首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly probable active site of the sweet protein monellin.   总被引:4,自引:0,他引:4  
The sweet protein monellin consists of two noncovalently associated polypeptide chains, the A chain of 44 amino acid residues and the B chain of 50 residues. Synthetic monellin is 4000 times as sweet as sucrose on a weight basis, and the native conformation is essential for the sweet taste. Knowledge of the active site of monellin will provide important information on the mode of interaction between sweeteners and their receptors. If the replacement of a certain amino acid residue in monellin removes the sweet taste, while the native conformation is retained, it may be concluded that the position replaced is the active site. Our previous replacement studies on Asp residues in the A chain did not remove the sweet taste. The B chain contains two Asp residues at positions 7 and 21, which were replaced by Asn. [AsnB21]Monellin and [AsnB7]monellin were 7000 and 20 times sweeter than sucrose, respectively. The low potency of the [AsnB7]monellin indicates that AspB7 participates in binding with the receptor. AspB7 was then replaced by Abu. [AbuB7]Monellin was devoid of sweetness, and retained the native conformation. AspB7 is located at the surface of the molecule (Ogata et al.). These results suggest that Asp7 in the B chain is the highly probable active site of monellin.  相似文献   

2.
The sweet protein monellin consists of two noncovalently associated polypeptide chains, the A chain of 44 amino acid residues and the B chain of 50 residues. Synthetic monellin is 4000 times as sweet as sucrose on a weight basis, and the native conformation is essential for the sweet taste. Knowledge of the active site of monellin will provide important information on the mode of interaction between sweeteners and their receptors. If the replacement of a certain amino acid residue in monellin removes the sweet taste, while the native conformation is retained, it may be concluded that the position replaced is the active site. Our previous replacement studies on Asp residues in the A chain did not remove the sweet taste. The B chain contains two Asp residues at positions 7 and 21, which were replaced by Asn. [AsnB21] Monellin and [AsnB7]monellin were 7000 and 20 times sweeter than sucrose, respectively. The low potency of the [AsnB7]monellin indicates that ASpB7 participates in binding with the receptor. ASpB7 was then replaced by Abu. [AbuB7]Monellin was devoid of sweetness, and retained the native conformation. ASpB7 is located at the surface of the molecule (Ogata et al.). These results suggest that Asp7 in the B chain is the highly probable active site of monellin.  相似文献   

3.
In an effort to explain the difference in potencies between the two characterized crustacean pigment-dispersing hormones (alpha-PDH; beta-PDH) and to define a role for residue 3 in these octadecapeptide hormones, we have synthesized and purified seven position 3 alpha-PDH analogues ([Ala3], [Ile3], [Asn3], [Gln3], [Asp3], [Glu3], and [Lys3]alpha-PDH). When tested for melanophore pigment-dispersing activity in destalked Uca, [Glu3]alpha-PDH was found to be 325% more potent than alpha-PDH. Reduced potencies were observed for the [Asp3] (58%), [Asn3] (26%), [Gln3] (11%), and [Ala3] (8%) derivatives. Much lower potencies were displayed by the [Lys3] and [Ile3] analogues (0.73% and 0.66%, respectively). These results suggest that the position 3 side chain carboxylate anion of [Glu3]alpha-PDH stabilizes the active receptor-bound conformer through a charge-charge interaction.  相似文献   

4.
The structure of monellin and its relation to the sweetness of the protein.   总被引:1,自引:0,他引:1  
The sweet protein monellin [1-3] has been shown to consist of two non-identical subunits of 50 and 42 amino acid residues, which were separated electrophoretically and chromatographically. Automatic sequential Edman degradation gave the complete sequence of the longer subunit, and a partial sequency of the shorter one. It was found that the sweetness of monellin requires the undissociated molecule. The individual subunits were not sweet, neither did they block the sweet sensation of sucrose or monellin. Blocking of the single SH of monellin abolished its sweetness as did reaction of the single methionyl residue with CNBr. Since the cysteinyl and methionyl residues appear to be adjacent, it is suggested that this part of the molecule is essential for its sweetness.  相似文献   

