首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the alkane yeast Saccharomycopsis lipolytica (formerly: Candida lipolytica) the variability in the ascospore number is caused by the absence of a correlation between the meiotic divisions and spore wall formation. In four spored yeasts, after meiosis II, a spore wall is formed around each of the four nuclei produced by meiosis II. However, in the most frequently occurring two spored asci of S. lipolytica, the two nuclei are already enveloped by the spore wall after meiosis I due to a delay of meiosis II. This division takes place within the spore during the maturation of the ascus. In this case germination of the binucleate ascospore is not preceded by a mitosis. It follows that the cells of the new haploid clones are mononucleate. In the three spored asci, which occur rarely, only one nucleus is surrounded by a spore wall after meiosis I; the other nucleus undergoes meosis II before the onset of spore wall formation. The result is one binucleate and two mononucleate spores. In the one spored asci the two meiotic divisions occur within the young ascospore, i.e. spore wall formation starts immediately after development of the ascus. These cytological observations were substantiated by genetic data, which in addition confirmed the prediction that binucleate spores may be heterokaryotic. This occurs when there is a postreduction of at least one of the genes by which the parents of the cross differ. This also explains the high frequency of prototrophs in the progeny on non-allelic auxotrophs since random spore isolates are made without distinguishing between mono-and binucleate spores. The possibility of analysing offspring of binucleate spores by tetrad analysis is discussed. These findings enable us to understand the life cycle of S. lipolytica in detail and we are now in a position to start concerted breeding for strain improvement especially with respect to single cell protein production.  相似文献   

2.
In a preceding paper (Briza, P., Winkler, G., Kalchhauser, H., and Breitenbach, M. (1986) J. Biol. Chem. 261, 4288-4294), we reported the presence of dityrosine in the outer layers of yeast ascospore walls. Both outer layers seen in electron micrographs of yeast ascospore walls are sporulation-specific. Here we show that the second of these two outer layers consists of chitosan. In intact spores, it is shielded from staining with primulin by the outermost layer. However, in purified spore walls, the second layer is brightly stained by primulin, and hydrolysates of such preparations contain about 10% glucosamine relative to spore wall dry weight. The spore wall material staining with primulin is resistant to chitinase, but readily degraded by treatment with HNO2. Acetylation prior to HNO2 treatment completely prevents its degradation. A partial acid hydrolysate of spore walls contains predominantly soluble poly-beta-(1,4)-glucosamine as determined by 13C NMR spectroscopy. By these criteria, the glucosamine polymer of yeast ascospore walls is chitosan. As spore walls treated with alkali lack the inner layers but contain chitosan and as chitosan is not exposed at the surface of the spore, we conclude that it is localized in the second outer layer of the spore wall.  相似文献   

3.
R. Campbell 《Protoplasma》1973,78(1-2):69-80
Summary The croziers were formed from large multinucleate cells at the base of the hysterothecium. The diploid ascus had basal and apical vacuoles and there was prominant endoplasmic reticulum near the extending tip of the ascus. The spore delimiting membranes were continuous with the plasmalemma and possibly arose from it. The spore walls were formed between the two membranes. The ascus had a simple apical ring around a thinner region of the wall which became the pore through which the spores were released. Just before spore release the outer layer of the ascospore wall became vesiculated and eventually mucilagenous. The long clavate ascospores were released one at a time, stretching the neck of the ascus as they emerged.  相似文献   

