首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for genetic transformation of Saintpaulia ionantha by co-cultivation of in vitro-grown leaves and petioles with Agrobacterium tumefaciens is described. Two bacterial strains, EHA105 and A281 both harbouring the binary plasmid pKIWI105 carrying the genes uidA and nptII, were used in the experiments. Regenerants were not obtained using the disarmed strain EHA105. The oncogenic strain A281 resulted in efficient transient and stable expression of the transferred traits for petiole explants only. After transformation and regeneration, the integration of the transgenes in the plant genome was confirmed by PCR analysis and Southern hybridization.  相似文献   

2.
Tang W 《Plant cell reports》2003,21(6):555-562
Additional virulence (vir) genes in Agrobacterium tumefaciens and sonication were investigated for their impact on transformation efficiency in loblolly pine (Pinus taeda L.). Mature zygotic embryos of loblolly pine were co-cultivated with disarmed A. tumefaciens strain EHA105 containing either plasmid vector pCAMBIA1301 or vector pCAMBIA1301 with an additional 15.8-kb fragment carrying extra copies of the Vir B, Vir C, and Vir G regions from the supervirulent plasmid pTOK47. pCAMBIA1301 contains hygromycin resistance and the beta-glucuronidase (GUS) reporter gene. Expression of GUS was observed after 3-6 days of co-cultivation, with peak expression at approximately 21 days. The highest numbers of GUS-expressing areas were visible up to 21 days after co-cultivation, declining rapidly thereafter. Both transient and stable transformation efficiencies increased when the explants were sonicated before co-cultivation and/or the additional virB, virC, and virG genes were included with the pCAMBIA1301 plasmid T-DNA. Use of the plasmid with additional vir genes and sonication dramatically enhanced the efficiency of Agrobacterium-mediated gene transfer not only in transient expression but also in the recovery of hygromycin-resistant lines. Stably transformed cultures and transgenic plants were produced from embryos transformed with A. tumefaciens EHA105 carrying pCAMBIA1301 or pCAMBIA1301+pTOK47 in the three families of loblolly pine. The presence of the introduced GUS and hygromycin phosphotransferase genes in the transgenic plants was confirmed by polymerase chain reaction and Southern hybridization analyses.  相似文献   

3.
The study was carried out to evaluate the amenability of tropical inbred and hybrid maize lines, using Agrobacterium mediated transformation technique. Agrobacterium tumefaciens strains EHA101 harbouring a pTF102 binary vector, EHA101, AGL1, and LBA4404 harbouring pBECK2000.4 plasmid, LBA4404, GV and EHA105 harbouring pCAMBIA2301 plasmid, and AGL1 harbouring the pSB223 plasmid were used. Delivery of transgenes into plant tissues was assessed using transient β-glucuronidase (gus) activity on the 3rd and 4th day of co-cultivation of the infected Immature Zygotic Embryos (IZEs) and embryogenic callus. Transient gus expression was influenced by the co-cultivation period, maize genotype and Agrobacterium strain. The expression was highest after the 3rd day of co-culture compared to the 4th day with intense blue staining was detected for IZEs which were infected with Agrobacterium strains EHA105 harbouring pCAMBIA2301 and EHA101 harbouring pTF102 vector. Putative transformants (To) were regenerated from bialaphos resistant callus. Differences were detected on the number of putative transformants regenerated among the maize lines. Polymerase chain reaction (PCR) amplification of Phosphinothricin acetyltransferase (bar) and gus gene confirmed the transfer of the transgenes into the maize cells. Southern blot hybridization confirmed stable integration of gus into PTL02 maize genome and segregation analysis confirmed the inheritance of the gus. A transformation efficiency of 1.4 % was achieved. This transformation system can be used to introduce genes of interest into tropical maize lines for genetic improvement.  相似文献   

