首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular enzyme S-adenosyl-L-homocysteine (SAH) hydrolase has emerged as a target enzyme for the molecular design of anti-viral agents. Recently, SAH hydrolase has been considered as an attractive target in parasite chemotherapy for malaria. We report synthesis of several carbocyclic purine nucleosides and their inhibitory activities against human and malaria recombinant SAH hydrolases.  相似文献   

2.
Recombinant S-adenosyl-L-homocysteine (SAH) hydrolase of the malaria parasite Plasmodium falciparum was expressed in Escherichia coli, purified to homogeneity and characterized. Comparison of the malaria parasite SAH hydrolase with that derived from the human gene indicated marked differences in kcat values. The values of both forward and reverse reactions of P. falciparum SAH hydrolase are more than 21-fold smaller than those of the human enzyme. Km values of the parasite and human SAH enzymes are 1.2 and 7.8 microM, respectively. On the other hand, IC50 values of neplanocin A, a strong inhibitor of SAH hydrolase and a growth inhibitor of P. falciparum, are 101 nM for the parasite enzyme and 47 nM for human enzyme. P. falciparum SAH hydrolase has been thought to be a target for a chemotherapeutic agent against malaria. This study may make it possible to develop a specific inhibitor for the parasite SAH hydrolase.  相似文献   

3.
The design, synthesis, and unexpected inhibitory activity against S-adenosyl-homocysteine (SAH) hydrolase (SAHase, EC 3.3.1.1) for a series of truncated carbocyclic pyrimidine nucleoside analogues is presented. Of the four nucleosides obtained, 10 was found to be active with a Ki value of 5.0 microM against SAHase.  相似文献   

4.
S-adenosylhomocysteine (SAH) hydrolase is a cytosolic enzyme present in the kidney. Enzyme activities of SAH hydrolase were measured in the kidney in isolated glomeruli and tubules. SAH hydrolase activity was 0.62 +/- 0.02 mU/mg in the kidney, 0.32 +/- 0.03 mU/mg in the glomeruli, and 0.50 +/- 0.02 mU/mg in isolated tubules. Using immunohistochemical methods, we describe the localization of the enzyme SAH hydrolase in rat kidney with a highly specific antibody raised in rabbits against purified SAH hydrolase from bovine kidney. This antibody crossreacts to almost the same extent with the SAH hydrolase from different species such as rat, pig, and human. Using light microscopy, SAH hydrolase was visualized by the biotin-streptavidin-alkaline phosphatase immunohistochemical procedure. SAH hydrolase immunostaining was observed in glomeruli and in the epithelium of the proximal and distal tubules. The collecting ducts of the cortex and medulla were homogeneously stained. By using double immunofluorescence staining and two-channel immunofluorescence confocal laser scanning microscopy, we differentiated the glomerular cells (endothelium, mesangium, podocytes) and found intensive staining of podocytes. Our results show that the enzyme SAH hydrolase is found ubiquitously in the rat kidney. The prominent staining of SAH hydrolase in the podocytes may reflect high rates of transmethylation. (J Histochem Cytochem 48:211-218, 2000)  相似文献   

5.
Treatment of human recombinant S-adenosyl-L-homocysteine (SAH) hydrolase with 9-[(2'S,3'S)-3'-formyl-2',3'-dihydroxypropyl]adenine (FDHPA) caused irreversible inactivation in a time- and concentration-dependent manner (Ki = 8.8 microM, k(inact) = 0.09 min(-1)). FDHPA behaved as a facile affinity-labeling probe of SAH hydrolase.  相似文献   

6.
Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola.  相似文献   

7.

Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626–629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3Ado), neplanocin A, 3-deazaneplanocin A, the 5′-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6′-R-alkyl (i.e., 6′-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in the first place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola.  相似文献   