4.
The yeast ascospore wall consists of four morphologically distinct layers. The hydrophobic surface layers are biogenically derived from the prospore wall and appear dark after OsO4 staining. They seem to be responsible for the stability of the spores against attack by lytic enzymes. By amino acid analysis of acid hydrolysates of ascospore walls, two new peaks were detected, which were shown to be the racemic and meso form, respectively, of dityrosine. The identity of this hitherto unknown component of the yeast ascospore wall with standard dityrosine was proven by 1H NMR and by mass spectrometry. A 13C NMR spectroscopic investigation of the structure of dityrosine confirmed that, in natural dityrosine, the biphenyl linkage is located ortho, ortho to the hydroxyl groups. Following digestion of the inner layers of isolated ascospore walls it was shown that dityrosine is very probably located only in the surface layers. The same conclusion was reached independently by an investigation of spores of a strain homozygous for the mutation gcn1, which lack the outermost layers of the spore wall and were practically devoid of dityrosine. In sporulating yeast, L-tyrosine was readily incorporated into the dityrosine of the ascospore wall. Control experiments involving vegetative a/alpha cells and nonsporulating alpha/alpha cells under sporulation conditions showed that dityrosine is indeed sporulation-specific.  相似文献   

5.
Summary Observations of ascospore fromation in KMnO4-fixed Saccobolus kerverni apothecia with the electron microscope reveal the following sequence. Ascus formation is preceded by the development of croziers whose fine structure differs little from that of vegetative hyphae. Following fusion of the two nuclei in the ascus mother cell, the resultant ascus elongates, and two large vacuoles appear, first below and later above the fusion nucleus. These vacuoles soon occupy dominant positions at the tip and bottom of the ascus and assume a flocculent appearance. Nuclear blebbing occurs during meiosis, mitosis, and the subsequent spore delimitation process in the central cytoplasmic portion of the ascus. Each spore initial is surrounded by two membranes, the plasma and investing membranes, between which the spore wall is deposited in two layers, an inner primary wall and an outer secondary wall. Following primary wall deposition the spores clump; secondary wall deposition begins outside the primary wall at the places where the spores are contiguous. Interdigitation of these walls and disappearance of the investing membranes in the sutures lead to the envelopment of all eight ascospores in a common secondary wall. A flocculent material in the epiplasmic vacuoles aggregates around the mature spore balls.Based on a portion of a dissertation presented to the Faculty of the Graduate School of the University of Texas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

6.
In nature, yeasts are subject to predation by flies of the genus Drosophila. In response to nutritional starvation Saccharomyces cerevisiae differentiates into a dormant cell type, termed a spore, which is resistant to many types of environmental stress. The stress resistance of the spore is due primarily to a spore wall that is more elaborate than the vegetative cell wall. We report here that S. cerevisiae spores survive passage through the gut of Drosophila melanogaster. Constituents of the spore wall that distinguish it from the vegetative cell wall are necessary for this resistance. Ascospores of the distantly related yeast Schizosaccharomyces pombe also display resistance to digestion by D. melanogaster. These results suggest that the primary function of the yeast ascospore is as a cell type specialized for dispersion by insect vectors.  相似文献   

7.
The authors carried out electron microscopy of the thin sections of Cl. perfringens, type B (strain No. 89). Material of middle electron density was revealed on the cell wall surface from the first hours of the culture growing; the cytoplasm displayed both rod-like incorporations with transverse striations, and phage particles. Different spore formation disturbances were revealed in the strain under study. In the majority of cells spore formation was blocked at the III--V stage. Besides, there were pseudospores, whereas mature spores were rarely encountered, and even those which did occur, were at the stage of growing.  相似文献   

8.
Acaulospora alpina sp. nov. forms small (65-85 microm diam), dark yellow to orange-brown spores laterally on the neck of hyaline to subhyaline sporiferous saccules. The spores have a three-layered outer spore wall, a bi-layered middle wall and a three-layered inner wall. The surface of the second layer of the outer spore wall is ornamented, having regular, circular pits (1.5-2 microm diam) that are as deep as wide and truncated conical. A "beaded" wall layer as found in most other Acaulospora spp. is lacking. The spore morphology of A. alpina resembles that of A. paulinae but can be differentiated easily by the unique ornamentation with the characteristic pits and by the spore color. A key is presented summarizing the morphological differences among Acaulospora species with an ornamented outer spore wall. Partial DNA sequences of the ITS1, 5.8S subunit and ITS2 regions of ribosomal DNA show that A. alpina and A. paulinae are not closely related. Acaulospora lacunosa, which has similar color but has generally bigger spores, also has distinct rDNA sequences. Acaulospora alpina is a characteristic member of the arbuscular mycorrhizal fungal communities in soils with pH 3.5-6.5 in grasslands of the Swiss Alps at altitudes between 1800 and 2700 m above sea level. It is less frequent at 1300-1800 m above sea level, and it so far has not been found in the Alps below 1300 m or in the lowlands of Switzerland.  相似文献   

