首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whether intracellular Ca2+ cycling dynamics regulate cardiac pacemaker cell function on a beat-to-beat basis remains unknown. Here we show that under physiological conditions, application of low concentrations of caffeine (2–4 mM) to isolated single rabbit sinoatrial node cells acutely reduces their spontaneous action potential cycle length (CL) and increases Ca2+ transient amplitude for several cycles. Numerical simulations, using a modified Maltsev-Lakatta coupled-clock model, faithfully reproduced these effects, and also the effects of CL prolongation and dysrhythmic spontaneous beating (produced by cytosolic Ca2+ buffering) and an acute CL reduction (produced by flash-induced Ca2+ release from a caged Ca2+ buffer), which we had reported previously. Three contemporary numerical models (including the original Maltsev-Lakatta model) failed to reproduce the experimental results. In our proposed new model, Ca2+ releases acutely change the CL via activation of the Na+/Ca2+ exchanger current. Time-dependent CL reductions after flash-induced Ca2+ releases (the memory effect) are linked to changes in Ca2+ available for pumping into sarcoplasmic reticulum which, in turn, changes the sarcoplasmic reticulum Ca2+ load, diastolic Ca2+ releases, and Na+/Ca2+ exchanger current. These results support the idea that Ca2+ regulates CL in cardiac pacemaker cells on a beat-to-beat basis, and suggest a more realistic numerical mechanism of this regulation.  相似文献   

2.
Isolated human red blood cell membrane fragments (RBCMF) were found to take up Ca++ in the presence of ATP.1 This ATP-dependent Ca++ uptake by RBCMF appears to be the manifestation of an active Ca++ transport mechanism in the red cell membrane reported previously (Schatzmann, 1966; Lee and Shin, 1969). The influences of altering experimental conditions on Ca++-stimulated Mg++ ATPase (Ca++ ATPase) and Ca++ uptake of RBCMF were studied. It was found that pretreatment of RBCMF at 50°C abolished both Ca++ ATPase and Ca++ uptake. Pretreatment of RBCMF with phospholipases A and C decreased both Ca++ ATPase and Ca++ uptake, whereas pretreatment with phospholipase D did not significantly alter either Ca++ ATPase or Ca++ uptake. Both Ca++ ATPase and Ca++ uptake had ATP specificity, similar optimum pH's, and optimum incubation temperatures. From these results, it was concluded that Ca++ uptake is intimately linked to Ca++ ATPase.  相似文献   

3.
Whether intracellular Ca2+ cycling dynamics regulate cardiac pacemaker cell function on a beat-to-beat basis remains unknown. Here we show that under physiological conditions, application of low concentrations of caffeine (2–4 mM) to isolated single rabbit sinoatrial node cells acutely reduces their spontaneous action potential cycle length (CL) and increases Ca2+ transient amplitude for several cycles. Numerical simulations, using a modified Maltsev-Lakatta coupled-clock model, faithfully reproduced these effects, and also the effects of CL prolongation and dysrhythmic spontaneous beating (produced by cytosolic Ca2+ buffering) and an acute CL reduction (produced by flash-induced Ca2+ release from a caged Ca2+ buffer), which we had reported previously. Three contemporary numerical models (including the original Maltsev-Lakatta model) failed to reproduce the experimental results. In our proposed new model, Ca2+ releases acutely change the CL via activation of the Na+/Ca2+ exchanger current. Time-dependent CL reductions after flash-induced Ca2+ releases (the memory effect) are linked to changes in Ca2+ available for pumping into sarcoplasmic reticulum which, in turn, changes the sarcoplasmic reticulum Ca2+ load, diastolic Ca2+ releases, and Na+/Ca2+ exchanger current. These results support the idea that Ca2+ regulates CL in cardiac pacemaker cells on a beat-to-beat basis, and suggest a more realistic numerical mechanism of this regulation.  相似文献   

4.
The voltage-and time-dependent slow channels in the myocardial cell membrane are the major pathway by which Ca++ ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac muscle. These slow channels behave kinetically as if their gates open, close, and recover more slowly than those of the fast Na+ channels; in addition, the slow channel gates operate over a less negative (more depolarized) voltage range. Tatrodotoxin does not block the slow channels, whereas the calcium antagonistic drugs, Mn++, Co++, and La+++ ions do. The slow channels have some special properties, including their functional dependence on metabolic energy, their selective blockade by acidosis, and their regulation by cyclic AMP level. Because of their regulation by cyclic AMP, it is proposed that either the slow channel protein or an associated regulatory protein must be phosphorylated in order for the channel to be made available for voltage activation during excitation. That is, the dephosphorylated channel would be electrically silent.