5.
GnRH I regulates reproduction. A second form, designated GnRH II, selectively binds type II GnRH receptors. Amino acids of the type I GnRH receptor required for binding of GnRH I (Asp2.61(98), Asn2.65(102), and Lys3.32(121)) are conserved in the type II GnRH receptor, but their roles in receptor function are unknown. We have delineated their functions using mutagenesis, signaling and binding assays, immunoblotting, and computational modeling. Mutating Asp2.61(97) to Glu or Ala, Asn2.65(101) to Ala, or Lys3.32(120) to Gln decreased potency of GnRH II-stimulated inositol phosphate production. Consistent with proposed roles in ligand recognition, mutations eliminated measurable binding of GnRH II, whereas expression of mutant receptors was not decreased. In detailed analysis of how these residues affect ligand-dependent signaling, [Trp2]-GnRH I showed lesser decreases in potency than GnRH I at the Asp2.61(97)Glu mutant. In contrast, [Trp2]-GnRH II showed the same loss of potency as GnRH II at this mutant. This suggests that Asp2.61(97) contributes to recognition of His2 of GnRH I, but not of GnRH II. GnRH II showed a large decrease in potency at the Asn2.65(101)Ala mutant compared with analogs lacking the CO group of Gly10NH2. This suggests that Asn2.65(101) recognizes Gly10NH2 of GnRH II. GnRH agonists showed large decreases in potency at the Lys3.32(120)Gln mutant, but antagonist activity was unaffected. This suggests that Lys3.32(120) recognizes agonists, but not antagonists, as in the type I receptor. These data indicate that roles of conserved residues are similar, but not identical, in the type I and II GnRH receptors.  相似文献   

6.
Monellin, a sweet protein, consists of two noncovalently associated polypeptide chains: an A chain of 44 amino acid residues and a B chain of 50 residues. Microbial transglutaminase (MTGase) was used for ligation of the monellin subunits without any protecting groups, and without activation of the Cα‐carboxyl group at the C‐terminus. Since a peptide fragment LLQG is a good substrate for MTGase to form an amide bond between the γ‐amide group of the Gln residue and the ε‐amino group of Lys, a monellin B chain analogue in which LLQG was elongated at the C‐terminus (B‐LLQG) was synthesized by solid‐phase synthesis. The monellin A chain analogue in which KGK was elongated at the N‐terminus (KGK‐A) was synthesized by the same method as that of the B chain analogue. The KGK‐A chain and the B‐LLQG chain were coupled by MTGase to give single‐chain analogue of monellin. The single‐chain analogue of monellin was characterized by analytical reverse phase high performance liquid chromatography, electrospray ionization, and amino acid analyses. All analyses gave satisfactory results. The single‐chain analogue of monellin was more heat stable than natural monellin. © 1999 John Wiley & Sons, Inc. Biopoly 50: 193–200, 1999  相似文献   

7.
In a two-step process, esterification and ammonolysis, Glu-35 and Asp-52 in lysozyme were amidated to glutamine and asparagine residues. Since the side chains of glutamine and asparagine are almost equal in size to those of glutamic acid and aspartic acid, these conversions would provide appropriate derivatives to elucidate the catalytic participations of these residues. The enzymatic activities of the resulting [Gln35]lysozyme and [Asn52]lysozyme were found to be less than 4% of that of native lysozyme in a pH range of 3.4-8.0. As these derivatives were inactive, we could determine the dissociation constants (Ks values) for the binding of beta-1,4-linked n-mer, a hexasaccharide of N-acetyl-D-glucosamine, to [Gln35]lysozyme and [Asn52] lysozyme. The values of Ks at pH 5.5 and 40 degrees C were 1.6 X 10(-5) M for [Gln35]lysozyme and 2.7 X 10(-5) M for [Asn52]lysozyme. These values are similar to that for native lysozyme. The results are direct proof for the involvements of Glu35 and Asp52 in the catalytic action of lysozyme. A method for ammonolysis of ester groups in proteins in liquid ammonia is described and will be useful for amidation of carboxyl groups of proteins.  相似文献   