4.
To determine the optimum conditions for Agrobacterium-mediated gene transfer, peach explants including cotyledons, embryonic axes and hypocotyl slices from non-germinated seeds and epicotyl internode slices from germinating seeds were exposed to Agrobacterium-mediated transformation treatments. The GUS (uidA) marker gene was tested using two different A. tumefaciens strains, three plasmids and four promoters [CaMV35s, (Aocs)3AmasPmas (“super-promoter”), mas-CaMV35s, and CAB]. GFP was tested with six A.␣tumefaciens strains, one plasmid (pLC101) and the doubleCaMV35s (dCaMV35s) promoter. The CaMV35s promoter produced more GUS expression than the CAB promoter. A. tumefaciens strains EHA105 and LBA4404 harboring the same plasmid (pBIN19) differed in their effects on GUS expression suggesting an interaction between A. tumefaciens strain and plasmid. A combination of A. tumefaciens EHA105, plasmid pBIN19 and the CaMV35s promoter produced the highest rates of transformation in peach epicotyl internodes (56.8%), cotyledons (52.7%), leaves (20%), and embryonic axes (46.7%) as evaluated by the percentage of explants expressing GUS 14 days after co-cultivation. GFP expression under the control of the dCaMV35s promoter was highest for internode explants but only reached levels of 18–19%. When GFP-containing plasmid pCL101 was combined with each of five A. tumefaciens strains the highest levels of transformation were 20–21% (internode and cotyledons, respectively). When nine peach genotypes were co-cultivated with A. tumefaciens strain EHA105 and GFP-containing plasmid pCL101 the highest levels of transformation were 26–28% (cotyledons and internodes, respectively). While GFP represents a potentially useful transformation marker that allows the non-destructive evaluation of transformation, rates of GFP transformation under the conditions of this study were low. It will be necessary to optimize expression of this marker gene in peach.  相似文献   

5.
An efficient transformation system was developed for Centaurea montana by co-cultivation of leaf explants with Agrobacterium tumefaciens strain AGL1 that contained a plasmid harboring the isopentenyl transferase gene under the control of the developmentally regulated Atmyb32 promoter of Arabidopsis thaliana and the gene encoding for hygromycin resistance under the control of the Cauliflower Mosaic Virus 35S (CaMV35S) promoter. A total of 990 explants were infected with Agrobacterium, and 18 shoots were regenerated resulting in an overall transformation efficiency of 1.8%. Molecular analyses, including PCR, Southern blotting and RT-PCR, were performed on T0 and T1 plants to confirm chromosomal integration and expression of the transgene in the phenotypically normal transformed plants. Transformation of C. montana was also performed using A. tumefaciens supervirulent strain EHA105 harboring the β-glucuronidase (GUS) reporter gene. Expression of the GUS gene in the putative transgenics was confirmed using a histochemical GUS assay.  相似文献   

6.
7.
A protocol for Agrobacterium-mediated transformation was developed for embryogenic callus of an excellent climber species, Parthenocissus tricuspidata. A. tumefaciens strain EHA105 or C58 harboring the pCAMBIA2301 binary vector with the neomycin phosphotransferase (nptII) and β-glucuronidase (uidA) gene was used. Factors affecting the transformation efficiency, including the Agrobacterium strains, co-cultivation time, Agrobacterium concentration, and infection time, were evaluated. Strain EHA105 proved to be significantly better than C58, and 4 days of co-culture was critical for transformation. An Agrobacterium suspension at a concentration of 0.5–0.7 × 108 cells ml−1 (OD600 = 0.5–0.7) and an infection time of 40 min was optimal for transformation. By applying these optimized parameters, we recovered six independent transformed shoots that were kanamycin-resistant and contained the nptII gene, as verified by polymerase chain reaction (PCR) analysis. Southern blot analysis confirmed that T-DNA was stably integrated into the genome of three out of six PCR-positive lines. Furthermore, histochemical GUS assay revealed the expression of the uidA gene in kanamycin-resistant calli, somatic embryos, and leaves of transgenic plants.  相似文献   

8.
Procedure for the Agrobacterium tumefaciens mediated T-DNA delivery into the elite clone(s) of Eucalyptus tereticornis using leaf explants from microshoots has been developed. Amongst two strains of A. tumefaciens namely, EHA105 and LBA4404 (harbouring pBI121 plasmid), strain EHA105 was found to be more efficient. Pre-culturing of tissue (2 days) on medium supplemented with 100 μM acetosyringone, before bacterial infection significantly increased transient expression of reporter gene (GUS). Co-cultivation period of 2 days and a bacterial density of 0.8 OD600 resulted in higher transient GUS expression. Method of injury to tissue, presence of acetosyringone in co-cultivation medium and photoperiod during co-cultivation also influenced the expression of transient GUS activity. Amongst the three clones tested, maximum transient GUS activity was recorded in clone ‘CE2’ followed by clone ‘T1’. Regeneration of transformed shoots was achieved on modified Murashige and Skoog medium (potassium nitrate was replaced with 990 mg/l potassium sulphate and ammonium nitrate with 392 mg/l ammonium sulphate, and mesoinositol concentration was increased to 200 mg/l). Stable transformation was confirmed on the basis of GUS activity and PCR amplification of DNA fragments specific to uidA and nptII genes. The absence of bacteria in the stable transformed tissues was confirmed by PCR amplification of fragment specific to 16S rRNA of bacteria.  相似文献   

