共查询到20条相似文献,搜索用时 0 毫秒
1.
Calcium-binding proteins are thought to play important roles in regulating intracellular calcium in the central nervous system. In the present study, we investigated the distribution and morphology of neurons containing parvalbumin in the visual cortex of mouse and hamster. The calcium-binding proteins were localized using immunocytochemistry. Parvalbumin-immunoreactive neurons were located in all layers except layer I. The highest density of parvalbumin immunoreactivity was found in layer V of both mouse and hamster. The labeled neurons varied in morphology. The majority of the parvalbumin-immunoreactive neurons both in mouse and hamster visual cortex was stellate and round, or oval with multipolar dendrites. These results indicate that the calcium-binding protein parvalbumin is contained in specific layers and in selective cell types of the mouse and hamster visual cortex. The distribution of parvalbumin in the mouse visual cortex is very similar to that of hamster. 相似文献
2.
Nitric oxide (NO) occurs in various types of cells in the central nervous system. We studied the distribution and morphology of neuronal nitric oxide synthase (NOS)-containing neurons in the visual cortex of mouse and rabbit with antibody immunocytochemistry. We also compared this labeling to that of calbindin D28K, calretinin, and parvalbumin. Staining for NOS was seen both in the specific layers and in selective cell types. The densest concentration of intense anti-NOS immunoreactive (IR) neurons was found in layer VI, while the weak anti-NOS-IR neurons were found in layer II/III in both animals. The NOS-IR neurons varied in morphology. The large majority of NOS-IR neurons were round or oval cells with many dendrites coursing in all directions. Two-color immunofluorescence revealed that only 16.7% of the NOS-IR cells were double-labeled with calbindin D28K in the mouse visual cortex, while more than half (51.7%) of the NOS-IR cells were double-labeled with calretinin and 25.0% of the NOS-IR cells were double-labeled with parvalbumin in mouse. By contrast, 92.4% of the NOS-IR neurons expressed calbindin D28K while only 2.5% of the NOS-IR neurons expressed calretinin in the rabbit visual cortex. In contrast with the mouse, none of the NOS-IR cells in the rabbit visual cortex were double-labeled with parvalbumin. The results indicate that neurons in the visual cortex of both animals express NOS in specific layers and cell types, which do not correlate with the expression of calbindin D28K, calretinin or parvalbumin between the two animals. 相似文献
3.
Chemosensory and hormonal stimuli are essential for mating in the male Syrian hamster. These signals are processed in a neural circuit that includes the medial amygdaloid nucleus (Me), bed nucleus of the stria terminalis (BNST), and medial preoptic area (MPOA). Nitric oxide is implicated in the regulation of male sexual behavior, and nitric oxide synthase (NOS), the enzyme that catalyzes the production of nitric oxide, is present in the limbic system. In this study, the distribution of NOS-containing neurons in mating behavior circuitry of the male Syrian hamster brain was determined using labeling for brain NOS (bNOS) and reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d). bNOS and NADPH-d labeled equivalent populations of neurons. NOS-containing neurons were clustered in specific subnuclei within the Me, BNST, and MPOA. NOS-positive fibers and neurons were seen in the stria terminalis and ventral amygdalofugal pathway, which link the Me with BNST and MPOA. Many NOS-positive neurons in the posterior subdivision of the Me, the medial preoptic nucleus (MPN), and the ventral premammillary nucleus contain androgen receptors. Castration reduced NOS-positive neurons in the MPN, implying a selective regulation of NOS by gonadal steroids. Together, these results suggest that NOS may contribute to the regulation of male sexual behavior by influencing the central neural processing of hormonal and chemosensory signals in the hamster limbic system. © 1996 John Wiley & Sons, Inc. 相似文献
4.
