首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The type 2 copper in Rhus vernicifera laccase was completely removed without loss of other types of copper. The properties of this protein derivative and the role of type 2 copper in the catalytic action of laccase was investigated. 2. The molar extinction coefficient at 614 nm of the blue chromophore decreases from 5700 to 4700 cm-1 on removal of type 2 copper. There are no apparent absorption changes at other wavelengths in the visible or near ultraviolet region when this copper is taken away. The electron-paramagnetic-resonance (epr) parameter A parallel and the linewidth of type 1 Cu2+ decreases on removal of type 2 copper. 3. The rate of reduction of type 1 Cu2+ is not affected by removal of type 2 copper but the reduction of the two-electron acceptor is greatly impaired. These results strongly support the idea that type 1 Cu2+ is the primary site for electron transfer between substrate and enzyme and that the two-electron acceptor in the native enzyme is reduced by simultaneous electron transfer from reduced types 1 and 2 copper. 4. Reoxidation of types 1 and 3 copper and the formation of the oxygen intermediate are the same processes in native and type-2-depleted enzyme. These observations suggests that type 2 copper is not involved in the formation and rapid decay of the oxygen intermediate and that it is not necessary for the stabilization of this intermediate. 5. Two new epr signals are observed on reoxidation of reduced type-2-depleted laccase. One is temporarily formed on re-reduction of reoxidized enzyme and it is suggested that it might arise from copper, possibly type 3 copper. The other one is stable for hours and it is proposed that it might come from a modified oxygen intermediate.  相似文献   

2.
Stirpe A  Sportelli L  Guzzi R 《Biopolymers》2006,83(5):487-497
The contribution of the copper ion to the stability and to the unfolding pathway of pseudoazurin was investigated by a comparative analysis of the thermal unfolding of the Cu(II)-holo and apo form of the protein. The unfolding has been followed by calorimetry, fluorescence, optical density, and electron paramagnetic resonance (EPR) spectroscopy. The thermal transition of Cu(II)-holo pseudoazurin is irreversible and occurs between 60.0 and 67.3 degrees C, depending on the scan rate and technique used. The denaturation pathway of Cu(II)-holo pseudoazurin can be described by the Lumry-Eyring model: N --> U --> [corrected] F; the protein reversibly goes from the native (N) to the unfolded (U) state, and then irreversibly to the final (F) state. The simulation of the experimental calorimetric profiles, according to this model, allowed us to determine the thermodynamic and kinetic parameters of the two steps. The DeltaG value calculated for the Cu(II)-holo pseudoazurin is 39.2 kJ.mol(-1) at 25 degrees C. The sequence of events in the denaturation process of Cu(II)-holo pseudoazurin emergence starts with the disruption of the copper site and the hydrophobic core destabilization followed by the global protein unfolding. According to the EPR findings, the native type-1 copper ion shows type-2 copper features after the denaturation. The removal of the copper ion (apo form) significantly reduces the stability of the protein as evidenced by a DeltaG value of 16.5 kJ.mol(-1) at 25 degrees C. Moreover, the apo Paz unfolding occurs at 41.8 degrees C and is compatible with a two-state reversible process N --> [corrected] U.  相似文献   

3.
The interaction between hexacyanoferrate(III) and two copper(II) dipeptide complexes, such as Cu(II)- glycylhistidine and Cu(II)-glycylphenylalanine, has been investigated by electronic and EPR spectroscopy and by magnetic susceptibility measurements. In both cases the magnetic susceptibility values sum to those corresponding to the patent complexes. However, the electronic relaxation time of the copper(II) ion in the mixed complexes is modified so much that the copper(II) EPR signal disappears suggesting the existence of a specific metal—metal interaction probably through a cyanide bridge. This hypothesis is also supported by the appearance of an hypsochromic shift of the Cu(II) electronic band after addition of hexacyanoferrate(III).  相似文献   

