首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-complementary dodecamer d(CGCAAATTTGCG) crystallizes as a double helix of the B form and manifests a Raman spectrum with features not observed in Raman spectra of either DNA solutions or wet DNA fibers. A number of Raman bands are assigned to specific nucleoside sugar and phosphodiester conformations associated with this model B-DNA crystal structure. The Raman bands proposed as markers of the crystalline B-DNA structure are compared and contrasted with previously proposed markers of Z-DNA and A-DNA crystals. The results indicate that the three canonical forms of DNA can be readily distinguished by Raman spectroscopy. However, unlike Z-DNA and A-DNA, which retain their characteristic Raman fingerprints in aqueous solution, the B-DNA Raman spectrum is not completely conserved between crystal and solution states. The Raman spectra reveal greater heterogeneity of nucleoside conformations (sugar puckers) in the DNA molecules of the crystal structure than in those of the solution structure. The results are consistent with conversion of one-third of the dG residues from the C2'-endo/anti conformation in the solution structure to another conformation, deduced to be C1'-exo/anti, in the crystal. The dodecamer crystal also exhibits unusually broad Raman bands at 790 and 820 cm-1, associated with the geometry of the phosphodiester backbone and indicating a wider range of (alpha, zeta) backbone torsion angles in the crystal than in the solution structure. The results suggest that backbone torsion angles in the CGC and GCG sequences, which flank the central AAATTT sequence, are significantly different for crystal and solution structures, the former containing the greater diversity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The self-complementary oligonucleotides [r(CGC)d(CGC)]2 and [d(CCCCGGGG)]2 in single-crystal and solution forms have been investigated by Raman spectroscopy. Comparison of the Raman spectra with results of single-crystal X-ray diffraction and with data from polynucleotides permits the identification of a number of Raman frequencies diagnostic of the A-helix structure for GC sequences. The guanine ring frequency characteristic of C3'-endo pucker and anti base orientation is assigned at 668 +/- 2 cm-1 for both dG and rG residues of the DNA/RNA hybrid [r(GCG)d(CGC)]2. The A-helix backbone of crystalline [r(GCG)d(CGC)]2 is altered slightly in the aqueous structure, consistent with the conversion of at least two residues to the C2'-endo/anti conformation. For crystalline [d(CCCCGGGG)]2, the Raman and X-ray data indicate nucleosides of alternating 2'-endo-3'-endo pucker sandwiched between terminal and penultimate pairs of C3'-endo pucker. The A-A-B-A-B-A-A-A backbone of the crystalline octamer is converted completely to a B-DNA fragment in aqueous solution with Raman markers characteristic of C2'-endo/anti-G (682 +/- 2) and the B backbone (826 +/- 2 cm-1). In the case of poly(dG).poly(dC), considerable structural variability is detected. A 4% solution of the duplex is largely A DNA, but a 2% solution is predominantly B DNA. On the other hand, an oriented fiber drawn at 75% relative humidity reveals Raman markers characteristic of both A DNA and a modified B DNA, not unlike the [d-(CCCCGGGG)]2 crystal. A comparison of Raman and CD spectra of the aqueous [d(CCCCGGGG)]2 and poly(dG).poly(dC) structures suggests the need for caution in the interpretation of CD data from G clusters in DNA.  相似文献   

3.
The lambda repressor provides a model system for biophysical studies of DNA recognition by the helix-turn-helix motif. We describe laser Raman studies of the lambda operator sites OL1 and OR3 and their interaction with the DNA-binding domain of lambda repressor (residues 1-102). Raman spectra of the two DNA sites exhibit significant differences attributable to interstrand purine-purine steps that differ in the two oligonucleotides. Remarkably, the conformation of each operator is significantly and specifically altered by repressor binding. Protein recognition, which involves hydrogen-bond formation and hydrophobic contacts in the major groove, induces subtle changes in DNA Raman bands of interacting groups. These include (i) site-specific perturbations to backbone phosphodiester geometry at AT-rich domains, (ii) hydrophobic interaction at thymine 5CH3 groups, (iii) hydrogen bonding to guanine 7N and 6C = O acceptors, and (iv) alterations in sugar pucker within the C2'-endo (B-DNA) family. These perturbations differ between aqueous OL1 and OR3 complexes of repressor, indicating that protein binding in solution determines the precise DNA conformation. The overall structure of the lambda domain is not greatly perturbed by binding to either OL1 or OR3, in accord with X-ray studies of other complexes. However, Raman markers indicate a change in hydrogen bonding of the OH group of tyrosine-22, which is a hydrogen-bond acceptor in the absence of DNA but a combined donor and acceptor in the OL1 complex; yet, Y22 hydrogen bonding is not altered in forming the OR3 complex. The present results demonstrate qualitatively different and distinguishable modes of interaction of the lambda repressor DNA-binding domain with operators OL1 and OR3 in solution. This application of laser Raman spectroscopy to a well-characterized system provides a prototype for future Raman studies of other DNA-binding motifs under physiological conditions.  相似文献   