Alfredo Martínez 《The Histochemical journal》1995,27(10):770-776
Summary The gas nitric oxide is now recognized as an important signalling molecule that is synthesized froml-arginine by the enzyme nitric oxide synthase. This enzyme can be localized by different methods, including immunocytochemistry
and the histochemical reaction for NADPH diaphorase. It has been demonstrated in various vertebrate cells and tissues, and
recently several studies dealing with the production of nitric oxide in invertebrates have been published. Diploblastic animals,
flatworms and nematodes seem to lack NADPH diaphorase activity but it has been found in the rest of the phyla studied. The
most frequently reported sites for the production of nitric oxide are the central and peripheral nervous systems and, in primitive
molluscs, the muscle cells. In insects, it has also been described in the Malpighian tubules. The roles of nitric oxide in
invertebrates are closely related to the physiological actions described in vertebrates, namely, neurotransmission, defence,
and salt and water balance. The recent cloning of the first nitric oxide synthase from an invertebrate source could open interesting
avenues for further studies. 相似文献
5.
S H Snyder 《Current opinion in neurobiology》1992,2(3):323-327
In the past 2 years powerful evidence has emerged to suggest that nitric oxide functions as a neurotransmitter in both the central and peripheral nervous systems. Recent evidence suggests that it may play a role in mediating forms of synaptic plasticity such as long-term potentiation in the CA1 region of the hippocampus, and long-term depression in the cerebellum. Abnormal secretion of nitric oxide may be responsible for the neurotoxicity mediated by NMDA receptors that results in the pathophysiology of strokes and neurodegenerative diseases. 相似文献
6.
Nitric oxide and nitric oxide synthase activity in plants 总被引:26,自引:0,他引:26
Research on NO in plants has gained considerable attention in recent years mainly due to its function in plant growth and development and as a key signalling molecule in different intracellular processes in plants. The NO emission from plants is known since the 1970s, and now there is abundant information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. The physiological function of NO in plants mainly involves the induction of different processes, including the expression of defence-related genes against pathogens and apoptosis/programmed cell death (PCD), maturation and senescence, stomatal closure, seed germination, root development and the induction of ethylene emission. NO can be produced in plants by non-enzymatic and enzymatic systems. The NO-producing enzymes identified in plants are nitrate reductase, and several nitric oxide synthase-like activities, including one localized in peroxisomes which has been biochemically characterized. Recently, two genes of plant proteins with NOS activity have been isolated and characterized for the first time, and both proteins do not have sequence similarities to any mammalian NOS isoform. However, different evidence available indicate that there are other potential enzymatic sources of NO in plants, including xanthine oxidoreductase, peroxidase, cytochrome P450, and some hemeproteins. In plants, the enzymatic production of the signal molecule NO, either constitutive or induced by different biotic/abiotic stresses, may be a much more common event than was initially thought. 相似文献
7.
Jennifer S. Pollock Ulrich F?rstermann W. Ross Tracey Masaki Nakane 《The Histochemical journal》1995,27(10):738-744
Summary Three isozymes of nitric oxide synthase (NOS) have been identified, cDNAs isolated and sequenced, and antibodies produced
against each isozyme. Isozyme I (found primarily in central and peripheral neuronal cells), II (in cytokine-induced cells),
and III (in endothelial cells) show less than 58% identity in the deduced amino acid sequences from humans. Many investigators
have produced isozyme-specific antibodies and used these antibodies to locate these proteins in various cells and tissues.
NOS-I is constitutively expressed, and the enzymatic activity is regulated by Ca2+ and calmodulin. The anti-NOS-I antibodies have allowed investigators to characterize non-adrenergic non-cholinergic neurons
as nitrergic neurons, revealed NOS-I immunoreactivity in neurons and macula densa cells of the kidney and pancreatic islet
cells, human skeletal muscle, and to demonstrate that various structures within the brain and spinal cord contain NOS-I. NOS-II
is not regulated by Ca2+ and has been implicated in the pathophysiology of sepsis and autoimmune diseases. The anti-NOS-II antibodies have localized
this isoform to infiltrating macrophages in pancreatic islets of diabetic rats, infiltrating macrophages and myocytes of a
transplant heart model in rats, various cell types in bacterially and endotoxin-treated rats, alveolar macrophages in areas
of inflammation in humans, and vascular smooth muscle cells of human atherosclerotic aneurysm. Isoform III is similar to NOS-I
in that it is constitutively expressed and regulated by Ca2+ and calmodulin. Anti-NOS-III antibodies have found that this isoform is relatively specific for endothelial cells. 相似文献
8.