8.
S-Adenosyl-L-homocysteine hydrolase from Dictyostelium discoideum has been purified to homogeneity. It is composed of four subunits, each with a molecular mass of 47,000. In the hydrolysis direction, the enzyme has a pH optimum of 7.5, a Km for S-adenosyl-L-homocysteine (SAH) of 6 microM, and a Vmax of 0.22 mumol min-1 mg-1. In the synthesis direction, the pH optimum is 8.0, the Km for adenosine is 0.4 microM, and the Vmax is 0.30 mumol min-1 mg-1. Although the enzyme binds beta-nicotinamide adenine dinucleotide, as well as adenosine 3',5'-cyclic monophosphate and 2'-deoxyadenosine, these ligands have no effect on enzymatic activity when added to the assay mixture. However, preincubation of SAH hydrolase with NAD+ results in a 25% activation of the enzyme. In addition, this ligand has a striking effect on subunit-subunit interactions, as shown by stabilization of quaternary structure during polyacrylamide gel electrophoresis. Preincubation with cAMP or 2'-deoxyadenosine inactivates the enzyme. Although in both cases the activity is restored upon further incubation with NAD+, we show that inactivation by these two ligands proceeds by different mechanisms. NAD+-reversible inactivation by cAMP and 2'-deoxyadenosine was also observed with the SAH hydrolase from rabbit erythrocytes. Thus, these previously unreported properties of SAH hydrolase also occur with mammalian enzymes and are not restricted to D. discoideum.  相似文献   

9.
S-Adenosylhomocysteine (SAH) hydrolase was purified 25-fold from bakers' yeast by chemical methods and column chromatography. The purified enzyme could readily synthesize SAH from adenosine and homocysteine, but could hydrolyze only negligible amounts of SAH. The purified enzyme showed no activity towards S-adenosylmethionine, methylthioadenosine, or adenosine. Several nucleotides, sulfhydryl compounds, and ribose could not replace adenosine or homocysteine in the reaction mixture. SAH could be hydrolyzed by SAH hydrolase if commercial adenosine deaminase was included in the reaction mixture. Under these conditions l-homocysteine could act as a product inhibitor. A number of compounds structurally similar to adenosine and homocysteine were found to inhibit synthesis of SAH from adenosine and homocysteine. The strongest inhibitors were adenine, adenosine-3'-monophosphate, adenosine-2'-monophosphate, adenosine diphosphate, adenosine triphosphate, and adenosine-5'-monophosphate. The biosynthetic and hydrolytic activity of SAH hydrolase in yeast cell ghosts was similar to the activity of the enzyme in vitro.  相似文献   

10.
A cytokinin binding protein complex (CBP130) has been purified from tobacco leaves (Nicotiana sylvestris). It contains two protein species of 57 and 36 kDa (CBP57 and CBP36). The cDNAs encoding CBP57 have been isolated from a tobacco cDNA library. Their predicted amino acid sequences showed significant homology between CBP57 and S-adenosyl-L-homocysteine (SAH) hydrolase, which catalyzes the reversible hydrolysis of SAH, a methyltransferase inhibitor. A combination of gel filtration an western blot analysis revealed that both CBP57 and benzyladenine (BA)-binding activity were eluted at a peak of 130 kDa. A purified CBP130 fraction contains SAH hydrolase activity. We discuss possible CBP57 as a cytokinin receptor subunit and its possible role as a regulator of methylation.  相似文献   

11.
The effects of some neurotransmitters, adenosine (Ad), and homocysteine (Hcys) on protein carboxyl methylation in synaptic plasma membranes from rat cerebral cortex were examined. Neither any of the neurotransmitters nor Ad had a detectable effect. Incubation of membrane with DL-Hcys alone (5 X 10(-5) M), the combination of both Ad (5 X 10(-5)) and DL-Hcys (5 X 10(-5)), or S-adenosyl-L-homocysteine (SAH) (1 X 10(-6)) strongly decreased the methyl ester formation. The inhibitory effect of the combination of both compounds may be interpreted in terms of the increased SAH concentration due to the presence of SAH hydrolase in the membrane. The inhibitory effect of Hcys alone was blocked by preincubation with Ad deaminase or Neplanocin A, a potent inhibitor of SAH hydrolase, suggesting the presence of Ad-bound SAH hydrolase in the synaptic membrane. Ad-bound SAH hydrolase activity estimated by the inhibition of methylation in the presence of Hcys was located in the membrane fractions including synaptosomes, myelin, and microsomes (about 70%), but the SAH hydrolase activity estimated on the basis of the inhibitory effect of the combination of both Ad and Hcys was localized exclusively in the soluble fraction (about 90%). The distribution of the latter activity is coincident with that of SAH hydrolase reported to date. Incubation of the synaptic membrane with Hcys markedly increased the SAH concentration. The stimulatory effect of Hcys alone was blocked by Ad deaminase.  相似文献   

