首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All members of the human herpesvirus protease (HHV Pr) family are active as weakly associating dimers but inactive as monomers. A small-molecule allosteric inhibitor of Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) traps the enzyme in an inactive monomeric state where the C-terminal helices are unfolded and the hydrophobic dimer interface is exposed. NMR titration studies demonstrate that the inhibitor binds to KSHV Pr monomers with low micromolar affinity. A 2.0-Å-resolution X-ray crystal structure of a C-terminal truncated KSHV Pr-inhibitor complex locates the binding pocket at the dimer interface and displays significant conformational perturbations at the active site, 15 Å from the allosteric site. NMR and CD data suggest that the small molecule inhibits human cytomegalovirus protease via a similar mechanism. As all HHV Prs are functionally and structurally homologous, the inhibitor represents a class of compounds that may be developed into broad-spectrum therapeutics that allosterically regulate enzymatic activity by disrupting protein-protein interactions.  相似文献   

2.
The mechanism of herpesviral protease activation upon dimerization was studied using two independent spectroscopic assays augmented by directed mutagenesis. Spectroscopic changes, attributable to dimer interface conformational plasticity, were observed upon dimerization of Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr). KSHV Pr's dissociation constant of 585 +/- 135 nM at 37 degrees C was measured by a concentration-dependent, 100-fold increase in specific activity to a value of 0.275 +/- 0.023 microM product min(-1) (microM enzyme)(-1). A 4 nm blue-shifted fluorescence emission spectrum and a 25% increase in ellipticity at 222 nm were detected by circular dichroism upon dimer association. This suggested enhanced hydrophobic packing within the dimer interface and/or core, as well as altered secondary structures. To better understand the structure-activity relationship between the monomer and the dimer, KSHV Pr molecules were engineered to remain monomeric via substitution of two separate residues within the dimer interface, L196 and M197. These mutants were proteolytically inactive while exhibiting the spectroscopic signature and thermal stability of wild type, dissociated monomers (T(M) = 75 degrees C). KSHV Pr conformational changes were found to be relevant in vivo, as the autoproteolytic inactivation of KSHV Pr at its dimer disruption site [Pray et al. (1999) J. Mol. Biol. 289, 197-203] was detected in viral particles from KSHV-infected cells. This characterization of structural plasticity suggests that the structure of the KSHV Pr monomer is stable and significantly different from its structure in the dimer. This structural uniqueness should be considered in the development of compounds targeting the dimer interface of KSHV Pr monomers.  相似文献   

3.
Reiling KK  Pray TR  Craik CS  Stroud RM 《Biochemistry》2000,39(42):12796-12803
The structure of Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr), at 2.2 A resolution, reveals the active-site geometry and defines multiple possible target sites for drug design against a human cancer-producing virus. The catalytic triad of KSHV Pr, (Ser114, His46, and His157) and transition-state stabilization site are arranged as in other structurally characterized herpesviral proteases. The distal histidine-histidine hydrogen bond is solvent accessible, unlike the situation in other classes of serine proteases. As in all herpesviral proteases, the enzyme is active only as a weakly associated dimer (K(d) approximately 2 microM), and inactive as a monomer. Therefore, both the active site and dimer interface are potential targets for antiviral drug design. The dimer interface in KSHV Pr is compared with the interface of other herpesviral proteases. Two conserved arginines (Arg209), one from each monomer, are buried within the same region of the dimer interface. We propose that this conserved arginine may provide a destabilizing element contributing to the tuned micromolar dissociation of herpesviral protease dimers.  相似文献   