9.
10.
Electron Microscopy of Ascus Development in Ascobolus   总被引:2,自引:0,他引:2  
OSO  B. A. 《Annals of botany》1969,33(1):205-209
In Ascobolus viridulus Phill. and Plow. during ascospore developmenta double membrane first appears near the periphery of the ascusbut within the plasmalemma. It is apparently formed by coalescenceof vesicles budded from the nucleus. This double membrane isfirst a cap which then extends downwards as a tube enclosingall eight nuclei, later invaginating between adjacent nucleito delimit the spores. The complex wall of the mature sporedevelops between the two layers of the delimiting membrane ofthe young spore.  相似文献   

11.
Liu J  Tang X  Wang H  Balasubramanian M 《FEBS letters》2000,478(1-2):105-108
Previously we have reported that Drc1p/Cps1p, a 1,3-beta-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe. In this report, we present evidence that S. pombe Bgs2p, a 1,3-beta-glucan synthase that shows 56% identity to Drc1p/Cps1p, is essential for maturation of ascospore wall in S. pombe, but is not required for vegetative growth. Diploid cells homozygous for the bgs2-null mutation, as well as homothallic bgs2-null mutant haploids undergo meiosis normally. However, a 1, 3-beta-glucan containing spore wall is not assembled in these cells. The spores resulting from meiosis of a bgs2-null mutant lyse upon release from the ascus and are therefore inviable. Using a green fluorescent protein-tagged Bgs2p, we demonstrate that Bgs2p is localized at the periphery of the ascospores during meiosis and sporulation. However, Bgs2p is not detected in vegetative cells. We conclude that Bgs2p is required for 1,3-beta-glucan synthesis during ascospore wall maturation.  相似文献   

12.
采用透射电镜和细胞化学技术对红盖鳞毛蕨(Dryopteris erythrosora(Eaton)O.Ktze.)的孢子发育过程进行了研究,根据超微结构和细胞化学特征可将其孢子发育过程分为3个阶段:(1)孢子母细胞及其减数分裂阶段:孢子母细胞壳在孢原细胞末期开始形成,位于孢子母细胞及其减数分裂形成的四分体外侧,PAS反应显示其为多糖性质,与胼胝质壁为同功结构;在减数分裂形成的四分孢子之间产生孢子外壳,从功能、形成位置和时间上看与胼胝质壁相似,但苏丹黑B反应显示其可能含有脂类物质,与孢子母细胞壳和胼胝质壁不同。(2)孢子外壁形成阶段:外壁为乌毛蕨型(Blechnoidal-type),由薄的多糖性质的外壁内层和表面平滑的孢粉素外壁外层构成;小球参与外壁外层的形成,组织化学分析显示小球的中央区域和外壁外层内侧部分由红色(多糖)变为黄色,小球的表面区域和外壁外层部分始终被染成黑色(脂类),可知小球与外壁同步发育。(3)孢子周壁形成阶段:周壁为凹陷型(Cavate-type),包括2层,内层薄,紧贴外壁,外层隆起形成孢子脊状褶皱纹饰的轮廓,以少见的向心方向发育;苏丹黑B和PAS反应观察周壁被染成橙色,推测其可能由多糖等成分构成;孢子囊壁细胞参与周壁的形成。本研究为揭示蕨类植物孢子发生的细胞学机制提供了新资料。  相似文献   