4.
Farver O  Eady RR  Sawers G  Prudêncio M  Pecht I 《FEBS letters》2004,561(1-3):173-176
Pulse radiolysis has been employed to investigate the intramolecular electron transfer (ET) between the type 1 (T1) and type 2 (T2) copper sites in the Met144Ala Alcaligenes xylosoxidans nitrite reductase (AxCuNiR) mutant. This mutation increases the reduction potential of the T1 copper center. Kinetic results suggest that the change in driving force has a dramatic influence on the reactivity: The T2Cu(II) is initially reduced followed by ET to T1Cu(II). The activation parameters have been determined and are compared with those of the wild-type (WT) AxCuNiR. The reorganization energy of the T2 site in the latter enzyme was calculated to be 1.6+/-0.2 eV which is two-fold larger than that of the T1 copper center in the WT protein.  相似文献   

5.
The Fet3 protein (Fet3p) is a multinuclear copper oxidase essential for high-affinity iron uptake in yeast. Fet3p contains one type 1, one type 2, and a strongly antiferromagnetically coupled binuclear Cu(II)-Cu(II) type 3 copper. The type 2 and type 3 sites constitute a structurally distinct trinuclear cluster at which dioxygen is reduced to water. In Fet3p, as in ceruloplasmin, Fe(II) is oxidized to Fe(III) at the type 1 copper; this is the ferroxidase reaction that is fundamental to the physiologic function of these two enzymes. Using site-directed mutagenesis, we have generated type 1-depleted (T1D), type 2-depleted (T2D), and T1D/T2D mutants. None were active in the essential ferroxidase reaction catalyzed by Fet3p. However, the spectroscopic signatures of the remaining Cu(II) sites in any one of the three mutants were indistinguishable from those exhibited by the wild type. Although the native protein and the T1D mutant were isolated in the completely oxidized Cu(II) form, the T2D and T1D/T2D mutants were found to be completely reduced. This result is consistent with the essential role of the type 2 copper in dioxygen turnover, and with the suggestions that cuprous ion is the valence state of intracellular copper. Although stable to dioxygen, the Cu(I) sites in both proteins were readily oxidized by hydrogen peroxide. The double mutant was extensively analyzed by X-ray absorption spectroscopy. Edge and near-edge features clearly distinguished the oxidized from the reduced form of the binuclear cluster. EXAFS was strongly consistent with the expected coordination of each type 3 copper by three histidine imidazoles. Also, copper scattering was observed in the oxidized cluster along with scattering from a ligand corresponding to a bridging oxygen. The data derived from the reduced cluster indicated that the bridge was absent in this redox state. In the reduced form of the double mutant, an N/O ligand was apparent that was not seen in the reduced form of the T1D protein. This ligand in T1D/T2D could be either the remaining type 2 copper imidazole ligand (from His416) or a water molecule that could be stabilized at the type 3 cluster by H-bonding to this side chain. If present in the native protein, this H(2)O could provide acid catalysis of dioxygen reduction at the reduced trinuclear center.  相似文献   