4.
Kaposi's sarcoma-associated herpesvirus (KSHV), like all herpesviruses, encodes a protease (KSHV Pr), which is necessary for the viral lytic cycle. Herpesvirus proteases function as obligate dimers; however, each monomer has an intact, complete active site which does not interact directly with the other monomer across the dimer interface. Protein grafting of an interfacial KSHV Pr alpha-helix onto a small stable protein, avian pancreatic polypeptide, generated a helical 30-amino-acid peptide designed to disrupt the dimerization of KSHV Pr. The chimeric peptide was optimized through protein modeling of the KSHV Pr-peptide complex. Circular dichroism analysis and gel filtration chromatography revealed that the rationally designed peptide adopts a helical conformation and is capable of disrupting KSHV Pr dimerization, respectively. Additionally, the optimized peptide inhibits KSHV Pr activity by 50% at a approximately 200-fold molar excess of peptide to KSHV Pr, and the dissociation constant was estimated to be 300 microM. Mutagenesis of the interfacial residue M197 to a leucine resulted in an inhibitory concentration which was twofold higher for KSHV Pr M197L than for KSHV Pr, in agreement with the model that the dimer interface is involved in peptide binding. These results indicate that the dimer interface, as well as the active sites, of herpesvirus proteases is a viable target for inhibiting enzyme activity.  相似文献   

5.
An autolysis site of functional and structural significance has been mapped within the dimer interface of Kaposi's sarcoma-associated herpesvirus protease. Cleavage 27 residues from the C terminus of the 230 amino acid residue, 25 kDa protein was observed to cause a loss of dimerization and proteolytic activity, even though no active site moieties were lost. Gel-filtration chromatography and analytical ultracentrifugation were used to analyze the changes in oligomerization upon autolysis. The selective auto-disruption of this essential protein-protein interface by proteolytic cleavage resulted in a 60 % loss in mean residue ellipticity by circular dichroism as well as a 20 % weaker, 10 nm red-shifted intrinsic protein fluorescence emission spectrum. These apparent conformational changes induced a strict inhibition of enzymatic activity. An engineered substitution at the P1' position of this cleavage site attenuated autolysis by the enzyme and restored wild-type dimerization. In addition to retaining full proteolytic activity in a continuous fluorescence-based enzyme assay, this protease variant allowed the determination of the enzyme's dimerization dissociation constant of 1.7 (+/-0.9) microM. The structural perturbations observed in this enzyme may play a role in viral maturation, and offer general insight into the allosteric relationship between the dimer interface and active site of herpesviral proteases. The functional coupling between oligomerization and activity presented here may allow for a better understanding of such phenomena, and the design of an enzyme variant stabilized to autolysis should further the structural and mechanistic characterization of this viral protease.  相似文献   

6.
A genomic clone encoding the protease (Pr) and the assembly protein (AP) of Kaposi's sarcoma-associated herpesvirus (KSHV) (also called human herpesvirus 8) has been isolated and sequenced. As with other herpesviruses, the Pr and AP coding regions are present within a single long open reading frame. The mature KSHV Pr and AP polypeptides are predicted to contain 230 and 283 residues, respectively. The amino acid sequence of KSHV Pr has 56% identity with that of herpesvirus salmiri, the most similar virus by phylogenetic comparison. Pr is expressed in infected human cells as a late viral gene product, as suggested by RNA analysis of KSHV-infected BCBL-1 cells. Expression of the Pr domain in Escherichia coli yields an enzymatically active species, as determined by cleavage of synthetic peptide substrates, while an active-site mutant of this same domain yields minimal proteolytic activity. Sequence comparisons with human cytomegalovirus (HCMV) Pr permitted the identification of the catalytic residues, Ser114, His46, and His134, based on the known structure of the HCMV enzyme. The amino acid sequences of the release site of KSHV Pr (Tyr-Leu-Lys-Ala*Ser-Leu-Ile-Pro) and the maturation site (Arg-Leu-Glu-Ala*Ser-Ser-Arg-Ser) show that the extended substrate binding pocket differs from that of other members of the family. The conservation of amino acids known to be involved in the dimer interface region of HCMV Pr suggests that KSHV Pr assembles in a similar fashion. These features of the viral protease provide opportunities to develop specific inhibitors of its enzymatic activity.  相似文献   

7.
The Met tyrosine kinase receptor and its ligand, hepatocyte growth factor (HGF), play important roles in normal development and in tumor growth and metastasis. HGF-dependent signaling requires proteolysis from an inactive single-chain precursor into an active alpha/beta-heterodimer. We show that the serine protease-like HGF beta-chain alone binds Met, and report its crystal structure in complex with the Sema and PSI domain of the Met receptor. The Met Sema domain folds into a seven-bladed beta-propeller, where the bottom face of blades 2 and 3 binds to the HGF beta-chain 'active site region'. Mutation of HGF residues in the area that constitutes the active site region in related serine proteases significantly impairs HGF beta binding to Met. Key binding loops in this interface undergo conformational rearrangements upon maturation and explain the necessity of proteolytic cleavage for proper HGF signaling. A crystallographic dimer interface between two HGF beta-chains brings two HGF beta:Met complexes together, suggesting a possible mechanism of Met receptor dimerization and activation by HGF.  相似文献   