12.
The gene encoding S-adenosylhomocysteine (AdoHcy) hydrolase in Leishmania donovani was subcloned into an expression vector (pPROK-1) and expressed in Escherichia coli. Recombinant L. donovani AdoHcy hydrolase was then purified from cell-free extracts of E. coli using three chromatographic steps (DEAE-cellulose chromatofocusing, Sephacryl S-300 gel filtration, and Q-Sepharose ion exchange). The purified recombinant L. donovani enzyme exists as a tetramer with a molecular weight of approximately 48 kDa for each subunit. Unlike recombinant human AdoHcy hydrolase, the catalytic activity of the recombinant L. donovani enzyme was shown to be dependent on the concentration of NAD+ in the incubation medium. The dissociation constant (Kd) for NAD+ with the L. donovani enzyme was estimated to be 2.1 +/- 0.2 microM. The Km values for the natural substrates of the enzyme, AdoHcy, Ado, and Hcy, were determined to be 21 +/- 3, 8 +/- 2, and 82 +/- 5 microM, respectively. Several nucleosides and carbocyclic nucleosides were tested for their inhibitory effects on this parasitic enzyme, and the results suggested that L. donovani AdoHcy hydrolase has structural requirements for binding inhibitors different than those of the human enzyme. Thus, it may be possible to eventually exploit these differences to design specific inhibitors of this parasitic enzyme as potential antiparasitic agents.  相似文献   

13.
5'-Deoxy-5'-ureidoadenosine was designed and synthesized as a potent inhibitor of S-adenosylhomocysteine hydrolase (SAH), in which 5'-ureido group acted as multiple hydrogen bonding donor in binding with active site residues of SAH in the molecular modeling study.  相似文献   

14.
Protozoan parasites lack the pathway of the de novo synthesis of purines and depend on host-derived nucleosides and nucleotides to salvage purines for DNA and RNA synthesis. Nucleoside hydrolase is a central enzyme in the purine salvage pathway and represents a prime target for the development of anti-parasitic drugs. The full-length cDNA for nucleoside hydrolase from Leishmania major was cloned and sequence analysis revealed that the L. major nucleoside hydrolase shares 78% sequence identity with the nonspecific nucleoside hydrolase from Crithidia fasciculata. The L. major enzyme was overexpressed in Escherichia coli and purified to over 95% homogeneity. The L. major nucleoside hydrolase was identified as a nonspecific nucleoside hydrolase since it demonstrates the characteristics: 1) efficient utilization of p-nitrophenyl beta-D-ribofuranoside as a substrate; 2) recognition of both inosine and uridine nucleosides as favored substrates; and 3) significant activity with all of the naturally occurring purine and pyrimidine nucleosides. The crystal structure of the L. major nucleoside hydrolase revealed a bound Ca(2+) ion in the active site with five oxygen ligands from Asp-10, Asp-15 (bidentate), Thr-126 (carbonyl), and Asp-241. The structure is similar to the C. fasciculata IU-nucleoside hydrolase apoenzyme. Despite the similarities, the catalytic specificities differ substantially. Relative values of k(cat) for the L. major enzyme with inosine, adenosine, guanosine, uridine, and cytidine as substrates are 100, 0.5, 0.5, 27 and 0.3; while those for the enzyme from C. fasciculata are 100, 15, 14, 510, and 36 for the same substrates. Iminoribitol analogues of the transition state are nanomolar inhibitors. The results provide new information for purine and pyrimidine salvage pathways in Leishmania.  相似文献   

15.
Biological transmethylation reaction is a key step in the duplication of virus life cycle, in which S-adenosylmethionine plays as the methyl donor. The product of this reactions, S-adenosylhomocysteine (AdoHcy) inhibits the transmethylation process. AdoHcy is hydrolysed to adenosine and L-homocysteine by the action of S-adenosylhomocysteine hydrolase (SAH). Thus the virus life cycle should be cut off once the action of SAH is inhibited. Our study was focussed on the discovery of potential inhibitor against SAH. We performed a similarity search in Traditional Chinese Medicine Database and retrieved 17 hits with high similarity. After that we virtually docked the 17 compounds as well as the natural substrates to the hydrolase using Autodock 3.0.1 software. Then we discussed about the mechanism of the inhibition reaction, followed by proposing the potential inhibitors by comparing best docked solutions and possible modification for the best inhibitors.  相似文献   