8.
The X-ray structure of [N-acetyl]-apamin has been solved at 0.95 A resolution. It consists of an 1-7 N-terminal loop stabilized by an Asn-beta-turn motif (2-5 residues) and a helical structure spanning the 9-18 residues tightly linked together by two disulfide bonds. However, neither this accurate X-ray nor the available solution structures allowed us to rationally explain the unusual downfield shifts observed for the Asn(2) and Glu(7) amide signals upon Glu(7) carboxylic group ionization. Thus, apamin and its [N-acetyl], [Glu(7)Gln], [Glu(7)Asp], and [Asn(2)Abu] analogues and submitted to NMR structural studies as a function of pH. We first demonstrated that the Glu(7) carboxylate group is responsible for the large downfield shifts of the Asn(2) and Glu(7) amide signals. Then, molecular dynamics (MD) simulations suggested unexpected interactions between the carboxylate group and the Asn(2) and Glu(7) amide protons as well as the N-terminal alpha-amino group, through subtle conformational changes that do not alter the global fold of apamin. In addition, a structural study of the [Asn(2)Abu] analogue, revealed an essential role of Asn(2) in the beta-turn stability and the cis/trans isomerization of the Ala(5)-Pro(6) amide bond. Interestingly, this proline isomerization was shown to also depend on the ionization state of the Glu(7) carboxyl group. However, neither destabilization of the beta-turn nor proline isomerization drastically altered the helical structure that contains the residues essential for binding. Altogether, the Asn(2) and Glu(7) residues appeared essential for the N-terminal loop conformation and thus for the selective formation of the native disulfide bonds but not for the activity.  相似文献   

9.
The active site amino acids (Glu11 and Asp20) in T4-lysozyme have been mutated to their isosteric residues Gln or Asn and/or acidic residues such as Glu----Asp or Asp----Glu by the oligonucleotide-replacement method. Out of eight mutants so generated the mutant T4-lysozyme obtained from pTLY.Asp11 retains maximum amount of activity (approximately 16%), pTLY.Asn20 the least (0.9%) whereas pTLY.Gln11 lost completely. A systematic study of the active and inactive mutants thus generated supports the important role of Glu11 and Asp20 in T4-lysozyme activity as predicted in earlier studies.  相似文献   

10.
Single-chain monellin (SCM), which is an engineered 94-residue polypeptide, has been characterized as being as sweet as native two-chain monellin. Data from gel-filtration high performance liquid chromatography and NMR has proven that SCM exists as a monomer in aqueous solution. In order to determine the structural origin of the taste of sweetness, we engineered several mutant SCM proteins by mutating Glu(2), Asp(7), and Arg(39) residues, which are responsible for sweetness. In this study, we present the solution structure, backbone dynamics, and stability of mutant SCM proteins using circular dichroism, fluorescence, and NMR spectroscopy. Based on the NMR data, a stable alpha-helix and five-stranded antiparallel beta-sheet were identified for double mutant SCM. Strands beta1 and beta2 are connected by a small bulge, and the disruption of the first beta-strand were observed with SCM(DR) comprising residues of Ile(38)-Cys(41). The dynamical and folding characteristics from circular dichroism, fluorescence, and backbone dynamics studies revealed that both wild type and mutant proteins showed distinct dynamical as well as stability differences, suggesting the important role of mutated residues in the sweet taste of SCM. Our results will provide an insight into the structural origin of sweet taste as well as the mutational effect in the stability of the engineered sweet protein SCM.  相似文献   

11.
胰岛素蛋白质工程:[B9Glu]人胰岛素   总被引:4,自引:2,他引:2  
用基因定位突变方法将胰岛素B链第9位的Ser改为Glu。获得速效胰岛素─—[B9Glu]人胰岛素.它的受体结合能力和体内生物活力分别为猪胰岛素的21%和40%。  相似文献   

