and how this can be linked to the shyness–boldness continuum.  相似文献   

20.
According to current theory, anti‐predator benefits promote group formation in open‐dwelling ungulates. An inverse relationship between vigilance effort and group size has been documented frequently and thought to reflect the consequent decrease in perceived predation risk as group size increases. In contrast, competition costs are supposed to set the upper limit to the number of individuals that can forage together. As anti‐predator behavior is no longer functional in the absence of predation and competition costs might be affected by resource distribution, the net benefit of aggregation will depend on the particular combination of predation risk and habitat structure experienced by the individual. To test this hypothesis, group‐size effects on female time allocation and within‐group aggression rate were compared between two guanaco populations exposed to contrasting levels of puma predation. Habitat structure within both sites consisted of mosaics of shrublands and grasslands, and group‐size effects were also compared between these habitat types. Females under predation risk showed a strong reduction in vigilance as the number of adults in the group increased, whereas females from the predator‐free population showed overall low levels of vigilance, regardless of group size. These results emphasize the anti‐predator significance of the group‐size effect on female vigilance, as well as guanaco plasticity to adjust time allocation to local conditions. On the other hand, within‐group aggression rate increased with the number of adults in the group. Aggression rate was almost null within groups located in grasslands but was significantly higher in shrublands, regardless of predation risk, suggesting that the more heterogeneous distribution of shrubs increases the interference competition level. These results strengthen the notion of predation pressure and habitat structure as major determinants of the balance between costs and benefits of group living, and highlight the potential of individual behavioral patterns to make qualitative predictions about group‐size variation within territorial ungulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号