9.
利用根癌农杆菌介导转化大豆成熟种子胚尖获得转基因植株   总被引:19,自引:0,他引:19  
利用根癌土壤农杆菌EHA105/pCAMBIA2301对来自大豆成熟种子的胚尖外植体进行遗传转化,并对农杆菌侵染时间长短以及乙酰丁香酮(AS)浓度等影响转化频率的条件进行了探讨.发现浸染时间以20 h为佳,乙酰丁香酮最佳浓度为200 umo1/L,并探讨了恢复培养的重要性.分别从3个大豆品种合丰35、合丰39、东农42得到了转基因植株,GUS染色及Southern杂交结果证明外源基因整合到大豆基因组中,获得转基因大豆的频率达6.4%~12.1%.  相似文献   

10.
A transformation system for Campanula glomerata 'Acaulis' based on the co-cultivation of leaf explants with Agrobacterium tumefaciens LBA4404 or EHA105 was developed. A. tumefaciens was eliminated when the explants were cultured on medium containing 400 mg/l vancomycin and 100 mg/l cefotaxime. Transgenic plants containing the uidA gene that codes for #-glucuronidase (gus) were obtained following co-cultivation with either strain of A. tumefaciens, LBA4404 or EHA105, both of which harbored the binary vector pGUSINT, coding for the uidA and neomycin phosphotransferase II (nptII) genes. While the transformation frequency (2-3%) was similar for both strains, A. tumefaciens LBA4404 was effectively eliminated from Campanula at a lower concentration of antibiotic as compared to EHA105. The concentration of individual antibiotics required to eliminate EHA105 resulted in a decreased rate (55-67%) of regeneration. The highest percentage of explants that regenerated plants (79%) and the highest regeneration rate was achieved with 100 mg/l cefotaxime combined with 400 mg/l vancomycin. Plants were also transformed with the isopentenyl transferase (ipt) gene using LBA4404 containing the 35S-ipt vector construct (pBC34).  相似文献   

11.
A reproducible and efficient transformation method was developed for the banana cv. Rasthali (AAB) via Agrobacterium-mediated genetic transformation of suckers. Three-month-old banana suckers were used as explant and three Agrobacterium tumefaciens strains (EHA105, EHA101, and LBA4404) harboring the binary vector pCAMBIA1301 were used in the co-cultivation. The banana suckers were sonicated and vacuum infiltered with each of the three A. tumefaciens strains and co-cultivated in the medium containing different concentrations of acetosyringone for 3 days. The transformed shoots were selected in 30 mg/l hygromycin-containing selection medium and rooted in rooting medium containing 1 mg/l IBA and 30 mg/l hygromycin. The presence and integration of the hpt II and gus genes into the banana genome were confirmed by GUS histochemical assay, polymerase chain reaction, and southern hybridization. Among the different combinations tested, high transformation efficiency (39.4 ± 0.5% GUS positive shoots) was obtained when suckers were sonicated and vacuum infiltered for 6 min with A. tumefaciens EHA105 in presence of 50 μM acetosyringone followed by co-cultivation in 50 μM acetosyringone-containing medium for 3 days. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into banana has been developed and that this transformation system could be useful for future studies on transferring economically important genes into banana.  相似文献   

12.
To enhance bacterial wilt resistance in tomato plants and simplify the protocol of Agrobacterium tumefaciens mediated gene transfer, parameters affecting transformation efficiency in tomato have been optimized. A. tumefaciens strain EHA101, harboring a recombinant binary expression vector pTCL5 containing the Xa21 gene under the control of the CaMV 35S promoter was used for transformation. Five cultivars of tomato (Rio Grande, Roma, Pusa Ruby Pant Bahr and Avinash) were tested for transformation. Transformation efficiency was highly dependent on preculture of the explants with acetosyringone, acetosyringone in co-cultivation media, shoot regeneration medium and pre-selection after co-cultivation without selective agent. One week of pre-selection following selection along with 400 μM acetosyringone resulted in 92.3% transient GUS expression efficiency in Rio Grande followed by 90.3% in Avinash. The presence and integration of the Xa21 gene in putative transgenic plants was confirmed by polymerase chain reaction (PCR) and Southern blot analyses with 4.5–42.12% PCR-positive shoots were obtained for Xa21 and hygromycin genes, respectively. Transgenic plants of the all lines showed resistance to bacterial wilt. T1 plants (resulting from self-pollination of transgenic plants) tested against Pseudomonas solanacearum inoculation in glasshouse, showed Mendelian segregation.  相似文献   