12.
X-ray crystallography, although a powerful technique for determining the three-dimensional structure of proteins, poses inherent problems in assigning the primary structure in residues Asp/Asn and Glu/Gln since these cannot be distinguished decisively in the electron density maps. In our recently published X-ray crystal structure of the Sclerotium rolfsii lectin (SRL) at 1.1 A resolution, amino acid sequence was initially deduced from the electron density map and residues Asp/Asn and Glu/Gln were assigned by considering their hydrogen bonding potential within their structural neighborhood. Attempts to verify the sequence by Edman sequencing were not successful as the N terminus of the protein was blocked. Mass spectrometry was applied to verify and resolve the ambiguities in the SRL X-ray crystal structure deduced sequence. From the Matrix assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI TOF-MS) and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis of tryptic and chymotryptic peptides of SRL, we could confirm and correct the sequence at five locations with respect to Asp/Asn and Glu/Gln. Analysis data also confirmed the positions of Leu/Ile, Gln/Lys residues and the sequence covering 118 of the total 141 residues accounting to 83.68% of the earlier deduced sequence of SRL.  相似文献   

13.
The focus of this article is on progress in establishing structure-function relationships through site-directed mutagenesis and direct binding assay of Tl(+), Rb(+), K(+), Na(+), Mg(2+) or free ATP at equilibrium in Na,K-ATPase. Direct binding may identify residues coordinating cations in the E(2)[2K] or E(1)P[3Na] forms of the ping-pong reaction sequence and allow estimates of their contributions to the change of Gibbs free energy of binding. This is required to understand the molecular basis for the pronounced Na/K selectivity at the cytoplasmic and extracellular surfaces. Intramembrane Glu(327) in transmembrane segment M4, Glu(779) in M5, Asp(804) and Asp(808) in M6 are essential for tight binding of K(+) and Na(+). Asn(324) and Glu(327) in M4, Thr(774), Asn(776), and Glu(779) in 771-YTLTSNIPEITP of M5 contribute to Na(+)/K(+) selectivity. Free ATP binding identifies Arg(544) as essential for high affinity binding of ATP or ADP. In the 708-TGDGVND segment, mutations of Asp(710) or Asn(713) do not interfere with free ATP binding. Asp(710) is essential and Asn(713) is important for coordination of Mg(2+) in the E(1)P[3Na] complex, but they do not contribute to Mg(2+) binding in the E(2)P-ouabain complex. Transition to the E(2)P form involves a shift of Mg(2+) coordination away from Asp(710) and Asn(713) and the two residues become more important for hydrolysis of the acyl phosphate bond at Asp(369).  相似文献   

14.
Deuterolysin (EC 3.4.24.39; formerly designated as neutral proteinase II) from Aspergillus oryzae, which contains 1 g atom of zinc/mol of enzyme, is a single chain of 177 amino acid residues, includes three disulfide bonds, and has a molecular mass of 19,018 Da. Active-site determination of the recombinant enzyme expressed in Escherichia coli was performed by site-directed mutagenesis. Substitutions of His(128) and His(132) with Arg, of Glu(129) with Gln or Asp, of Asp(143) with Asn or Glu, of Asp(164) with Asn, and of Tyr(106) with Phe resulted in almost complete loss of the activity of the mutant enzymes. It can be concluded that His(128), His(132), and Asp(164) provide the Zn(2+) ligands of the enzyme according to a (65)Zn binding assay. Based on site-directed mutagenesis experiments, it was demonstrated that the three essential amino acid residues Glu(129), Asp(143), and Tyr(106) are catalytically crucial residues in the enzyme. Glu(129) may be implicated in a central role in the catalytic function. We conclude that deuterolysin is a member of a family of Zn(2+) metalloendopeptidases with a new zinc-binding motif, aspzincin, defined by the "HEXXH + D" motif and an aspartic acid as the third zinc ligand.  相似文献   

15.
A series of analogues of neurokinin A(4-10) was synthesized using solid phase techniques with Chiron pins, and purified by HPLC. The potencies of 10 peptides with substitution at Ser5 were assessed at rat fundus NK2 receptors. In membrane binding studies with [125I]-[Lys5,Tyr(I2)7,MeLeu9,Nle10]-NKA(4-10), all compounds except [Asp5]NKA(4-10) showed reasonable affinity, and analogues with Lys and Arg substitutions were five-fold more potent than NKA(4-10). In functional studies, all peptides were able to contract the rat isolated fundus strips. Analogues with Phe, His and Asn substitutions were substantially weaker in functional than in binding studies, whereas there was an excellent correlation (r = 0.95) between binding and functional potency for the remaining seven peptides. [Phe5]NKA(4-10) is in fact neurokinin B(4-10) and this residue may be critical in determining selectivity between NK2 and NK3 receptors. Analogues with a basic residue (Lys, Arg) at position 5 showed both increased affinity and functional potency, whereas the neutral [Asn5]NKA(4-10) was equally as weak in contractile studies as the acidic [Asp5]NKA(4-10). However, [Glu5]NKA(4-10) and [Gln5]NKA(4-10) were no different from NKA(4-10). Our results could indicate the presence of a negative charge on the NK2 receptor, close to position 5 of NKA. This would facilitate interaction with positively charged side chains and impede interaction with negatively charged side chains, particularly the inflexible side chain of aspartic acid. Thus, not only the charge, but also the length of the side chain of the residue at position 5, seems to be important for interaction with the rat NK2 receptor.  相似文献   

