首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of various biological tissues have shown that residual strains are important for tissue function. Since a force balance exists in whole wall thickness specimens cut radially, it is evident that layer separation is an important procedure in the understanding of the meaning of residual stresses and strains. The present study investigated the zero-stress state and residual strain distribution in a three-layer model of the pig oesophagus. The middle part of the oesophagus was obtained from six slaughterhouse pigs. Four 3-mm-wide rings were serially cut from each oesophagus. Two of them were used for separating the wall into mucosa-submucosa, inner and outer muscle layers. The remaining two rings were kept as intact rings. The inner and outer circumferences and wall thickness of different layers in intact and separated rings were measured from the digital images in the no-load state and zero-stress state. The opening angle was measured and the residual strain at the inner and outer surface of different layers and the intact wall were computed. Compared with intact sectors (62.8+/-9.8 degrees ), the opening angles were smaller in the inner muscle sectors (37.2+/-11.4 degrees , P<0.01), whereas the opening angles of mucosa-submucosa (63.9+/-6.8 degrees ) and outer muscle sectors (63.9+/-6.8 degrees ) did not differ (P>0.1). Referenced to the zero-stress state of the intact sectors, the inner and outer residual strains of the intact rings was -0.128+/-0.043 and outer residual strain was 0.308+/-0.032. Referenced to the "true" zero-stress state of separated three-layered sectors, the inner residual strain of intact rings were -0.223+/-0.021 (P<0.01) and 0.071+/-0.022 (P<0.01). Referenced to the "true" zero-stress state, the residual strain distribution of different layers in intact rings was shown that the inner surface residual strain was negative at mucosa-submucosa and inner muscle layers and was positive at outer muscle layer, whereas the outer surface residual strain was negative at the mucosa-submucosa layer and positive at the inner and outer muscle layers. For the separated different layered rings, the inner residual strain was negative and outer residual strain was positive; however, the absolute values did not differ (P>0.1). In conclusion, it is possible to microsurgically separate the oesophagus into three layers, i.e., mucosa-submucosa, inner muscle and outer muscle layers, the residual strain differ between the layers, and the residual strain distribution was more uniform after the layers were separated.  相似文献   

2.
Gregersen H  Zhao J  Lu X  Zhou J  Falk E 《Biorheology》2007,44(2):75-89
Atherosclerosis is the most frequent cause of death and severe chronic disability in North America and Europe. The atherosclerosis-prone apolipoprotein E (apoE)-deficient mice contain the entire spectrum of lesions observed during atherogenesis. Significant remodelling of the artery occurs in atherosclerosis. The aim was to study the remodelling of the zero-stress state of the aorta in apoE-deficient mice up to 56 weeks of age. Normal wild-type mice served as control groups. The mice were euthanised at ages 10, 28 and 56 weeks and tissue rings where excised from several locations along the aorta. The rings where photographed in the no-load state (without any external forces applied), then cut radially to obtain the zero-stress state and photographed again. The cross-sectional wall area and wall thickness increased over time in apoE-deficient mice compared to controls (P<0.001). The residual strains at the inner and outer surface varied as function of aortic location both in controls and apoE-deficient mice (P<0.001). From age 28 to age 56 weeks a gradual increase in positive strain at the outer surface and negative strain at the inner surface was found in the apoE-deficient mice when compared to age-matched control mice (P<0.001). Furthermore, the inner residual strain in the plaque location was significantly smaller than in the non-plaque location in the rings with atherosclerotic plaques (P<0.001). The change over time of the opening angle was especially pronounced in the aortic arch. The opening angle increased to app. 200 degrees in the aortic arch in apoE-deficient mice at 56 weeks of age whereas it in age-matched controls was app. 125 degrees. Correspondingly, atherosclerotic plaques were prominent in the apoE-deficient mice, especially at week 56 in the ascending aorta and the aortic arch. In conclusion, a pronounced remodelling of the biomechanical properties in aorta was found in apoE-deficient mice. The stress gradient across the vessel wall in the plaque region is likely larger in vivo due to the smaller residual strain in the plaque area.  相似文献   