6.
We report here the first detailed study of the dithionite reduction kinetics of a copper-containing dissimilatory nitrite reductase (NiR). The reduction of the blue type 1 copper (T1Cu) center of NiR preparations that contained both type 1 and type 2 copper atoms, followed biphasic kinetics. In contrast, NiR that was deficient in type 2 copper (T2DNiR), followed monophasic kinetics with a second-order rate constant (T2D)k = 3.06 x 10(6) m(-1) s(-1). In all cases the SO(2)(.-) radical rather than S(2)O(4)(2-) was the effective reductant. The observed kinetics were compatible with a reaction mechanism in which the T1Cu of the fully loaded protein is reduced both directly by dithionite and indirectly by the type 2 Cu (T2Cu) site via intramolecular electron transfer. Reduction kinetics of the T2Cu were consistent with SO(2)(.-) binding first to the T2Cu center and then transferring electrons (112 s(-1)) to reduce it. As SO(2)(.-) is a homologue of NO(2)(-), the NiR substrate, it is not unlikely that it binds to the catalytic T2Cu site. Effects on the catalytic activity of the enzyme using dithionite as a reducing agent are discussed. Reduction of the semireduced T1Cu(I)T2Cu(II) state followed either second-order kinetics with k(2) = 3.33 x 10(7) m(-1) s(-1) or first-order kinetics with 52.6 s(-1) < (T1red)k(1) < 112 s(-1). Values of formation constants of the T1Cu(II)T2Cu(II)-SO(2)(.-) and T1Cu(I)T2Cu(II)-SO(2)(.-) adducts showed that the redox state of T1Cu affected binding of SO(2)(.-) at the catalytic T2Cu center. Analysis of the kinetics required the development of a mathematical protocol that could be applied to a system with two intercommunicating sites but only one of which can be monitored. This novel protocol, reported for the first time, is of general application.  相似文献   

7.
The reactions with N,N-diethyldithiocarbamate (DDC) of zinc, cobalt and copper carbonic anhydrase from bovine erythrocytes were investigated. The native zinc enzyme was inhibited by DDC, but no removal of zinc could be detected even at a very high [ligand]/[protein] ratio. At identical pH values a larger inhibitory effect was found for the cobalt enzyme. The metal was removed by DDC from the protein at pH less than 7.0. No cobalt removal occurred at pH 10, where a stable ternary complex with the enzyme-bound Co(II) was detected. Its optical and EPR spectra are indicative of five-coordinate Co(II). The reaction of the Cu(II) enzyme with stoichiometric chelating agent was marked by the appearance of an electronic transition at 390 nm (epsilon = 4300 M-1 X cm-1). Metal removal from the copper enzyme readily occurred as the ligand was in excess over the metal, with parallel appearance of a band at 440 nm, which was attributed to the free Cu(II)-DDC complex. Also, in the case of the copper enzyme an alkaline pH was found to stabilize the ternary adduct with the diagnostic 390 nm band. EPR spectra showed that the ternary adduct is a mixture of two species, both characterized by the presence in the EPR spectrum of a superhyperfine structure from two protein nitrogens and by a low g parallel value, indicative of coordination to sulfur ligands. It is suggested that the two species contain the metal as penta- and hexacoordinated, respectively. Measurements of the longitudinal relaxation time, T1, of the water protons suggested that water coordination is retained in the latter case. Hexacoordination with retention of water is also proposed for the Cu(II) derivatives with the bidentate oxalate and bicarbonate anions, unlike the corresponding Co(II) derivatives, which are pentacoordinated. Different coordination of Co(II) and Cu(II) adducts may be relevant to the difference of activity of the two substituted enzymes.  相似文献   

8.
Welford RW  Lam A  Mirica LM  Klinman JP 《Biochemistry》2007,46(38):10817-10827
The mechanism of the first electron transfer from reduced cofactor to O2 in the catalytic cycle of copper amine oxidases (CAOs) remains controversial. Two possibilities have been proposed. In the first mechanism, the reduced aminoquinol form of the TPQ cofactor transfers an electron to the copper, giving radical semiquinone and Cu(I), the latter of which reduces O2 (pathway 1). The second mechanism invokes direct transfer of the first electron from the reduced aminoquinol form of the TPQ cofactor to O2 (pathway 2). The debate over these mechanisms has arisen, in part, due to variable experimental observations with copper amine oxidases from plant versus other eukaryotic sources. One important difference is the position of the aminoquinol/Cu(II) to semiquinone/Cu(I) equilibrium on anaerobic reduction with amine substrate, which varies from almost 0% to 40% semiquinone/Cu(I). In this study we have shown how protein structure controls this equilibrium by making a single-point mutation at a second-sphere ligand to the copper, D630N in Hansenula polymorpha amine oxidase, which greatly increases the concentration of the cofactor semiquinone/Cu(I) following anaerobic reduction by substrate. The catalytic properties of this mutant, including 18O kinetic isotope effects, point to a conservation of pathway 2, despite the elevated production of the cofactor semiqunone/Cu(I). Changes in kcat/Km[O2] are attributed to an impact of D630N on an increased affinity of O2 for its hydrophobic pocket. The data in this study indicate that changes in cofactor semiquinone/Cu(I) levels are not sufficient to alter the mechanism of O2 reduction and illuminate how subtle features are able to control the reduction potential of active site metals in proteins.  相似文献   