8.
E chrysanthemi, a phytopathogenic enterobacterium, secretes several enzymes into the medium such as pectinases cellulases and proteases. It also produces 3 distinct and antigenically related extracellular proteases. The proteases secretion pathway seems to be distinct from that of the other extracellular enzymes since pleiotropic mutants impaired in cellulase and pectinase secretion are unimpaired in protease secretion. E chrysanthemi proteases B and C secretion occurs without an N-terminal signal peptide and is dependent upon specific secretion functions which are encoded by genes adjacent to the protease structural genes. This secretion pathway might be analogous to the alpha-hemolysin secretion pathway in E coli. Protection against intracellular proteolytic activity is achieved by 2 distinct mechanisms: the proteases are synthesized as inactive precursors with an N-terminal extension of 15 aminoacids (protease B) and 17 aminoacids (protease C) absent in the mature active extracellular enzymes; an intracellular specific protease inhibitor is produced by some E chrysanthemi strains.  相似文献   

9.
Herpesvirus proteases require dimerization for activity, although crystallographic data indicate that each monomeric subunit possesses a well-separated and complete active site. This suggests that dimerization stabilizes the monomeric protease subunits in an active conformation. Chemical cross-linking with disuccinimidyl glutarate was used to capture human cytomegalovirus protease in its various conformations. The cross-linked protease retained activity under mildly chaotropic conditions (0.25 to 0.75 M urea) in contrast to non-cross-linked protease which lost activity. Identification of active protease species by incorporation of radioactive diisopropylfluorophosphate showed that in addition to cross-linked dimers, cross-linked protease monomers were responsible for a significant fraction of the total protease activity. These results are consistent with the hypothesis that herpesvirus protease activation occurs by stabilization of an active conformer in the dimer.  相似文献   

10.
ATP‐dependent proteases are crucial for cellular homeostasis. By degrading short‐lived regulatory proteins, they play an important role in the control of many cellular pathways and, through the degradation of abnormally misfolded proteins, protect the cell from a buildup of aggregates. Disruption or disregulation of mammalian mitochondrial Lon protease leads to severe changes in the cell, linked with carcinogenesis, apoptosis, and necrosis. Here we present the structure of the proteolytic domain of human mitochondrial Lon at 2 Å resolution. The fold resembles those of the three previously determined Lon proteolytic domains from Escherichia coli, Methanococcus jannaschii, and Archaeoglobus fulgidus. There are six protomers in the asymmetric unit, four arranged as two dimers. The intersubunit interactions within the two dimers are similar to those between adjacent subunits of the hexameric ring of E. coli Lon, suggesting that the human Lon proteolytic domain also forms hexamers. The active site contains a 310 helix attached to the N‐terminal end of α‐helix 2, which leads to the insertion of Asp852 into the active site, as seen in M. jannaschii. Structural considerations make it likely that this conformation is proteolytically inactive. When comparing the intersubunit interactions of human with those of E. coli Lon taken with biochemical data leads us to propose a mechanism relating the formation of Lon oligomers with a conformational shift in the active site region coupled to a movement of a loop in the oligomer interface, converting the proteolytically inactive form seen here to the active one in the E. coli hexamer.  相似文献   

11.
Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.  相似文献   

12.
Biochemical studies indicate that dimerization is required for the catalytic activity of herpesvirus proteases, whereas structural studies show a complete active site in each monomer, away from the dimer interface. Here we report kinetic, biophysical and crystallographic characterizations of structure-based mutants in the dimer interface of human cytomegalovirus (HCMV) protease. Such mutations can produce a 1,700-fold reduction in the kcat while having minimal effects on the K(m). Dimer stability is not affected by these mutations, suggesting that dimerization itself is insufficient for activity. There are large changes in monomer conformation and dimer organization of the apo S225Y mutant enzyme. However, binding of an activated peptidomimetic inhibitor induced a conformation remarkably similar to the wild type protease. Our studies suggest that appropriate dimer formation may be required to indirectly stabilize the protease oxyanion hole, revealing a novel mechanism for dimerization to regulate enzyme activity.  相似文献   