3.
Information on the layer-specific residual deformations of aortic tissue and how these vary throughout the vessel is important for understanding the regionally-varying aortic functions and pathophysiology, but not so much can be found in the literature. Toward this end, porcine aortas were sectioned into eighteen rings, with one ring from each anatomical position radially cut to obtain the zero-stress state for the intact wall and the other ring dissected into intimal-medial and adventitial layers; these rings were then radially cut to reach the zero-stress state for the intima-media and adventitia. Peripheral variations in internal/external circumferences, thickness, and opening angle of the intact wall and its layers were measured through image analysis at the no-load and zero-stress states. Intact wall and layer circumferences at both states significantly declined along the aorta, as did intact wall and intimal-medial but not adventitial thickness. Adventitia exhibited the greatest opening angles, approaching 180 deg all over the aorta. The opening angles of the intima-media and intact wall were quite similar, with the highest values in the ascending aorta, the lowest at the diaphragm, and increasing subsequently. Bending-related residual stretches were released by radial cutting that were compressive internally and tensile externally, displaying distinct axial variation for the intima-media and intact wall, and non-significant variation for the adventitia. Evidence is provided for the release upon layer separation of compressive stretches in the intima-media and of tensile stretches in the adventitia, whose values were smallest in the descending thoracic aorta and highest near the iliac artery bifurcation.  相似文献   

4.
The zero-stress state of a blood vessel has been extensively studied because it is the reference state for which all calculations of intramural stress and strain must be based. It has also been found to reflect nonuniformity in growth and remodeling in response to chemical or physical changes. The zero-stress state can be characterized by an opening angle, defined as the angle subtended by two radii connecting the midpoint of the inner wall. All prior studies documented the zero-stress state or opening angle with no regard to duration of the no-load state. Our hypotheses were that, given the viscoelastic properties of blood vessels, the zero-stress state may have "memory" of prior circumferential and axial loading, i.e., duration of the no-load state influences opening angle. To test these hypotheses, we considered ring pairs of porcine coronary arteries to examine the effect of duration in the no-load state after circumferential distension. Our results show a significant reduction in opening angle as duration of the no-load state increases, i.e., vessels that are reduced to the zero-stress state directly from the loaded state attain much larger opening angles at 30 min after the radial cut than rings that are in the no-load state for various durations. To examine the effect of axial loading, we found similar reductions in opening angle with duration in the no-load from the in situ state, albeit the effect was significantly smaller than that of circumferential loading. Hence, we found that the zero-stress state has memory of both circumferential and axial loading. These results are important for understanding viscoelastic properties of coronary arteries, interpretation of the enormous data on the opening angle and strain in the literature, and standardization of future measurements on the zero-stress state.  相似文献   

5.
Intestinal stress-strain distributions are important determinants of intestinal function and are determined by the mechanical properties of the intestinal wall, the physiological loading conditions and the zero-stress state of the intestine. In this study the distribution of morphometric measures, residual circumferential strains and stress-strain relationships along the rat large intestine were determined in vitro. Segments from four parts of the large intestine were excised, closed at both ends, and inflated with pressures up to 2kPa. The outer diameter and length were measured. The zero-stress state was obtained by cutting rings of large intestine radially. The geometric configuration at the zero-stress state is of fundamental importance because it is the basic state with respect to which the physical stresses and strains are defined. The outer and inner circumferences, wall thickness and opening angle were measured from digitised images. Subsequently, residual strain and stress-strain distributions were calculated. The wall thickness and wall thickness-to-circumference ratio increased in the distal direction. The opening angle varied between approximately 40 and approximately 125 degrees with the highest values in the beginning of proximal colon (F=1.739, P<0.05). The residual strain at the inner surface was negative indicating that the mucosa-submucosal layers of the large intestine in no-load state are in compression. The four segments showed stress-strain distributions that were exponential. All segments were stiffer in longitudinal direction than in the circumferential direction (P<0.05). The transverse colon seemed stiffest both in the circumferential and longitudinal directions. In conclusion, significant variations were found in morphometric and biomechanical properties along the large intestine. The circumferential residual strains and passive elastic properties must be taken into account in studies of physiological problems in which the stress and strain are important, e.g. large intestinal bolus transport function.  相似文献   