13.
Summary Light in the blue and green bands of the spectrum inhibited ascospore formation in both Saccharomyces cerevisiae and S. carlsbergensis. Ascospores which were produced failed to stain with malachite green and mature spores formed in the dark lost their staining ability when exposed to light in these bands. It is thought that this is due to an alteration brought about in the molecular organization of the spore wall, so that the damaged walls become permeable to molecules of considerably greater size. Red light was without effect on S. cerevisiae, but stimulated sporulation in S. carlsbergensis. This response seemed to be strictly under the control of the yeast cell, and of a totally different nature from the injurious character of shorter wave lengths.  相似文献   

14.
The sequence of wall formation in spores of Fissidens limbatus Sullivant is as follows: The exine is formed around the protoplasts after the sporocyte has undergone meiosis. The fully enlarged spores then become coated by the perine; this is followed by intine formation. The source of the intine and exine appears to be from within the spore, but the perine is of an apparent exogenous origin. Ornamentation of the spore is due solely to deposition of the perine. Each spore originally has a single plastid. Plastids increase in number by fission, resulting in mature spores with numerous plastids with well differentiated lamellae.  相似文献   

15.
ABSTRACT. Urosporidium cannoni n. sp. was found in most tissues of a polyclad turbellarian associated with commercial oyster farms from eastern Moreton Bay, Australia. Mature spores had 11 to 13 episporal tails at irregular intervals around the spore wall. The spherule, prominent in development, dispersed as the spores matured. Spores were found within cysts that contained up to a few hundred spores at the same stage of development. Mature cysts occurred in groups and their masses of dark, golden spores resulted in black patches on the otherwise red-brown turbellarian. The infection may have commercial importance.  相似文献   

16.
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a member of the molecular chaperone HSP90 (90-kDa heat shock protein) family. We have previously demonstrated that Dictyostelium discoideum TRAP1 (Dd-TRAP1) synthesized at the vegetative growth phase is retained during the whole course of D. discoideum development, and that at the multicellular slug stage, it is located in prespore-specific vacuoles (PSVs) of prespore cells as well as in the cell membrane and mitochondria. Thereupon, we examined the function of Dd-TRAP1 in prepore and spore differentiation, using Dd-TRAP1-knockdown cells (TRAP1-RNAi cells) produced by the RNA interference method. As was expected, Dd-TRAP1 contained in the PSV was found to be exocytosed during sporulation to constitute the outer-most layer of the spore cell wall. In the TRAP1-RNAi cells, PSV formation and therefore prespore differentiation were significantly impaired, particularly under a heat stress condition. Although the TRAP1-RNAi cells formed apparently normal-shaped spores with a cellulosic wall, the spores were less resistant to heat and detergent treatments, as compared with those of parental MB35 cells derived from Ax-2 cells. These findings strongly suggest that Dd-TRAP1 may be closely involved in late development including spore differentiation, as well as in early development as realized by its induction of prestarvation response.  相似文献   

17.
In the Ascomycete fungus Aspergillus nidulans, the ratio of conidia (asexual spores) to ascospores (sexual spores) is affected by linoleic acid moieties including endogenous sporogenic factors called psi factors. Deletion of odeA (Delta odeA), encoding a Delta-12 desaturase that converts oleic acid to linoleic acid, resulted in a strain depleted of polyunsaturated fatty acids (18:2 and 18:3) but increased in oleic acid (18:1) and total percent fatty acid content. Linoleic acid-derived psi factors were absent in this strain but oleic acid-derived psi factors were increased relative to wild type. The Delta odeA strain was reduced in conidial production and mycelial growth; these effects were most noticeable when cultures were grown at 26 degrees C in the dark. Under these environmental conditions, the Delta odeA strain was delayed in ascospore production but produced more ascospores than wild type over time. This suggests a role for oleic acid-derived psi factors in affecting the asexual to sexual spore ratio in A. nidulans. Fatty acid composition and spore development were also affected by veA, a gene previously shown to control light driven conidial and ascospore development. Taken together our results indicate an interaction between veA and odeA alleles for fatty acid metabolism and spore development in A. nidulans.  相似文献   