13.
14.
Substrate modulation of enzyme activity in the herpesvirus protease family   总被引:1,自引:0,他引:1  
The herpesvirus proteases are an example in which allosteric regulation of an enzyme activity is achieved through the formation of quaternary structure. Here, we report a 1.7 A resolution structure of Kaposi's sarcoma-associated herpesvirus protease in complex with a hexapeptide transition state analogue that stabilizes the dimeric state of the enzyme. Extended substrate binding sites are induced upon peptide binding. In particular, 104 A2 of surface are buried in the newly formed S4 pocket when tyrosine binds at this site. The peptide inhibitor also induces a rearrangement of residues that stabilizes the oxyanion hole and the dimer interface. Concomitant with the structural changes, an increase in catalytic efficiency of the enzyme results upon extended substrate binding. A nearly 20-fold increase in kcat/KM results upon extending the peptide substrate from a tetrapeptide to a hexapeptide exclusively due to a KM effect. This suggests that the mechanism by which herpesvirus proteases achieve their high specificity is by using extended substrates to modulate both the structure and activity of the enzyme.  相似文献   

15.
The conformational state of C-terminally truncated staphylococcal nuclease R (SNR135), with and without bound ligands, has been studied by performing limited proteolysis with a specific endoproteinase Glu-C followed by electrophoresis and mass spectrometry. Comparison of the accessibility of the cleavage sites shows that the C-terminal truncation of 14 amino-acid residues causes significant unfolding of the C-terminal part of alpha helix 1 and the center of alpha helix 2, but there is little effect on other regions of the nuclease, in particular the N-terminal subdomain, which includes the active site of the nuclease. The truncation also makes the overall conformation of the nuclease more loose and flexible. Binding of ligands makes helices 1 and 2 more resistant to protease Glu-C attack and converts the partially unfolded state to a native-like state, although the conformational stability of the SNR135 complex is still much lower than that of the full-length enzyme. The results suggest that the amino-acid residues around the active site in the truncated nuclease are arranged in a similar topology to those in the full-length nuclease. The study shows that there is a clear-cut correlation between protease susceptibility and conformational stability of the protein, and the initial proteolytic events are the most critical for evaluating the conformational features of the protein. This study demonstrates how mass spectrometry can be combined with limited proteolysis to observe conformational changes induced by ligand binding.  相似文献   

16.
Hosfield CM  Elce JS  Davies PL  Jia Z 《The EMBO journal》1999,18(24):6880-6889
The combination of thiol protease activity and calmodulin-like EF-hands is a feature unique to the calpains. The regulatory mechanisms governing calpain activity are complex, and the nature of the Ca(2+)-induced switch between inactive and active forms has remained elusive in the absence of structural information. We describe here the 2.6 A crystal structure of m-calpain in the Ca(2+)-free form, which illustrates the structural basis for the inactivity of calpain in the absence of Ca(2+). It also reveals an unusual thiol protease fold, which is associated with Ca(2+)-binding domains through heterodimerization and a C(2)-like beta-sandwich domain. Strikingly, the structure shows that the catalytic triad is not assembled, indicating that Ca(2+)-binding must induce conformational changes that re-orient the protease domains to form a functional active site. The alpha-helical N-terminal anchor of the catalytic subunit does not occupy the active site but inhibits its assembly and regulates Ca(2+)-sensitivity through association with the regulatory subunit. This Ca(2+)-dependent activation mechanism is clearly distinct from those of classical proteases.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 proteases are dimers of identical subunits. We made a construct for the expression of recombinant one-chain HIV-2 protease dimer, which, like the previously described one-chain HIV-1 protease dimer, is fully active. The constructs for the one-chain dimers of HIV-1 and HIV-2 proteases were modified to produce hybrid one-chain dimers consisting of both HIV-1 and HIV-2 protease monomers. Although the monomers share only 47.5% sequence identity, the hybrid one-chain dimers are fully active, suggesting that the folding of both HIV-1 and HIV-2 protease monomers is functionally similar.  相似文献   