6.
Strain distribution in the layered wall of the esophagus.   总被引:10,自引:0,他引:10  
The function of the esophagus is to move food by peristaltic motion, which is the result of the interaction of the tissue forces in the esophageal wall and the hydrodynamic forces in the food bolus. To understand the tissue forces in the esophagus, it is necessary to know the zero-stress state of the esophagus, and the stress-strain relationships of the tissues. This article is addressed to the first topic: the representation of zero-stress state of the esophagus by the states of zero stress-resultant and zero bending moment of the mucosa-submucosa and the muscle layers. It is shown that at the states of zero stress-resultant and zero bending moment, these two layers are not tubes of smaller radii but are open sectors whose shapes are approximately cylindrical and more or less circular. When the sectors are approximated by circular sectors, we measured their radii, opening angles, and average thickness around the circumference. Data on the radii, thickness-to-radius ratios, and the opening angles of these sectors are presented. Knowing the zero-stress state of these two layers, we can compute the strain distribution in the wall at any in vivo state, as well as the residual strain in the esophageal wall at the no-load state. The results of the in vivo states are compared to those obtained by a conventional approach, which treats the esophageal wall as a homogeneous material, and to another popular simplification, which ignores the residual strains completely. It is shown that the errors caused by the homogeneous wall assumption are relatively minor, but those caused by ignoring the residual strains completely are severe.  相似文献   

7.
The stress-strain relationship is determined by the inherent mechanical properties of the intestinal wall, the geometric configurations, the loading conditions and the zero-stress state of the segment. The purpose of this project was to provide morphometric and biomechanical data for rat duodenum, jejunum and ileum. The circumferential strains were referenced to the zero-stress state. Large morphometric variations were found along the small intestine with an increase in the outer circumferential length and luminal area and a decrease in wall thickness in distal direction. The serosal residual strain was tensile and decreased in distal direction (P < 0.05). The mucosal residual strain was compressive and the absolute value decreased in distal direction (P < 0.001). The stress-strain experiments showed that the duodenum was stiffest. All segments were stiffest in longitudinal direction (P < 0.05). In conclusion, axial variation in morphometric and biomechanical properties was found in the small intestine. The zero-stress state must be considered in future biomechanical studies in the gastrointestinal tract.  相似文献   

8.
The objective of our study was to study the effect of danshen, a Chinese herbal medicine known to prevent hypertension, on the zero-stress state of rat's abdominal aorta. The zero-stress state of a blood vessel represents the release of residual stress on the vessel wall, and is the basic configuration of blood vessel affected solely by intrinsic parameters. At the in vivo state, the rat's abdominal aorta was subjected to blood pressure and flow and longitudinal stress. After dissecting from the abdominal aorta, the aortic specimens were cut into small rings at no-load state, in which the internal pressure, external pressure, and longitudinal stress in a short ring-shaped segment were all zero; by cutting radially to release the residual stress in the wall, the vessel ring opened up into a sector quickly, and the sector's configuration would not change at 20 min after cutting and was defined as the zero-stress state of a blood vessel, which was characterized by its residual strain and opening angle. Then aqueous extract of danshen prepared with methanol was added in the Krebs solution, and the changes of the aorta's zero-stress state were monitored by taking photos routinely for analysis to determine the opening angle and residual strain. Additionally, other sets of samples were tested in a Norepinephrine-Krebs solution as positive control or a Krebs solution as negative control, respectively. It was demonstrated that the zero-stress state of rat's abdominal aorta was affected by danshen extract and norepinephrine in two different patterns, while the Krebs solution did not have similar effects. The present work provides a new approach to study the anti-hypertension effect and mechanism of danshen.  相似文献   