9.
A new procedure is described for preparing tree laccase that is missing the type 2 copper. The derivative has only about 5% of the activity of the native enzyme, and some, or all, of the residual activity could be due to traces of holoprotein. The type 1 copper is fully oxidized in the purified type-2-depleted protein, while the type 3 site is reduced to the extent of at least 85%. However, the type 3 coppers can be reoxidized by treatment with excess H2O2. Reconstitution is achieved by incubation with Cu(I), and the remetalated protein exhibits the activity and the spectral properties of the native enzyme. The type 2 copper is removed by dialysis against a redox buffer containing ferri- and ferrocyanide ions as well as EDTA. More than 25% of the total copper is removed from laccase during the procedure, but the type-2-depleted fraction is readily isolated by means of an ion-exchange column. The practical advantages of this procedure are described. Finally, the simplicity of the method raises hopes that the mechanism of depletion can be defined.  相似文献   

10.
Nitrite reductase of Alcaligenes xylosoxidans contains three blue type 1 copper centers with a function in electron transfer and three catalytic type 2 copper centers. The mutation H139A, in which the solvent-exposed histidine ligand of the type 1 copper ion was changed to alanine, resulted in the formation of a colorless protein containing 4.4 Cu atoms per trimer. The enzyme was inactive with reduced azurin as the electron donor, and in contrast to the wild-type enzyme, no EPR features assignable to type 1 copper centers were observed. Instead, the EPR spectrum of the H139A enzyme, with parameters of g(1) = 2.347 and A(1) = 10 mT, was typical of type 2 copper centers. On the addition of nitrite, the EPR features developed spectral features with increased rhombicity, with g(1) = 2.29 and A(1) = 11 mT, arising from the type 2 catalytic site. As assessed by visible spectroscopy, ferricyanide (E degree = +430 mV) was unable to oxidize the H139A enzyme, and this required a 30-fold excess of K(2)IrCl(6) (E degree = +867 mV). Oxidation resulted in the EPR spectrum developing additional axial features with g(1) = 2.20 and A(1) = 9.5 mT, typical of type 1 copper centers. The oxidized enzyme after separation from the excess of K(2)IrCl(6) by gel filtration was a blue-green color with absorbance maxima at 618 and 420 nm. The instability of the protein prevented the precise determination of the midpoint potential, but these properties indicate that it is in the range 700-800 mV, an increase of at least approximately 470 mV compared with the native enzyme. This high potential, which is consistent with a trigonal planar geometry of the Cu ion, effectively prevents azurin-mediated electron transfer from the type 1 center to the catalytic type 2 Cu site. However, with dithionite as reductant, 20% of the activity of the wild-type enzyme was observed, indicating that the direct reduction of the catalytic site by dithionite can occur. When CuSO(4) was added to the crude extract before isolation of the enzyme, the Cu content of the purified H139A enzyme increased to 5.7 Cu atoms per trimer. The enzyme remained colorless, and the activity with dithionite as a donor was not significantly increased. The additional copper in such preparations was associated with an axial type 2 Cu EPR signal with g(1) = 2.226 and A(1) = 18 mT, and which were not changed by the addition of nitrite, consistent with the activity data.  相似文献   