18.
During spore germination in the fern, Onoclea sensibilis L., the nucleus moves from a central position to one end, and an asymmetrical cell division partitions the spore into two cells of greatly unequal size. The smaller cell differentiates directly into a rhizoid, whereas the larger cell and its derivatives give rise to the prothallus. In the presence of 5 mM caffeine, the nuclei of most of the spores undergo mitotic replication, whereas cell wall formation is blocked. Multinucleate single cells are produced, which are capable of growth, but no rhizoid differentiation occurs. In some cases a partial cell wall is produced, but the nucleus moves through the discontinuity back to the center of the spore, and the enucleate, incompletely partitioned small “cell” fails to differentiate into a rhizoid. In less than 1% of the spores a broad protuberance, whose wall is yellow-brown, is formed in a multinucleate single cell. The color, staining reaction to ruthenium red, and ultrastructural appearance of the protuberance resemble that of the rhizoid wall. It appears that infrequently in the caffeine-treated spores, a feature which is characteristic of rhizoids is expressed, in the absence of asymmetric cell division, in a cell which otherwise is unable to produce a rhizoid. The results are interpreted to mean that the spore has a highly localized, persistent differentiated region. For rhizoid differentiation to occur, a nucleus must be confined in that region – a confinement which normally is accomplished by the geometrically asymmetric first cell division of germination.  相似文献   

19.
Summary The mature spore possesses a thick spore coat and a particle-bearing spore membrane. The highly laminated polaroplast membranes are located at the anterior pole of the spore. Close to its base, the polar filament is surrounded by the polaroplast membrane. The polar filament runs spirally towards the posterior pole of the spore. A large portion of the polar filament is arranged in two layers. A similar arrangement was also observed in immature spores and in the sporoblast stage, although it was not so orderly arranged in the latter. The developing polaroplast membrane was observed in the immature spore, but not in the sporoblast. The sporoblast wall is much thinner than the spore coat, but has the same texture. Endoplasmic reticulum is the most prominent cytoplasmic organelle in the developing stages of Nosema apis. Porous nuclear envelopes are also observed in developing stages. The role of the endoplasmic reticulum in the formation of the polar filament, polaroplast and spore coat, and the function of the spore membrane, are discussed.  相似文献   

20.
Morishita M  Engebrecht J 《Genetics》2005,170(4):1561-1574
During sporulation in Saccharomyces cerevisiae, vesicles transported to the vicinity of spindle pole bodies are fused to each other to generate bilayered prospore membranes (PSMs). PSMs encapsulate the haploid nuclei that arise from the meiotic divisions and serve as platforms for spore wall deposition. Membrane trafficking plays an important role in supplying vesicles for these processes. The endocytosis-deficient mutant, end3Delta, sporulated poorly and the spores produced lost resistance to ether vapor, suggesting that END3-mediated endocytosis is important for sporulation. End3p-GFP localized to cell and spore peripheries in vegetative and sporulating cells and colocalized with actin structures. Correspondingly, the actin cytoskeleton appeared aberrant during sporulation in end3Delta. Analysis of meiosis in end3Delta mutants revealed that the meiotic divisions occurred with wild-type kinetics. Furthermore, PSMs were assembled normally. However, the levels of proteins required for spore wall synthesis and components of the spore wall layers at spores were reduced, indicating that end3Delta mutants are defective in spore wall synthesis. Thus, END3-mediated endocytosis is important for spore wall formation. Additionally, cytological analyses suggest that trafficking between the plasma membrane and PSMs is important earlier during sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号