9.
Han and Fung (1991)[1] studied the zero-stressstates of porcine and canine tracheas by cutting themidpoints of cartilage and muscle respectively. Themethod of Fung, termed Once Cutting method in thispaper, was also used by Liu, Wang and Teng (2002)[2]in studying residual strain of rat tracheas. They all re-ported that the no-load state of trachea is not itszero-stress state, but the residual stress (strain) existsin no-load tracheal ring. The tracheal ring would openup into a figure of “C…  相似文献   

10.
This paper introduces a new method, termed Twice Cutting, for obtaining the zero-stress states of cartilage and muscle of trachea. The method applied cuts at the two junctions of tracheal cartilage and muscle perpendicular to the tangent lines of cartilage at its tips. The cartilaginous and muscular opening angles are defined for the first time in Twice Cutting methods. Based on the analysis of cartilaginous and muscular geometric information in no-load and zero-stress states, it is found that there are compressive and tensile residual strains in the inner and outer walls of the cartilage respectively. Residual strains at the muscular inner wall of tracheal rings near bifurcation are negative, whereas those of other rings are positive, and residual strains at outer wall of all rings are positive. This phenomenon of tracheal muscle residual strains is different from those of vessel etc. The results also show that the absolute values of cartilaginous strains are considerably smaller than that of muscular ones, with the ratio being around 0.05. The values of all the tracheal parameters, including residual strains and opening angles, are reducing with the increasing value of tracheal rings’ position. So the consequences obtained in this paper not only indicate that the trachea is a non-uniform tissue along the circumferential and axial directions, but also reveal the differences between the trachea and other living tissues, such as vessel, esophagus. This is a basic research for further work, such as determining stress in trachea, to which the cartilaginous and muscular zero-stress states should be referred.  相似文献   

11.
S Q Liu  Y C Fung 《Biorheology》1992,29(5-6):443-457
Rheological properties of blood vessels are expected to change in disease process if the structure of the vessel wall changes. This is illustrated in diabetes, which can be induced in rat by a single injection of Streptozocin. One of the rheological properties of the blood vessel is the stress-strain relationship. The nonlinear stress-strain relationship of arteries is best expressed as derivations of a strain-energy function. In this paper, the stress-strain relations are measured and the coefficients in the strain energy function of arteries are determined for diabetic and control rats. The meaning of these coefficients are explained. The influence of diabetes on the elastic property of the arteries is expressed by the changes of these coefficients. A point of departure of the present paper from all other blood vessel papers published so far is that all strains used here are referred to the zero-stress state of the arteries, whereas all other papers refer strains to the no-load state. The existence of a large difference between the zero-stress state and no-load state of arteries is one of our recent findings. We have explained that the use of zero-stress state as a basis of strain measurements reveals that the in vivo circumferential stress distribution is quite uniform in the vessel wall at the homeostatic condition. It also makes the strain energy function much more accurate than those in which the residual stress is ignored. Using these new results, the stress and strain distribution in normal and diabetic arteries are presented.  相似文献   

12.
Zhao J  Lu X  Zhuang F  Gregersen H 《Biorheology》2000,37(5-6):385-400
Morphometric and passive biomechanical properties were studied in isolated segments of the thoracic and abdominal aorta, left common carotid artery, left femoral artery and the left pulmonary artery in 20 non-diabetic and 28 streptozotocin (STZ)-induced diabetic rats. The diabetic and non-diabetic rats were divided into groups living 1, 4, 8, and 12 weeks after the induction of diabetes (n = 7 for each diabetic group) or sham injection (n = 5 for each group). The mechanical test was performed as a distension experiment where the proximal end of the arterial segment was connected via a tube to the container used for applying pressures to the segment and the distal end was left free. The vessel diameter and length were obtained from digitized images of the arterial segments at pre-selected pressures and at no-load and zero-stress states. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed from the length, diameter and pressure data and from the zero-stress state data. The zero-stress state was obtained by cutting vessel rings radially causing the rings to open up into a sector. Diabetes was associated with pronounced morphometric changes, e.g., wall thickness. With respect to the biomechanical data, the opening angle increased and reached a plateau in 4 weeks after which it decreased again (p < 0.05). The opening angle was smallest in the thoracic aorta and largest in the pulmonary artery. Furthermore, it was found that the circumferential stiffness of the arteries studied increased with the duration of diabetes. In the longitudinal direction significant differences were found 8 weeks after injection of STZ in all arteries except the pulmonary artery. In the 12 weeks group, the femoral artery was stiffest in the circumferential direction whereas the thoracic aorta was stiffest in the longitudinal direction. The accumulated serum glucose level correlated with the arterial wall thickness and elastic modulus (correlation coefficient between 0.56 and 0.81).  相似文献   