The requirement for phosphorylation allows the extrinsic control of the slow channels and Ca++ influx by neurotransmitters, hormones, and autacoids that affect the cyclic nucleotide levels.  相似文献   

5.
Brown  D. H.; Avalos  A. 《Annals of botany》1993,71(5):467-473
The possible role of calcium in the intracellular uptake ofcadmium by the lichen Peltigera membranacea was investigated.Even when calcium was removed from extracellular sites by potassiumpretreatment, kinetic studies failed to provide evidence insupport of added calcium being a competitive inhibitor of cadmiumuptake. Calcium and cadmium uptake responded differently tothe presence of lanthanum, vanadate or verapamil. Except forthe effect of verapamil, intracellular of cadmium mostly reflectedthe quantity of cadmium bound to extracellular exchange sites.Copyright1993, 1999 Academic Press Peltigera membranacea (Ach.) Nyl., intracellular cadmium uptake, calcium uptake inhibitors, lichen  相似文献   

6.
7.
Calcium (Ca2+)-activated K+ (KCa) channels regulate membrane excitability and are activated by an increase in cytosolic Ca2+ concentration ([Ca2+]i), leading to membrane hyperpolarization. Most patch clamp experiments that measure KCa currents use steady-state [Ca2+] buffered within the patch pipette. However, when cells are stimulated physiologically, [Ca2+]i changes dynamically, for example during [Ca2+]i oscillations. Therefore, the aim of the present study was to examine the effect of dynamic changes in [Ca2+]i on small (SK3), intermediate (hIK1), and large conductance (BK) channels. HEK293 cells stably expressing each KCa subtype in isolation were used to simultaneously measure agonist-evoked [Ca2+]i signals, using indo-1 fluorescence, and current/voltage, using perforated patch clamp. Agonist-evoked [Ca2+]i oscillations induced a corresponding KCa current that faithfully followed the [Ca2+]i in 13–50% of cells, suggesting a good synchronization. However, [Ca2+]i and KCa current was much less synchronized in 50–76% of cells that exhibited Ca2+-independent current events (55% of SK3-, 50% of hIK1-, and 53% of BK-expressing cells) and current-independent [Ca2+]i events (18% SK3- and 33% of BK-expressing cells). Moreover, in BK-expressing cells, where [Ca2+]i and KCa current was least synchronized, 36% of total [Ca2+]i spikes occurred without activating a corresponding KCa current spike, suggesting that BKCa channels were either inhibited or had become desensitized. This desynchronization between dynamic [Ca2+]i and KCa current suggests that this relationship is more complex than could be predicted from steady-state [Ca2+]i and KCa current. These phenomena may be important for encoding stimulus–response coupling in various cell types.  相似文献   

8.
9.
We performed protein pKa calculations and molecular dynamics (MD) simulations of the calcium pump (sarcoplasmic reticulum Ca2+-ATPase (SERCA)) in complex with phospholamban (PLB). X-ray crystallography studies have suggested that PLB locks SERCA in a low-Ca2+-affinity E2 state that is incompatible with metal-ion binding, thereby blocking the conversion toward a high-Ca2+-affinity E1 state. Estimation of pKa values of the acidic residues in the transport sites indicates that at normal intracellular pH (7.1–7.2), PLB-bound SERCA populates an E1 state that is deprotonated at residues E309 and D800 yet protonated at residue E771. We performed three independent microsecond-long MD simulations to evaluate the structural dynamics of SERCA-PLB in a solution containing 100 mM K+ and 3 mM Mg2+. Principal component analysis showed that PLB-bound SERCA lies exclusively along the structural ensemble of the E1 state. We found that the transport sites of PLB-bound SERCA are completely exposed to the cytosol and that K+ ions bind transiently (≤5 ns) and nonspecifically (nine different positions) to the two transport sites, with a total occupancy time of K+ in the transport sites of 80%. We propose that PLB binding to SERCA populates a novel (to our knowledge) E1 intermediate, E1⋅H+771. This intermediate serves as a kinetic trap that controls headpiece dynamics and depresses the structural transitions necessary for Ca2+-dependent activation of SERCA. We conclude that PLB-mediated regulation of SERCA activity in the heart results from biochemical and structural transitions that occur primarily in the E1 state of the pump.  相似文献   