16.
Conformational transitions of monellin, an intensely sweet protein from the berries of Dioscoreophyllum cumminsii, were studied by the circular dichroism (CD) probe. According to the CD spectra, monellin has a low content of the helical structure and a significant amount of the pleated sheet (beta) conformation. The native conformation was found to be sensitive to alkali, sodium dodecyl sulfate, and guanidine-HC1, but it was stable in acid (e.g. pH 2.4) as shown by CD and persistence or the disappearance of sweet taste. The main chain conformation of the alkali-denatured monellin (pH 10.9) was restored upon acidification (pH 3.3) of the alkaline solutions. The tertiary structure, however, was not completely restroed, as indicated by CD in the 230-300 nm spectral zone, although the sweet taste reappeared. If the pH of a neutral solution was raised to 9.6, the CD in the near ultraviolet was significantly altered, though the sweet taste persisted. This indicates that a slight conformational change did not interfere with the effects on the taste buds. While sodium dodecyl sulfate readily disorganized the tertiary structure, the main chain was reconstructed by this reagent into a new form of higher helix content than in the native macromolecule. Reconstruction into a modified conformation of higher helix content was achieved also with 50% ethanol. The main chain conformation was not affected by 25% ethanol which produced slight changes in the CD at 230-260 nm zone and did not abolish the sweet taste.  相似文献   

17.
The structure of aconitase   总被引:15,自引:0,他引:15  
A H Robbins  C D Stout 《Proteins》1989,5(4):289-312
The crystal structure of the 80,000 Da Fe-S enzyme aconitase has been solved and refined at 2.1 A resolution. The protein contains four domains; the first three from the N-terminus are closely associated around the [3Fe-4S] cluster with all three cysteine ligands to the cluster being provided by the third domain. Association of the larger C-terminal domain with the first three domains creates an extensive cleft leading to the Fe-S cluster. Residues from all four domains contribute to the active site region, which is defined by the Fe-S cluster and a bound SO4(2-) ion. This region of the structure contains 4 Arg, 3 His, 3 Ser, 2 Asp, 1 Glu, 3 Asn, and 1 Gln residues, as well as several bound water molecules. Three of these side chains reside on a three-turn 3(10) helix in the first domain. The SO4(2-) ion is bound 9.3 A from the center of the [3Fe-4S] cluster by the side chains of 2 Arg and 1 Gln residues. Each of 3 His side chains in the putative active site is paired with Asp or Glu side chains.  相似文献   

18.
Mutational analyses of the secreted recombinant insulin receptor extracellular domain have identified a ligand binding site composed of residues located in the L1 domain (amino acids 1-470) and at the C terminus of the alpha subunit (amino acids 705-715). To evaluate the physiological significance of this ligand binding site, we have transiently expressed cDNAs encoding full-length receptors with alanine mutations of the residues forming the functional epitopes of this binding site and determined their insulin binding properties. Insulin bound to wild-type receptors with complex kinetics, which were fitted to a two-component sequential model; the Kd of the high affinity component was 0.03 nM and that of the low affinity component was 0.4 nM. Mutations of Arg14, Phe64, Phe705, Glu706, Tyr708, Asn711, and Val715 inactivated the receptor. Alanine mutation of Asn15 resulted in a 20-fold decrease in affinity, whereas mutations of Asp12, Gln34, Leu36, Leu37, Leu87, Phe89, Tyr91, Lys121, Leu709, and Phe714 all resulted in 4-10-fold decreases. When the effects of the mutations were compared with those of the same mutations of the secreted recombinant receptor, significant differences were observed for Asn15, Leu37, Asp707, Leu709, Tyr708, Asn711, Phe714, and Val715, suggesting that the molecular basis for the interaction of each form of the receptor with insulin differs. We also examined the effects of alanine mutations of Asn15, Gln34, and Phe89 on insulin-induced receptor autophosphorylation. They had no effect on the maximal response to insulin but produced an increase in the EC50 commensurate with their effect on the affinity of the receptor for insulin.  相似文献   