13.
Data on morphological and biomechanical remodelling are needed to understand the mechanisms behind intestinal obstruction. The effect of partial obstruction on mechanical properties with reference to the zero-stress state and on the histomorphological properties of the guinea pig small intestine was determined in this study. Partial obstruction and sham operation were surgically created in mid-jejunum of guinea pigs. The animals survived 2, 4, 7, and 14 days. The age-matched guinea pigs that were not operated served as normal controls. The segment proximal to the obstruction site was used for histological analysis, no-load state and zero-stress state data, and distension test. The segment for distension was immersed in an organ bath and inflated to 10 cm H2O. The outer diameter change during the inflation was monitored using a microscope with CCD camera. Circumferential stresses and strains were computed from the diameter, pressure and the zero-stress state data. The opening angle and absolute value of residual strain decreased (P<0.01 and P<0.001) whereas the wall thickness, wall cross-sectional area, and the wall stiffness increased after 7 days obstruction (P<0.05, P<0.01). Histologically, the muscle and submucosa layers, especially the circumferential muscle layer increased in thickness after obstruction. The opening angle and residual strain mainly depended on the thickness of the muscle layer whereas the wall stiffness mainly depended on the thickness of the submucosa layer. In conclusion, the histomorphological and biomechanical properties of small intestine (referenced for the first time to the zero-stress state) remodel proximal to the obstruction site in a time-dependent manner.  相似文献   

14.
A molecular configuration tensor Pij was introduced to analyze the distribution of fibrous proteins in vascular cells for studying cells and tissues biomechanics. We have used this technique to study the biomechanics of vascular remodeling in response to the changes of blood pressure and flow. In this paper, the remodeling of the geometrical arrangement of F-actin fibers in the smooth muscle cells in rat's pulmonary arteries in hypoxic hypertension was studied. The rats were exposed to a hypoxia condition of 10% for 0, 2, 12, and 24 hr at sea level. Remodeling of blood vessels were studied at the in vivo state under normal perfusion, no-load state when small rings from blood vessels were excised, and zero-stress state after the rings were cut open radially to release the residual stress. Tissue remodeling in response to changes in blood pressure is reflected in the zero-stress state. The tensor components were determined by analyzing the configuration of phalloidin stained F-actin fibers in the media layer of pulmonary arteries. The values of P31, P32, P33 in the in-vivo state, the no-load state, and the zero-stress state are obtained. This study demonstrated the distributions of fibrous molecules in tissue remodeling can be described quantitatively using the molecular configuration tensor.  相似文献   

15.
Patency rates of saphenous vein grafts following coronary artery bypass grafting (CABG) depend on multiple factors. Information regarding the impact of biomechanical properties of vein grafts on patency rates is not available. The objective of the present study was to evaluate whether uncontrolled manual pressure distension during routine preparation of the saphenous vein in CABG-induced changes in the biomechanical properties of the vein. The morphometric and stress-strain properties were studied in isolated segments of the saphenous vein from 12 patients undergoing elective CABG. Six segments were manually distended without pressure control and six were not distended. The mechanical test was performed as a ramp inflation using syringe pump. The vein dimensions were obtained from digitised images at different pressures as well as at the no-load and zero-stress states. The circumferences, the wall and lumen area, the wall thickness, and the outer diameter as function of the applied pressure were largest in the segments with uncontrolled manual distension compared to those without distension (P<0.05). The opening angle and the absolute value of the residual strains were lower (P<0.01) and the circumferential stress-strain curve shifted to the left, indicating the wall became stiffer with uncontrolled manual distension compared to those without distension (P<0.05). In conclusion, manual pressure distension changed the morphometric and biomechanical properties of the saphenous vein. The perspective is that studies on biomechanical properties on the saphenous vein may guide surgeons how to handle graft material without causing major changes of the biomechanical properties during harvesting and preparation.  相似文献   