11.
Previous studies showed that CO/H2O oxidation provides electrons to drive the reduction of oxidized hemoglobin (metHb). We report here that Cu(II) addition accelerates the rate of metHb beta chain reduction by CO by a factor of about 1000. A mechanism whereby electron transfer occurs via an internal pathway coupling CO/H2O oxidation to Fe(III) and Cu(II) reduction is suggested by the observation that the copper-induced rate enhancement is inhibited by blocking Cys-beta93 with N-ethylmaleimide. Furthermore, this internal electron-transfer pathway is more readily established at low Cu(II) concentrations in Hb Deer Lodge (beta2His --> Arg) and other species lacking His-beta2 than in Hb A0. This difference is consistent with preferential binding of Cu(II) in Hb A0 to a high affinity site involving His-beta2, which is ineffective in promoting electron exchange between Cu(II) and the beta heme iron. Effective electron transfer is thus affected by Hb type but is not governed by the R left arrow over right arrow T conformational equilibrium. The beta hemes in Cu(II)-metHb are reduced under CO at rates close to those observed for cytochrome c oxidase, where heme and copper are present together in the oxygen-binding site and where internal electron transfer also occurs.  相似文献   

12.
The plasmid-encoded pco copper resistance operon in Escherichia coli consists of seven genes that are expressed from two pco promoters in response to elevated copper; however, little is known about how they mediate resistance to excess environmental copper. Two of the genes encode the soluble periplasmic proteins PcoA and PcoC. We show here that inactivation of PcoC, and PcoA to a lesser extent, causes cells to become more sensitive to copper than wild-type nonresistant strains, consistent with a tightly coupled detoxification pathway. Periplasmic extracts show copper-inducible oxidase activity, attributed to the multicopper oxidase function of PcoA. PcoC, a much smaller protein than PcoA, binds one Cu(II) and exhibits a weak electronic transition characteristic of a type II copper center. ENDOR and ESEEM spectroscopy of Cu(II)-PcoC and the (15)N- and Met-CD(3)-labeled samples are consistent with a tetragonal ligand environment of three nitrogens and one aqua ligand "in the plane". A weakly associated S-Met and aqua are likely axial ligands. At least one N is a histidine and is likely trans to the in-plane aqua ligand. The copper chemistry of PcoC and the oxidase function of PcoA are consistent with the emerging picture of the chromosomally encoded copper homeostasis apparatus in the E. coli cell envelope [Outten, F. W., Huffman, D. L., Hale, J. A., and O'Halloran, T. V. (2001) J. Biol. Chem. 276, 30670-30677]. We propose a model for the plasmid system in which Cu(I)-PcoC functions in this copper efflux pathway as a periplasmic copper binding protein that docks with the multiple repeats of Met-rich domains in PcoA to effect oxidation of Cu(I) to the less toxic Cu(II) form. The solvent accessibility of the Cu(II) in PcoC may allow for metal transfer to other plasmid and chromosomal factors and thus facilitate removal of Cu(II) from the cell envelope.  相似文献   

13.
The nuclear modulation effect in pulsed EPR spectroscopy was used to study the type 2 copper binding site in the mercury derivative of laccase (MDL) in which the type 1 copper is substituted by Hg(II). By comparing the three-pulse electron spin-echo modulations and Fourier transform spectra of MDL and several model compounds, we conclude that the imidazole groups of two histidyl amino acid residues are equatorially coordinated to Cu(II) in the type 2 site. Computer simulations of these data suggest that the remote nonbonding nitrogens of the two imidazoles possess nuclear quadrupole parameters e2qQ = 1.47 MHz and eta = 0.83. A(iso) values of these two nitrogens are not identical, being 1.5 and 2.0 MHz. We have also used samples of the enzyme exchanged with D2O to examine the coordination of the water to the type 2 copper site. The deuterium modulation that is resolved by taking the ratio of the time domain ESEEM data from native and D2O-exchanged enzyme indicates that there is an equatorial water ligand, and further data show that this water is displaced by azide.  相似文献   