The organization of receptive fields of neurons sensitive to orientation of visual stimuli was investigated in the squirrel visual cortex. Neurons with mutually inhibitory on- and off-areas of the receptive field, with partially and completely overlapping excitatory and inhibitory mechanisms, were distinguished. Neurons of the second group are most typical. They exhibit orientation selectivity within the excitatory area of the receptive field because, if the stimulus widens in the zero direction, perpendicular to the preferred direction, lateral inhibition is much stronger than if it widens in the preferred direction. Additional inhibitory areas (outside the excitatory area) potentiate this inhibition and increase selectivity. It is suggested that there is no strict separation of simple (with separate excitatory and inhibitory mechanisms in the receptive field) and complex (with overlapping of these mechanisms) neurons in the squirrel visual cortex.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 540–549, November–December, 1979. 相似文献
9.
Nitric oxide synthase and postischemic liver injury 总被引:8,自引:0,他引:8
Kawachi S Hines IN Laroux FS Hoffman J Bharwani S Gray L Leffer D Grisham MB 《Biochemical and biophysical research communications》2000,276(3):851-854
The objective of this study was to determine what roles the endothelial cell and inducible isoforms of nitric oxide synthase (eNOS, iNOS) play in ischemia and reperfusion (I/R)-induced liver injury in vivo in mice genetically deficient in each isoform of NOS. We found that 45 min of partial (70%) liver ischemia and 5 h of reperfusion induced substantial liver injury as assessed by the release of large and significant amounts of the liver-specific enzyme alanine aminotransferase (ALT) into the serum of wild-type (wt) mice. The enhanced ALT levels were not due to increased recruitment of potentially damaging PMNs, which could mediate hepatocyte injury, as neither histopathological inspection nor quantitative MPO determinations revealed the presence of PMNs in the liver at this time point. In addition, we observed a significant enhancement in liver injury in eNOS-deficient but not iNOS-deficient mice subjected to liver I/R compared to postischemic wt mice. Taken together, these data suggest that eNOS- but not iNOS-derived NO plays an important role in limiting or downregulating I/R-induced liver injury in vivo following 5 h of reperfusion. 相似文献
10.
The distribution of the three nitric oxide synthase (NOS) isoforms was determined immunohistochemically in the human minor and major salivary glands with comparison to that of rat salivary glands. In contrast to rat glands, which contained a dense plexus of neuronal NOS-immunoreactive nerve fibers, only a minority of the nerve fibers in human glands showed neuronal NOS immunoreactivity. Human labial and submandibular glands contained sparse NOS-immunoreactive fibers, while only occasional nerve fibers in the parotid or sublingual glands were stained. Furthermore, in contrast to the animal glands, most duct epithelial cells in all human salivary glands were immunoreactive for neuronal NOS. No specific immunoreactivity for inducible or endothelial NOS were observed in the nerve fibers or duct epithelium. We provide evidence to suggest that the role of nitric oxide in the regulation of salivary gland function is different in human as compared to experimental animals. Nitricergic innervation in human tissue is very sparse and thus nitric oxide is probably of minor importance as a neural regulator of salivary glands. Instead, NOS localized in duct epithelial cells suggests that nitric oxide might directly regulate saliva secretion and it is a putative source of nitrates previously reportedly secreted into the saliva. 相似文献
11.