16.
Residual stress and strain in aortic segments   总被引:7,自引:0,他引:7  
In the study of stresses and strains in vascular segments, it is generally assumed that the traction-free configuration assumed by a segment when there is no axial force and there are no intravascular and extravascular pressures is stress-free. To investigate the degree of validity of this assumption, 286 oval shaped rings were excised from three bovine and six porcine aortas and photographed. Radial cuts were made in these rings which opened up into horseshoe shapes and were also photographed. Smoothed boundary lengths at intimal and adventitial levels in the rings and their cut open configurations were measured from the photographs and the residual strains in the annular configuration relative to the open configuration were computed. It was found that: the average maximum residual intimal engineering strain in the uncut configuration was -0.082 for all nine aortas and -0.096 and -0.077 for the bovine and porcine aortas alone, respectively; the average maximum residual adventitial strain was 0.085 for all aortas, and 0.102 and 0.078 for the bovine and porcine aortas alone, respectively; an estimated average beneficial compressive stress of -0.188 X 10(5) Pa (corresponding to a strain level of -0.082) is available at the intimal level to counteract the in vivo tensile stress due to the intravascular pressure; an estimated average initial tensile stress of 0.195 X 10(5) Pa (corresponding to a strain level of 0.085) exists at the adventitial level which adds to the in vivo tensile stress due to the intravascular pressure. Although these stress levels are not large in comparison with the in vivo stress in the arterial wall, a detailed stress analysis must take into account these initial stresses.  相似文献   

17.
Previous studies have demonstrated morphological and biomechanical remodeling in the intestine proximal to an obstruction. The present study aimed to obtain stress and strain thresholds to initiate contraction and the maximal contraction stress and strain in partially obstructed guinea pig jejunal segments. Partial obstruction and sham operations were surgically created in mid-jejunum of male guinea pigs. The animals survived 2, 4, 7 and 14 days. Animals not being operated on served as normal controls. The segments were used for no-load state, zero-stress state and distension analyses. The segment was inflated to 10 cmH(2)O pressure in an organ bath containing 37°C Krebs solution and the outer diameter change was monitored. The stress and strain at the contraction threshold and at maximum contraction were computed from the diameter, pressure and the zero-stress state data. Young's modulus was determined at the contraction threshold. The muscle layer thickness in obstructed intestinal segments increased up to 300%. Compared with sham-obstructed and normal groups, the contraction stress threshold, the maximum contraction stress and the Young's modulus at the contraction threshold increased whereas the strain threshold and maximum contraction strain decreased after 7 days obstruction (P<0.05 and 0.01). In conclusion, in the partially obstructed intestinal segments, a larger distension force was needed to evoke contraction likely due to tissue remodeling. Higher contraction stresses were produced and the contraction deformation (strain) became smaller.  相似文献   