14.
The thermodynamic parameters for reduction of the type-1 (T1) copper site in Rhus vernicifera and Trametes versicolor laccases and for the derivative of the former protein from which the type-2 copper has been selectively removed (T2D) have been determined with UV–vis spectroelectrochemistry. In all cases, the enthalpic term turns out to be the main determinant of the E o′ of the T1 site. Also the difference between the reduction potentials of the two laccases is enthalpy-based and reflects differences in the coordination features of the T1 sites and their protein environment. The T1 sites in native R. vernicifera laccase and its T2D derivative show the same E o′, as a result of compensatory differences in the reduction thermodynamics. This suggests that removal of the type-2 (T2) copper results in modification of the reduction-induced solvent reorganization effects, with no influence in the structure of the multicopper protein site. This conclusion is supported by NMR data recorded on the native, the T2D, and Hg-substituted T1 derivatives of R. vernicifera laccase, which show that the T1 and T2/T3 sites are largely noninteracting.  相似文献   

15.
The interaction of Cu(II) with human lactoferrin has been studied as a function of pH, using electronic and electron spin resonance spectroscopy. Specific Cu(II) binding, with bicarbonate as the co-anion, occurs over the pH range 6 to 9. In the presence of a fiftyfold molar excess of oxalate, a monocopper(II) lactoferrin oxalate complex forms when the Cu(II) to protein is 1:1. If this ratio is increased to 2:1, a hybrid complex forms, in which the second copper utilizes bicarbonate as the co-anion, thus demonstrating, as for serum transferrin, a difference in the anion binding sites. The quenching of the intrinsic fluorescence of apolactoferrin is significantly less in the presence of oxalate than bicarbonate. The interaction of Cu(II) with apolactoferrin in the presence of the malonate, glycolate, thioglycolate, glycinate, and ethylenediaminetetraacetate ions has been examined.  相似文献   

16.
Anions that do not coordinate to the catalytically active copper ion of Cu,Zn superoxide dismutase, but still affect the activity of the enzyme by weaker interactions with the protein moiety surrounding the active site (low affinity anions), uniformly perturbed the 1H NMR line of the NH group of the copper ligand His 46. This effect was detected on the enzyme having Co(II) substituted for the native Zn(II), in which the resonances of residues bound to the copper are detected because of the antiferromagnetic coupling between Cu(II) and Co(II). The interaction with the enzyme of phosphate, a good representative of low-affinity anions, was also studied by 31P NMR of the native enzyme and of enzyme samples covalently modified at all lysines or at the Arg 141, which is 5 A away from the copper. The results obtained indicate that Arg 141 is a likely candidate for binding of low-affinity anions in the vicinity of the copper and that the 1H NMR line of His 46 NH is diagnostic for such an interaction.  相似文献   

17.
The method of continuous saturation has been used to measure the electron spin relaxation parameter T1T2 at temperatures between 10 and 50 K for a variety of S = 1/2 species including: CuA and cytochrome a of cytochrome c oxidase, the type 1 copper in several blue copper proteins, the type 2 copper in laccase, inorganic Cu(II) complexes, sulfur radicals, and low spin heme proteins. The temperature dependence and the magnitude of T1T2 for all of the species examined are accounted for by assuming that the Van Vleck Raman process dominates the electron spin-lattice relaxation. Over the entire temperature range examined, the relaxation of the type 1 coppers in six to seven times faster than that of type 2 copper, inorganic copper, and sulfur radicals, in spite of the similar g-anisotropies of these species. This result may indicate that the coupling of the phonon bath to the spin center is more effective in type 1 coppers than in the other complexes studied. The relaxation of CuA of cytochrome oxidase exhibits an unusual temperature dependence relative to the other copper complexes studied, suggesting that the protein environment of this center is different from that of the other copper centers studied and/or that CuA is influenced by a magnetic dipolar interaction with another, faster-relaxing paramagnetic site in the enzyme. A comparison of the saturation characteristics of the CuA EPR signal in native and partially reduced CO complexes of the enzyme also suggests the existence of such an interaction. The implications of these results with respect to the disposition of the metal centers in cytochrome oxidase are discussed.  相似文献   