18.
Wilken C  Kitzing K  Kurzbauer R  Ehrmann M  Clausen T 《Cell》2004,117(4):483-494
Gram-negative bacteria respond to misfolded proteins in the cell envelope with the sigmaE-driven expression of periplasmic proteases/chaperones. Activation of sigmaE is controlled by a proteolytic cascade that is initiated by the DegS protease. DegS senses misfolded protein in the periplasm, undergoes autoactivation, and cleaves the antisigma factor RseA. Here, we present the crystal structures of three distinct states of DegS from E. coli. DegS alone exists in a catalytically inactive form. Binding of stress-signaling peptides to its PDZ domain induces a series of conformational changes that activates protease function. Backsoaking of crystals containing the DegS-activator complex revealed the presence of an active/inactive hybrid structure and demonstrated the reversibility of activation. Taken together, the structural data illustrate in molecular detail how DegS acts as a periplasmic stress sensor. Our results suggest a novel regulatory role for PDZ domains and unveil a novel mechanism of reversible protease activation.  相似文献   

19.
The atomic-resolution crystal structure of the proteolytic domain (P-domain, residues 415-621) of Archaeoglobus fulgidus B-type Lon protease (wtAfLonB) and the structures of several mutants have revealed significant differences in the conformation of the active-site residues when compared to other known Lon P-domains, despite the conservation of the overall fold. The catalytic Ser509 is facing the solvent and is distant from Lys552, the other member of the catalytic dyad. Instead, the adjacent Asp508 forms an ion pair with the catalytic lysine residue. Glu506, an analog of the putative third catalytic residue from a related Methanococcus jannaschii LonB, also faces the solvent and does not interact with the catalytic dyad. We have established that full-length wtAfLonB is proteolytically active in an ATP-dependent manner. The loss of enzymatic activity of the S509A mutant confirms the functional significance of this residue, while retention of considerable level of activity by the D508A and E506A mutants rules out their critical involvement in catalysis. In contrast to the full-length enzymes, all individually purified P-domains (wild-type and mutants) were inactive, and the mutations had no influence on the active-site structure. These findings raise the possibility that, although isolated proteolytic domains of both AfLonB and E.coli LonA are able to assemble into expected functional hexamers, the presence of the other domains, as well as substrate binding, may be needed to stabilize the productive conformation of their active sites. Thus, the observed conformational variability may reflect the differences in the stability of active-site structures for the proteolytic counterparts of single-chain Lon versus independently folded proteolytic subunits of two-chain AAA+ proteases.  相似文献   

20.
Barrila J  Bacha U  Freire E 《Biochemistry》2006,45(50):14908-14916
Severe acute respiratory syndrome (SARS) is an infectious disease caused by the human coronavirus, SARS-CoV. The main viral protease, SARS 3CLpro, is a validated target for the development of antiviral therapies. Since the enzyme is a homodimer and the individual monomers are inactive, two approaches are being used to develop inhibitors: enzyme activity inhibitors that target the active site and dimerization inhibitors. Dimerization inhibitors are usually targeted to the dimerization interface and need to compete with the attractive forces between subunits to be effective. In this paper, we show that the dimerization of SARS 3CLpro is also under allosteric control and that additional and energetically more favorable target sites away from the dimerization interface may also lead to subunit dissociation. We previously identified a cluster of conserved serine residues (Ser139, Ser144, and Ser147) located adjacent to the active site of 3CLpro that could effectively be targeted to inactivate the protease [Bacha, U et al. (2004) Biochemistry 43, 4906-4912]. Mutation of any of these serine residues to alanine had a debilitating effect on the catalytic activity of 3CLpro. In particular, the mutation of Ser147, which does not make any contact with the opposing subunit and is located approximately 9 A away from the dimer interface, totally inhibited dimerization and resulted in a complete loss of enzymatic activity. The finding that residues away from the dimer interface are able to control dimerization defines alternative targets for the design of dimerization inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号