18.
The transmural distributions of stress and strain at the in vivo state have important implications for the physiology and pathology of the vessel wall. The uniform transmural strain hypothesis was proposed by Takamyzawa and Hayashi (Takamizawa K and Hayashi K. J Biomech 20: 7-17, 1987; Biorheology 25: 555-565, 1988) as describing the state of arteries in vivo. From this hypothesis, they derived the residual stress and strain at the no-load condition and the opening angle at the zero-stress state. However, the experimental evidence cited by Takamyzawa and Hayashi (J Biomech 20: 7-17, 1987; and Biorheology 25: 555-565, 1988) to support this hypothesis was limited to arteries whose opening angles (theta) are <180 degrees. It is well known, however, that theta > 180 degrees do exist in the cardiovascular system. Our hypothesis is that the transmural strain distribution cannot be uniform when theta; is >180 degrees. We present both theoretical and experimental evidence for this hypothesis. Theoretically, we show that the circumferential stretch ratio cannot physically be uniform across the vessel wall when theta; exceeds 180 degrees and the deviation from uniformity will increase with an increase in theta; beyond 180 degrees. Experimentally, we present data on the transmural strain distribution in segments of the porcine aorta and coronary arterial tree. Our data validate the theoretical prediction that the outer strain will exceed the inner strain when theta > 180 degrees. This is the converse of the gradient observed when the residual strain is not taken into account. Although the strain distribution may not be uniform when theta exceeds 180 degrees, the uniformity of stress distribution is still possible because of the composite nature of the blood vessel wall, i.e., the intima-medial layer is stiffer than the adventitial layer. Hence, the larger strain at the adventitia can result in a smaller stress because the adventitia is softer at physiological loading.  相似文献   

19.
The aims of the present study are to investigate biomechanical properties and provide mechanical analysis of contractility in ileum and colon in a neonatal maternal deprivation (NMD) irritable bowel syndrome (IBS) rat model. Mechanical testing was done on segments from ileum and colon in 25 IBS rats and 13 Control rats. Morphometric data were obtained from digitized images of the segments at no-load and zero-stress states. Pressure and diameter changes were measured during flow and ramp distensions under active and passive experimental conditions. Circumferential stresses (force per area) and strains (deformation) were computed with referenced to the zero-stress state. The contraction frequency was analyzed. Contraction thresholds and maximum contraction amplitude were calculated in terms of mechanical stress and strain. Compared with controls, the IBS rats had lower body weight (P < 0.01), smaller colonic opening angle (P < 0.05), higher colonic contraction frequency (P < 0.05 and P < 0.01) and lower contraction thresholds of pressure, stress and strain in both ileum and colon (P < 0.05 and P < 0.01). The maximum contraction pressure, stress and strain did not differ between IBS and Control groups (P > 0.05). In conclusion, the pressure, stress, and strain to evoke contractility in ileum and colon were lower whereas the frequency of induced colon contractions was higher in NMD IBS rats compared to normal rats. Furthermore, zero-stress state remodeling occur in colon in NMD IBS rats. Further studies on the association between intestinal biomechanical properties, hypersensitivity and afferent signaling in the IBS animal models are warranted.  相似文献   

20.
It is difficult to measure gastrointestinal smooth muscle (SM) tone except in sphincter regions. Since tone affects the biomechanical properties, the aim of the present study was to evaluate intestinal SM tone by studying the morphometry and biomechanical properties with and without muscle tone. Circumferential rings of 0.8-1mm in width were cut from the rat duodenum, jejunum and ileum. Sectors were obtained by cutting the rings opposite to the mesentery. The rings and the sectors were immersed in physiological Krebs solution in order to maintain the tone and into Krebs solution without Ca(++) and with EGTA to abolish the tone. The circumferences, area, the circularity and residual strain of the mucosal and serosal surfaces, opening angle, and opening angle tone/non-tone ratio were measured or computed. The tone affects the opening angle and residual strain in the intestinal sectors. The opening angle in the tissue sectors with tone was smaller (P<0.05) than those without tone in all three segments. The opening angle tone/non-tone ratio was 0.40+/-0.05, 0.43+/-0.06 and 0.36+/-0.11 for duodenum, jejunum and ileum, respectively, and did not differ among the three intestinal segments. The residual strain between sectors with and without SM tone differed in duodenal and jejunal mucosa and in the serosa of all three segments (P<0.05). The intestinal rings with tone showed axial variation for luminal area (P<0.001), for wall area (P<0.05), and for the mucosal and serosal residual strains (P<0.05). In conclusion, the intestinal mechanical properties are affected by intestinal SM tone. The tone can be evaluated by measuring the opening angle and residual strains of sectors in intestinal segments with and without SM tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号