10.
Agrin, a protein extracted from the electric organ of Torpedo californica, induces the formation of specializations on cultured chick myotubes that resemble the postsynaptic apparatus at the neuromuscular junction. The aim of the studies reported here was to characterize the effects of agrin on the distribution of acetylcholine receptors (AChRs) and cholinesterase as a step toward determining agrin's mechanism of action. When agrin was added to the medium bathing chick myotubes small (less than 4 micron 2) aggregates of AChRs began to appear within 2 h and increased rapidly in number until 4 h. Over the next 12-20 h the number of aggregates per myotube decreased as the mean size of each aggregate increased to approximately 15 micron 2. The accumulation of AChRs into agrin-induced aggregates occurred primarily by lateral migration of AChRs already in the myotube plasma membrane at the time agrin was added to the cultures. Aggregates of AChRs and cholinesterase remained as long as agrin was present in the medium; if agrin was removed the number of aggregates declined slowly. The formation and maintenance of agrin-induced AChR aggregates required Ca++, Co++ and Mn++ inhibited agrin-induced AChR aggregation and increased the rate of aggregate dispersal. Mg++ and Sr++ could not substitute for Ca++. Agrin-induced receptor aggregation also was inhibited by phorbol 12-myristate 13-acetate, an activator of protein kinase C, and by inhibitors of energy metabolism. The similarities between agrin's effects on cultured myotubes and events that occur during formation of neuromuscular junctions support the hypothesis that axon terminals release molecules similar to agrin that induce the differentiation of the postsynaptic apparatus.  相似文献   

11.
To determine how oxidative ATP synthesis is regulated in the heart, the responses of cardiac mitochondria oxidizing pyruvate to alterations in [ATP], [ADP], and inorganic phosphate ([Pi]) were characterized over a range of steady-state levels of extramitochondrial [ATP], [ADP], and [Pi]. Evolution of the steady states of the measured variables with the flux of respiration shows that: (1) a higher phosphorylation potential is achieved by mitochondria at higher [Pi] for a given flux of respiration; (2) the time hierarchy of oxidative phosphorylation is given by phosphorylation subsystem, electron transport chain, and substrate dehydrogenation subsystems listed in increasing order of their response times; (3) the matrix ATP hydrolysis mass action ratio [ADP] × [Pi]/[ATP] provides feedback to the substrate dehydrogenation flux over the entire range of respiratory flux examined in this study; and finally, (4) contrary to previous models of regulation of oxidative phosphorylation, [Pi] does not modulate the activity of complex III.  相似文献   

12.
In cardiac muscle, mitochondrial ATP synthesis is driven by demand for ATP through feedback from the products of ATP hydrolysis. However, in skeletal muscle at higher workloads there is an apparent contribution of open-loop stimulation of ATP synthesis. Open-loop control is defined as modulation of flux through a biochemical pathway by a moiety, which is not a reactant or a product of the biochemical reactions in the pathway. The role of calcium, which is known to stimulate the activity of mitochondrial dehydrogenases, as an open-loop controller, was investigated in isolated cardiac and skeletal muscle mitochondria. The kinetics of NADH synthesis and respiration, feedback from ATP hydrolysis products, and stimulation by calcium were characterized in isolated mitochondria to test the hypothesis that calcium has a stimulatory role in skeletal muscle mitochondria not apparent in cardiac mitochondria. A range of respiratory states were obtained in cardiac and skeletal muscle mitochondria utilizing physiologically relevant concentrations of pyruvate and malate, and flux of respiration, NAD(P)H fluorescence, and rhodamine 123 fluorescence were measured over a range of extra mitochondrial calcium concentrations. We found that under these conditions calcium stimulates NADH synthesis in skeletal muscle mitochondria but not in cardiac mitochondria.  相似文献   

13.
力竭游泳对大鼠心肌线粒体钙运输的影响   总被引:1,自引:0,他引:1  
 力竭游泳对大鼠心肌线粒体钙运输的影响丁树哲,王文信,连克杰,许豪文(华东师范大学体育系运动生化实验室,上海200062)线粒体钙运输在细胞功能调节方面有重要作用.线粒体通过摄取与释放钙,对其跨膜质子、不依赖底物及产物抑制的ATP合成、磷酸化偶联等均有...  相似文献   