18.
Nitrous oxide reductase (N2OR), Pseudomonas stutzeri, catalyses the 2 electron reduction of nitrous oxide to di-nitrogen. The enzyme has 2 identical subunits (Mr approximately 70,000) of known amino acid sequence and contains approximately 4 Cu ions per subunit. By measurement of the optical absorption, electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectra of the oxidised state, a semi-reduced form and the fully reduced state of the enzyme it is shown that the enzyme contains 2 distinct copper centres of which one is assigned to an electron-transfer function, centre A, and the other to a catalytic site, centre Z. The latter is a binuclear copper centre with at least 1 cysteine ligand and cycles between oxidation levels Cu(II)/Cu(II) and Cu(II)/Cu(I) in the absence of substrate or inhibitors. The state Cu(II)/Cu(I) is enzymatically inactive. The MCD spectra provide evidence for a second form of centre Z, which may be enzymatically active, in the oxidised state of the enzyme. Centre A is structurally similar to that of CuA in bovine and bacterial cytochrome c oxidase and also contains copper ligated by cysteine. This centre may also be a binuclear copper complex.  相似文献   

19.
The multicopper oxidases catalyze the 4e- reduction of O2 to H2O coupled to the 1e- oxidation of 4 equiv of substrate. This activity requires four Cu atoms, including T1, T2, and coupled binuclear T3 sites. The T2 and T3 sites form a trinuclear cluster (TNC) where O2 is reduced. The T1 is coupled to the TNC through a T1-Cys-His-T3 electron transfer (ET) pathway. In this study the two T3 Cu coordinating His residues which lie in this pathway in Fet3 have been mutated, H483Q, H483C, H485Q, and H485C, to study how perturbation at the TNC impacts the T1 Cu site. Spectroscopic methods, in particular resonance Raman (rR), show that the change from His to Gln to Cys increases the covalency of the T1 Cu-S Cys bond and decreases its redox potential. This study of T1-TNC interactions is then extended to Rhus vernicifera laccase where a number of well-defined species including the catalytically relevant native intermediate (NI) can be trapped for spectroscopic study. The T1 Cu-S covalency and potential do not change in these species relative to resting oxidized enzyme, but interestingly the differences in the structure of the TNC in these species do lead to changes in the T1 Cu rR spectrum. This helps to confirm that vibrations in the cysteine side chain of the T1 Cu site and the protein backbone couple to the Cu-S vibration. These changes in the side chain and backbone provide a possible mechanism for regulating intramolecular T1 to TNC ET in NI and partially reduced enzyme forms for efficient turnover.  相似文献   

20.
A simple colorimetric test for the Cu(I) content in blue copper proteins is described. The procedure is based on the formation of a complex between Cu(I) and 2,2'-biquinoline in an acetic acid medium. Analyses of spinach plastocyanin, Pseudomonas aeruginosa azurin and Rhus vernicifera stellacyanin show that the cysteine residue in the type 1 site does not induce Cu(II) reduction under our conditions. There is evidence in laccase samples for the presence of an endogenous reductant that can reduce 0.14 +/- 0.04 mol of Cu(II)/mol of protein; however, the addition of EDTA eliminates the interference. The analysis shows that 25 +/- 2% of the type 3 copper ions are in the reduced form in the resting enzyme and that 80 +/- 15% of the type 3 copper ions are reduced in preparations of type-2-depleted laccase. There is growing interest in the development of chemically modified forms of laccase, and our method should be very useful for establishing the valence state of the metal centres in the various derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号