13.
Huang X  Huang XL  Xiao W  Zhao JT  Dai XM  Chen YF  Li XJ 《Plant cell reports》2007,26(10):1755-1762
A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0–490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.  相似文献   

14.
Turmeric (Curcuma longa L.) is a rhizomatous species belonging to the Zingiberaceae and known both for its culinary and medicinal uses. Based on an efficient tissue culture and somatic embryogenesis system that we established, we have developed a reliable Agrobacterium-mediated transformation protocol for this species. Calli derived from turmeric inflorescences were used as source tissues for transformation. Factors affecting transformation and regeneration efficiency were evaluated, including callus induction and culture conditions, Agrobacterium strains, co-cultivation conditions, selection agent sensitivity and bacterial elimination, and transformant selection. Optimized transformation conditions were identified, including: use of Agrobacterium strain EHA105 with plasmid pBISN1 for infection; a modified B5 medium system for callus induction, subculture, co-culture and selection; and MS media for transformant regeneration. Transgenic plants and their vegetative (clonal) progeny stably expressed the transgene as indicated by GUS assay, PCR and Southern blot analysis. In addition, a transient gene expression system was developed that involves Agrobacterium infiltration of young turmeric leaves followed by in vitro regeneration of plantlets. This approach established that a MADS-box-GFP fusion protein was localized to the nucleus of turmeric cells. The stable transformation and transient expression systems described herein offer opportunities for assaying gene function in turmeric and for improving turmeric properties.  相似文献   

15.
We have developed anAgrobacterium-mediated transformation system, using tobacco cell suspensions, that permits evaluation of factors affecting transformation within seven days of co-cultivation. Tobacco cell transformation was determined by monitoring -glucuronidase (GUS) activity detected in plant cell extracts. The use of a chimeric gene construct, 35S-GUS/INT, containing a portable intron in theuidA reading frame, assured only plant-specific GUS expression. During the co-cultivation period, induction of the bacterialvir-region was monitored using a heterologous gene construct composed of avirB promoter fragment from pTiC58 fused to the chloramphenicol acetyltranferase (CAT) gene ofTn9. Tobacco cell transformants were confirmed by antibiotic selection of transformed plant cells and by X-Gluc staining. Maximum transformation was obtained when plant suspension cultures were growing rapidly which also was coincidental with elevated levels of bacterialvir-region expression. One week after co-cultivation, the transformed cultures exhibited a stable pattern of GUS activity which remained constant without antibiotic selection. The system was used to compare the virulence of a number ofAgrobacterium strains. GUS activity of plant cells co-cultivated with a strain containing a cointegrate plasmid was 3-fold higher than that of one with a binary configuration of the T-DNA. When the co-cultivatingAgrobacterium strain also carried the plasmid used to monitorvir induction, the frequency of transformation was reduced by as much, as 97%.  相似文献   

16.
Agrobacterium tumefaciens strain EHA105 carrying a binary vector pCAMBIA2301, which contains a neomycin phosphotransferase gene (nptII) and a β-glucuronidase (GUS) gene (uidA) interrupted with an intron, was used for transformation of Vigna mungo cotyledonary node explants. Various factors such as preculture and wounding of explants, manipulations in inoculation and co-cultivation conditions were found to play a significant role in influencing tissue competence, Agrobacterium virulence and compatibility of both, for achieving the maximum transformation frequencies. The stable transformation with 4.31 % efficiency was achieved using the optimized conditions. The transformed green shoots that were selected and rooted on medium containing kanamycin and tested positive for nptII gene by polymerase chain reaction were established in soil to collect seeds. GUS activity was detected in leaves, roots, pollen grains and T1 seedlings. Southern analysis of T0 plants showed the integration of nptII into the plant genome.  相似文献   