16.
Early changes in S-adenosylhomocysteine (SAH) hydrolase activity during DMSO-induced granulocytic differentiation of HL-80 ceils were followed. Within 24 h a decrease of activity of SAH hydrolase could be detected in induced cultures but not in control cultures. This decrease could be shown to be associated with G1 phase of the cell cycle and was detected prior to phenotypic changes of the ceils.  相似文献   

17.
Recently, the first plant nucleoside hydrolase, NSH1 (former designation URH1), was identified at the molecular level. This enzyme's highest hydrolysis capacity is for uridine, thereby balancing pyrimidine salvage and catabolism. NSH1 was found to be less efficient in the hydrolysis of further nucleosides. However, it remained unclear whether purine nucleosides are processed by NSH1. Moreover, the biochemical and physiological functions of further NSH isoforms in Arabidopsis has not been analyzed. Here we show that NSH1 is also able to hydrolyze xanthosine with high efficiency, and thus represents the leading activity in purine and pyrimidine breakdown in a cell. A knockout mutant for NSH1 showed symptoms of accelerated senescence, accompanied by marked accumulation of uridine and xanthosine under conditions of prolonged darkness. The closest, so far uncharacterized, homolog of NSH1, NSH2, was found to act during the late phase of senescence and may support inosine breakdown. NSH3, another NSH isoform, surprisingly functions as an extracellular, purine-specific hydrolase that is involved in degradation of extracellular nucleosides and may participate in wound and pathogen responses.  相似文献   

18.
The naturally occurring adenine based carbocyclic nucleosides aristeromycin and neplanocin A and their 3-deaza analogues have found a prominent place in the search for diverse antiviral activity agent scaffolds because of their ability to inhibit S-adenosylhomocysteine (AdoHcy) hydrolase. Following the lead of these compounds, their 3-deaza-3-fluoroaristeromycin analogues have been synthesized and their effect on S-adenosylhomocysteine hydrolase and RNA and DNA viruses determined.  相似文献   

19.
Microtubule-associated protein tau is a naturally unfolded protein that can modulate a vast array of physiological processes through direct or indirect binding with molecular partners. Aberrant tau homeostasis has been implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer’s disease. In this study, we performed an unbiased high-content protein profiling assay by incubating recombinant human tau on microarrays containing thousands of human polypeptides. Among the putative tau-binding partners, we identify SAH hydrolase–like protein 1/inositol 1,4,5-trisphosphate receptor (IP3R)–binding protein (AHCYL1/IRBIT), a member of the SAH hydrolase family and a previously described modulator of IP3R activity. Using coimmunoprecipitation assays, we show that endogenous as well as overexpressed tau can physically interact with AHCYL1/IRBIT in brain tissues and cultured cells. Proximity ligation assay experiments demonstrate that tau overexpression may modify the close localization of AHCYL1/IRBIT to IP3R at the endoplasmic reticulum. Together, our experimental evidence indicates that tau interacts with AHCYL1/IRBIT and potentially modulates AHCYL1/IRBIT function.  相似文献   

20.
Nucleoside hydrolases catalyze the cleavage of N-glycosidic bonds in nucleosides, yielding ribose and the respective bases. While nucleoside hydrolase activity has not been detected in mammalian cells, many protozoan parasites rely on nucleoside hydrolase activity for salvage of purines and/or pyrimidines from their hosts. In contrast, uridine phosphorylase is the key enzyme of pyrimidine salvage in mammalian hosts and many other organisms. We show here that the open reading frame (ORF) YDR400w of Saccharomyces cerevisiae carries the gene encoding uridine hydrolase (URH1). Disruption of this gene in a conditionally pyrimidine-auxotrophic S. cerevisiae strain, which is also deficient in uridine kinase (urk1), leads to the inability of the mutant to utilize uridine as the sole source of pyrimidines. Protein extracts of strains overexpressing YDR400w show increased hydrolase activity only with uridine and cytidine, but no activity with inosine, adenosine, guanosine, and thymidine as substrates, demonstrating that ORF YDR400w encodes a uridine-cytidine N-ribohydrolase. Expression of a homologous cDNA from a protozoan parasite (Crithidia fasciculata) in a ura3 urk1 urh1 mutant is sufficient to restore growth on uridine. Growth can also be restored by expression of a human uridine phosphorylase cDNA. Yeast strains expressing protozoan N-ribohydrolases or host phosphorylases could therefore become useful tools in drug screens for specific inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号