Nitric oxide synthase: models and mechanisms 总被引:6,自引:0,他引:6
The overproduction or underproduction of nitric oxide has been implicated in pathological symptoms such as endotoxic shock, diabetes, allograft rejection, and myocardial ischimia/reperfusion injury. A thorough understanding of the biosynthesis of nitric oxide is necessary to probe and manipulate these signaling events. There is also considerable pharmacological interest in developing selective inhibitors of the several isoforms of nitric oxide synthase. The recently determined crystal structures of complexes between nitric oxide synthase and substrate, the mechanisms of the enzymatic reaction that generate nitric oxide and chemical precedents and models for these reactions are now coming into focus, but there are still numerous fascinating and unanswered questions regarding nitric oxide biosynthesis. 相似文献
12.
AMPA glutamate receptors play a crucial role in brain functions such as synaptic plasticity and development. We have studied the chemo-architecture of the AMPA glutamate receptor subtype GluR2/3 in the hamster visual cortex by immunocytochemistry and compared it with the distribution of the calcium-binding proteins, calbindin D28K and calretinin. Anti-GluR2/3-immunoreactive (IR) neurons were predominantly located in layers II/III, V, and VI, and the majority of the labeled neurons were round or oval. However, many pyramidal cells in layer V were also labeled. Two-color immunofluorescence revealed that none of the GluR2/3-IR neurons contained calbindin D28 K or calretinin. Thus specific layers of neurons express the GluR2/3 subunit and these do not correlate with expression of calbindin D28K and calretinin. 相似文献
13.
14.
Although the dog is widely used to analyze the function of the brain, it is not known whether the distribution of calcium-binding proteins reflects a specific pattern in the visual cortex. The distribution of neurons containing calcium-binding proteins, calbindin D28K, calretinin, and parvalbumin in adult dog visual cortex were studied using immunocytochemistry. We also compared this labeling to that of gamma-aminobutyric acid (GABA). Calbindin D28K-immunoreactive (IR) neurons were predominantly located in layer II/III. Calretinin- and parvalbumin-IR neurons were located throughout the layers with the highest density in layers II/III and IV. The large majority of calbindin D28K-IR neurons were multipolar stellate cells. The majority of the calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicular to the pial surface. And the large majority of parvalbumin-IR neurons were multipolar stellate and round/oval cells. More than 90% of the calretinin- and parvalbumin-IR neurons were double-labeled with GABA, while approximately 66% of the calbindin D28K-IR neurons contained GABA. This study elucidates the neurochemical structure of calcium-binding proteins. These data will be informative in appreciating the functional significance of different laminar distributions of calcium-binding proteins between species and the differential vulnerability of calcium-binding proteins-containing neurons, with regard to calcium-dependent excitotoxic procedures. 相似文献
15.
16.
The neuronal localization of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor (GluR) subunits is vital as they play key roles in the regulation of calcium permeability. We have examined the distribution of the calcium permeable AMPA glutamate receptor subunit GluR1 in the mouse visual cortex immunocytochemically. We compared this distribution to that of the calcium-binding proteins calbindin D28K, calretinin, and parvalbumin, and of GABA. The highest density of GluR1-immunoreactive (IR) neurons was found in layers II/III. Enucleation appeared to have no effect on the distribution of GluR1-IR neurons. The labeled neurons varied in morphology; the majority were round or oval and no pyramidal cells were labeled by the antibody. Two-color immunofluorescence revealed that 26.27%, 10.65%, and 40.31% of the GluR1-IR cells also contained, respectively, calbindin D28K, calretinin, and parvalbumin. 20.74% of the GluR1-IR neurons also expressed GABA. These results indicate that many neurons that express calcium-permeable GluR1 also express calcium binding proteins. They also demonstrate that one fifth of the GluR1-IR neurons in the mouse visual cortex are GABAergic interneurons. 相似文献
17.