19.
The gastric H,K-ATPase is inhibited selectively and K(+)-competitively from its luminal surface by protonated imidazo[1,2alpha]pyridines (e.g., SCH28080). Identification of the amino acids in the membrane domain that affect SCH28080 inhibition should provide a template for modeling a luminally directed vestibule in this enzyme, based on the crystal structure of the sr Ca-ATPase. Five conserved carboxylic residues, Glu343, Glu795, Glu820, Asp824, Glu936, and unique Lys791 in the H,K-ATPase were mutated, and the effects of mutations on the K(i) for SCH28080, V(max), and K(m,app)[NH(4)(+)] were measured. A kinetic analysis of the ATP hydrolysis data indicated that all of these residues significantly affect the interaction of NH(4)(+) ions with the protein but only three of them, Glu795, Glu936, and Lys791, greatly affected SCH28080 inhibition. A Glu795Asp mutation increased the K(i) from 64 +/- 11 to 700 +/- 110 nM. Since, however, the mutation Glu795Gln did not change the K(i) (86 +/- 31 nM), this site has a significant spatial effect on inhibitor kinetics. A Glu936Asp mutation resulted in noncompetitive kinetics while Gln substitution had no effect either on inhibitor affinity or on the nature of the kinetics, suggesting that the length of the Glu936 side chain is critical for the exclusive binding of the ion and SCH28080. Mutation of Lys791 to Ser, the residue present in the SCH28080-insensitive Na,K-ATPase, resulted in a 20-fold decrease in SCH28080 affinity, suggesting an important role of this residue in SCH28080 selectivity of the H,K-ATPase versus Na,K-ATPase. Mutations of Asp824, Glu343, and Glu820 increased the K(i) 2-3-fold, implying a relatively minor role for these residues in SCH28080 inhibition. It appears that the imidazopyridine moiety of SCH28080 in the protonated state interacts with residues near the negatively charged residues of the empty ion site from the luminal side (TM4, -5, -6, and -8) while the hydrophobic phenyl ring interacts with TM1 or TM2 (the latter conclusion based on previous data from photoaffinity labeling). The integrity of the SCH28080 binding site depends on the presence of Lys791, Glu936, and Glu795 in H,K-ATPase. A computer-generated model of this region illustrates the possible involvement of the residues previously shown to affect SCH28080 inhibition (Cys813, Ile816, Thr823, Met334, Val337) and may predict other residues that line the SCH28080 binding vestibule in the E(2) conformation of the pump.  相似文献   

20.
Asp187 and Gln190 were predicted as conserved and closely located at the Na(+) binding site in a topology and homology model structure of Na(+)/proline symporter (PutP) of Escherichia coli. The replacement of Asp187 with Ala or Leu did not affect proline transport activity; whereas, change to Gln abolished the active transport. The binding affinity for Na(+) or proline of these mutants was similar to that of wild-type (WT) PutP. This result indicates Asp187 to be responsible for active transport of proline without affecting the binding. Replacement of Gln190 with Ala, Asn, Asp, Leu and Glu had no effect on transport or binding, suggesting that it may not have a role in the transport. However, in the negative D187Q mutant, a second mutation, of Gln190 to Glu or Leu, restored 46 or 7% of the transport activity of WT, respectively, while mutation to Ala, Asn or Asp had no effect. Thus, side chain at position 190 has a crucial role in suppressing the functional defect of the D187Q mutant. We conclude that Asp187 is responsible for transport activity instead of coupling-ion binding by constituting the translocation pathway of the ion and Gln190 provides a suppressing mutation site to regain PutP functional activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号