14.
15.
In cystic fibrosis, the mutation of the CFTR protein causes reduced transepithelial Cl secretion. As recently proposed, beside its role of Cl channel, CFTR may regulate the activity of other channels such as a Ca2+-activated Cl channel. Using a calcium imaging system, we show, in adenovirus-CFTR infected Chinese Hamster Ovary (CHO) cell monolayers, that CFTR can act as a regulator of intracellular [Ca2+] i ([Ca2+] i ), involving purino-receptors. Apical exposure to ATP or UTP produced an increase in ([Ca2+] i in noninfected CHO cell monolayers (CHO-WT), in CHO monolayers infected with an adenovirus-CFTR (CHO-CFTR) or infected with an adenovirus-LacZ (CHO-LacZ). The transient [Ca2+] i increase produced by ATP or UTP could be mimicked by activation of CFTR with forskolin (20 μm) in CHO-CFTR confluent monolayers. However, forskolin had no significant effect on [Ca2+] i in noninfected CHO-WT or in CHO-LacZ cells. Pretreatment with purino-receptor antagonists such as suramin (100 μm) or reactive blue-2. (100 μm), and with hexokinase (0.28 U/mg) inhibited the [Ca2+] i response to forskolin in CHO-CFTR infected cells. Taken together, our experiments provide evidence for purino-receptor activation by ATP released from the cell and regulation of [Ca2+] i by CFTR in CHO epithelial cell membranes. Received: 5 April 1999/Revised: 28 June 1999  相似文献   

16.
《Biophysical journal》2019,116(11):2212-2223
Heart muscle contraction is normally activated by a synchronized Ca release from sarcoplasmic reticulum (SR), a major intracellular Ca store. However, under abnormal conditions, Ca leaks from the SR, decreasing heart contraction amplitude and increasing risk of life-threatening arrhythmia. The mechanisms and regimes of SR operation generating the abnormal Ca leak remain unclear. Here, we employed both numerical and analytical modeling to get mechanistic insights into the emergent Ca leak phenomenon. Our numerical simulations using a detailed realistic model of the Ca release unit reveal sharp transitions resulting in Ca leak. The emergence of leak is closely mapped mathematically to the Ising model from statistical mechanics. The system steady-state behavior is determined by two aggregate parameters: the analogs of magnetic field (h) and the inverse temperature (β) in the Ising model, for which we have explicit formulas in terms of SR [Ca] and release channel opening and closing rates. The classification of leak regimes takes the shape of a phase β-h diagram, with the regime boundaries occurring at h = 0 and a critical value of β (β1) that we estimate using a classical Ising model and mean field theory. Our theory predicts that a synchronized Ca leak will occur when h > 0 and β > β1, and a disordered leak occurs when β < β1 and h is not too negative. The disorder leak is distinguished from synchronized leak (in long-lasting sparks) by larger Peierls contour lengths, an output parameter reflecting degree of disorder. Thus, in addition to our detailed numerical model approach, we also offer an instantaneous computational tool using analytical formulas of the Ising model for respective ryanodine receptor parameters and SR Ca load that describe and classify phase transitions and leak emergence.  相似文献   

17.
18.
Recent studies have suggested that mitochondria may play important roles in the Ca2+ homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca2+ flux can regulate the generation of Ca2+ waves (CaWs) and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca2+ (Cai 2+) was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR) Ca2+ release and CaWs were induced in the presence of high (4 mM) external Ca2+ (Cao 2+). The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) reversibly raised basal Cai 2+ levels even after depletion of SR Ca2+ in the absence of Cao 2+ , suggesting Ca2+ release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m) and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m) or Ru360 (a mitochondrial Ca2+ uniporter inhibitor), but not by oligomycin (an ATP synthase inhibitor) or iodoacetic acid (a glycolytic inhibitor), excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca2+ uniporter activator kaempferol. Our results suggest that mitochondrial Ca2+ release and uptake exquisitely control the local Ca2+ level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis.  相似文献   

19.
In a phosphate medium at pH 6.6 low concentrations of uncouplers such as p-trifluoromethoxyphenylhydrazone carbonylcyanide and 2,4-dinitrophenol inhibit the oxidation of beta-hydroxybutyrate and succinate, when added during Ca++-accumulation. The inhibition depends on the amount of accumulated Ca++, and is released by N,N,N',N'-tetramethyl-p-phenylendiamine plus ascorbate as substrate. Under identical conditions the uncouplers have no inhibitory effect when added to mitochondria during state 3 respiration or during accumulation of Sr++. Inhibition of respiration by the decrease of transmembranal succinate transport or by accumulation of oxaloacetate can be excluded. It is suggested that accumulation of Ca++ in the presence of phosphate induces structural alteration of the mitochondrial membrane, which on the one hand changes the accessibility or sensitivity of dehydrogenases to uncouplers and causes leakage of accumulated Ca++ on the other.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号