Hypoxia/ischaemia is known to trigger neuronal death, but the role of neuronal nitric oxide synthase (nNOS) in this process is controversial. Nitric oxide (NO) inhibits cytochrome oxidase in competition with oxygen. We tested whether NO derived from nNOS synergises with hypoxia to induce neuronal death by inhibiting mitochondrial cytochrome oxidase. Sixteen hours of hypoxia (2% oxygen) plus deoxyglucose (an inhibitor of glycolysis) caused extensive, excitotoxic death of neurons in rat cerebellar granule cell cultures. Three different nNOS inhibitors (including the selective inhibitor N-4S-4-amino-5-2-aminoethyl-aminopentyl-N'-nitroguanidine) decreased this neuronal death by half, indicating a contribution of nNOS to hypoxic death. The selective nNOS inhibitor did not, however, block neuronal death induced either by added glutamate or by added azide (an uncompetitive inhibitor of cytochrome oxidase), indicating that nNOS does not act downstream of glutamate or cytochrome oxidase. Hypoxia plus deoxyglucose-induced glutamate release and neuronal depolarisation, and the nNOS inhibitor decreased this. Hypoxia inhibited cytochrome oxidase activity in the cultures, but a selective nNOS inhibitor prevented this inhibition, indicating NO from nNOS was inhibiting cytochrome oxidase in competition with oxygen. These data indicate that hypoxia synergises with NO from nNOS to induce neuronal death via cytochrome oxidase inhibition causing neuronal depolarisation. This mechanism might contribute to ischaemia/stroke-induced neuronal death in vivo. 相似文献
18.
Nitric oxide synthase in the rat carotid body and carotid sinus 总被引:5,自引:0,他引:5
The participation of nitric oxide synthase (NOS) in the innervation of the rat carotid body and carotid sinus was investigated by means of NADPH-diaphorase histochemistry and NOS immunohistochemistry using antisera raised against purified neuronal NOS and a synthetic tridecapeptide. NOS was detected in 23% of neurons at the periphery of the carotid bodies. Some negative neurons were surrounded by NOS-positive terminals. NOS-containing varicose nerve fibres innervated the arterial vascular bed and, to a lesser extent, the islands of glomus cells. These fibres persisted after transection of the carotid sinus nerve and are probably derived from intrinsic neurons. Large NOS-positive axonal swellings in the wall of the carotid sinus were absent after transection of the sinus nerve, indicating their sensory origin. The results suggest a neuronal nitrergic control of blood flow, neuronal activity and chemoreception in the carotid body, and an intrinsic role of NO in the process of arterial baroreception. 相似文献
19.
Nitric oxide synthase (NOS) catalyzes the formation of nitric oxide (NO) from L-arginine. In this study, the cellular localization
of neuronal NOS (nNOS) activity in the human retina since fetal development was examined by immunohistochemistry. No detectable
staining in the fetal retina was present at 14 weeks of gestation (wg), the earliest age group examined. A centro-peripheral
gradient of development of nNOS immunoreactivity was evident at 16–17 wg, with the midperipheral retina showing nNOS immunoreactivity
in most of the cell types and the inner plexiform layer while the peripheral part demonstrated moderate immunoreactivity only
in the ganglion cell layer and photoreceptor precursors. A transient increase in nNOS immunoreactivity in the ganglion cells
and Müller cell endfeet between 18–19 and 24–25 wg was observed at the time when programmed cell death in the ganglion cell
layer, loss of optic nerve fibres as well as increase in glutamate immunoreactivity and parvalbumin (a calcium binding protein)
immunoreactivity in the ganglion cells was reported. These observations indicate that programmed cell death of ganglion cells
in the retina may be linked to glutamate toxicity and NO activity, as also suggested by others in the retina and cerebral
cortex.
The presence of nNOS immunoreactivity in the photoreceptors from 16–17 weeks of fetal life to adulthood indicates other functions,
besides their involvement in photoreceptor function of transduction and information processing. 相似文献