17.
We performedAgrobacterium-mediated genetic transformation of creeping bentgrass(Agrostis stolonifera L.) and produced herbicide-resistant transformants from commercial cultivars Crenshaw and Penncross. Seed-derived embryogenie calli were infected withA. tumefaciens EHA105 harboring pCAMBIA 3301, which includes an intron-containinggus reporter and abar selection marker. To establish a stable system, we examined various factors that could potentially influence transformation efficiency during the pre-culture, infection, and co-cultivation steps. The addition of kinetin to the callus pre-culture media increased efficiency about three-fold. Once the optimum infection and co-cultivation conditions were identified, this protocol was used successfully to bulk-produce herbicide-resistant transgenic plants whose herbicide resistance was confirmed using the BASTA® resistance test. Southern blot analysis demonstrated integration and low copy numbers of the integrated transgenes, and northern blot analysis verified their expression. Thus, we have established an efficient genetic transformation system for creeping bentgrass and confirmed a high frequency of single-copy transgene integration and functional gene expression.  相似文献   

18.
Factors influencing the efficiency of Agrobacterium-mediated transformation of pea were tested using highly efficient, direct regeneration system. The virulence of three Agrobacterium strains (octopine LBA 4404, nopaline C58C1 and succinamopine, hypervirulent EHA 105) clearly varied giving 1 transgenic plant per 100 explants for LBA 4404, 2.2 for C58C1 and 8.2 for EHA 105. To test the efficacy of selection agents we used the hypervirulent EHA 105 strain carrying pGPTV binary vector with one of four different selection genes: nptII, hpt, dhfr or bar. The mean number of transgenic, kanamycin-resistant plants for two cultivars tested was 4.2 per 100 explants and was slightly higher than the number of phosphinothricin-resistant plants (3.6 plants per 100 explants). The proportion of transgenics among kanamycin-selected plants was also higher than among phosphinothricin-resistant plants (35% and 28% respectively). There was no regeneration on hygromycin or methotrexate media (transformation with hpt and dhfr genes). Acetosyringone had no apparent influence on efficiency of transformation with hypervirulent EHA 105 strain, however it did affect the rate of transformation when moderately virulent C58C1 was used. Recovery of transgenic plants was enhanced after application of 5-azacytidine. The presence of integrated T-DNA was checked by PCR and confirmed by Southern hybridization. T-DNA was stably transmitted to the next generation.  相似文献   

19.
以本氏烟草(Nicotiana benthamiana)为植物材料,分析了不同农杆菌菌株(LBA4404菌株、EHA105菌株、GV3101菌株)、菌液浓度以及侵染时间在瞬时转化过程中对报告基因GFP荧光表达量的影响。结果显示,不同的农杆菌菌株瞬时表达外源基因的最适浓度和时间均有所不同:LBA4404菌株在菌悬液OD600值为0.8时所介导的瞬时表达效率最高;而EHA105和GV3101菌株在菌悬液OD600值为0.6时可达到最高瞬时表达效率。LBA4404菌株所介导的瞬时表达在农杆菌注射后第2天时表达量最高,而EHA105和GV3101菌株所介导的瞬时表达在农杆菌注射后第4天时表达量最高。不同菌株间比较分析表明,LBA4404菌株所介导的瞬时表达效率最高。上述结果表明,农杆菌菌株以及浓度和侵染时间等转化条件均是影响瞬时表达效率的重要因素。  相似文献   

20.
Plants, when exposed to abiotic or biotic stress, produce several pathogenesis-related proteins to counteract the effects of stress. Osmotin is one of the important pathogenesis-related proteins induced during several stress conditions. We have developed improved salt stress tolerant transgenic chilli pepper plants (Capsicum annum L. var. Aiswarya 2103) by ectopic expression of the Nicotiana tabaccum osmotin gene using Agrobacterium tumefaciens EHA105 as a vector. Four-week-old chilli pepper leaves were used as an explant and A. tumefaciens EHA105 harboring pBINASCOSM plasmid that contains osmotin gene under the control of CaMV 35S promoter and npt II as a selectable marker was used in co-cultivation. Transgene integration and expression were analyzed using molecular, immunochemical, and biochemical assays. PCR and Southern blot analysis confirmed that osmotin gene has been successfully integrated into the genome of chilli pepper plants. The osmotin gene was stably segregated and expressed in T2 generation transgenic chilli pepper plants, and it was confirmed by Western blot analysis. Biochemical assays of these putative transgenic plants revealed enhanced levels of chlorophyll, proline, glycinebetaine, APX, SOD, DHAR, MDHAR, GR, and relative water content. Yield potential of the putative transgenic chilli pepper plants was evaluated under salinity stress conditions in a green house. The putative transgenic chilli pepper plants overexpressing the osmotin gene were morphologically similar to wild-type plants and produced 3.32 kg chilli pepper fruits per plant at 300 mM NaCl concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号