4.
Raman spectra of poly(dG-dC) . poly(dG-dC) in D2O solutions of high (4.0M NaCl) and low-salt (0.1M NaCl) exhibit differences due to different nucleotide conformations and secondary structures of Z and B-DNA. Characteristic carbonyl modes in the 1600-1700 cm-1 region also reflect differences in base pair hydrogen bonding of the respective GC complexes. Comparison with A-DNA confirms the uniqueness of C = O stretching frequencies in each of the three DNA secondary structures. Most useful for qualitative identification of B, Z and A-DNA structures are the intense Raman lines of the phosphodiester backbone in the 750-850 cm-1 region. A conformation-sensitive guanine mode, which yields Raman lines near 682, 668, or 625 cm-1 in B (C2'-endo, anti), A (C3'-endo, anti) or Z (C3'-endo, syn) structures, respectively, is the most useful for quantitative analysis. In D2O, the guanine line of Z-DNA is shifted to 615 cm-1, permitting its detection even in the presence of proteins.  相似文献   

5.
Benevides JM  Serban D  Thomas GJ 《Biochemistry》2006,45(16):5359-5366
HU is a small DNA-binding protein of eubacteria that is believed to induce or stabilize bending of the double helix and mediate nucleoid compaction in vivo. Although HU does not bind preferentially to specific DNA sequences, it is known to have high affinity for DNA sites containing structural anomalies, such as unpaired or mismatched bases, nicks, and four-way junctions. We have employed Raman spectroscopy to further investigate the structural basis of HU-DNA recognition in solution. Experiments were carried out on the homodimeric HU protein of Bacillus stearothermophilus (HUBst) and a 222-bp DNA fragment, which was isolated in linear (DNA(L222)) and circular (DNA(C222)) forms. In the absence of bound HUBst the Raman signatures of DNA(L222) and DNA(C222) are nearly superimposable, indicating that circularization produces no substantial change in the local B-DNA conformation. Conversely, the Raman signatures of DNA(L222) and DNA(C222) are perturbed significantly and specifically by HUBst binding. The HUBst-induced perturbations are markedly greater for the circularized DNA target. These results support an opportunistic molecular mechanism, in which HU binding is facilitated by intrinsic nonlinearity or flexibility in the DNA target. We propose that DNA segments which are bent or predisposed toward bending provide the high-affinity sites for HU attachment and nucleoid condensation. This model is consistent with the wide range of DNA bending angles reported in crystal structures of HU-DNA complexes.  相似文献   

6.
Raman spectroscopy was employed to characterize the perturbations to DNA conformation induced in DNA by two different intrastrand adducts of antitumor cis-diamminedichloroplatinum(II) (cisplatin), namely by its 1,2-GG or 1,3-GTG intrastrand cross-links. We examined short deoxyribooligonucleotide duplexes containing single, site-specific cross-link by Raman spectroscopy and assigned the spectral alterations to conformational changes induced in DNA by 1,2-GG or 1,3-GTG intrastrand CLs determined earlier by other biochemical and biophysical methods. The results confirmed significant perturbations to the B-form DNA backbone due to the intrastrand lesions and that several nucleotides changed their conformation from C2'-endo to C3'-endo. Evidence for a partial transition from B- to A-form was found in several regions of the Raman spectra as well. The spectra also confirmed the different and more extensive distortion induced in B-DNA by 1,3-GTG in comparison with 1,2-GG intrastrand CLs, consistent with their already known high resolution structures. The results of the present work demonstrate that Raman spectroscopy represents a suitable tool to provide insights into structural factors involved in the mechanisms underlying antitumor effects of platinum drugs.  相似文献   

7.
Cobalt hexammine [Co(NH3)6(3+)] is an efficient DNA complexing agent which significantly perturbs nucleic acid secondary structure. We have employed red excitation (647.1 nm) from a krypton laser to obtain Raman spectra of the highly colored complexes formed between cobalt hexammine and crystals of the DNA oligomers, d(5BrCGAT5BrCG) and d(CGCGATCGCG), both of which incorporate out-of-alternation pyrimidine/purine sequences. The Co(NH3)6(3+) complex of d(5BrCGAT5BrCG) exhibits a typical Z-form Raman signature, similar to that reported previously for the alternating d(CGCGCG) sequence. Comparison of the Raman bands of d(5BrCGAT5BrCG) with those of other oligonucleotide and polynucleotide structures suggests that C3'-endo/syn and C3'-endo/anti thymidines may exhibit distinctive nucleoside conformation markers, and tentative assignments are proposed. The Raman markers for C2'-endo/anti adenosine in this Z-DNA are consistent with those reported previously for B-DNA crystals containing C2'-endo/anti dA. Raman bands of the cobalt hexammine complex of d(CGCGATCGCG) are those of B-DNA, but with significant differences from the previously characterized B-DNA dodecamer, d(CGCAAATTTGCG). The observed differences suggest an unusual deoxyguanosine conformer, possibly related to a previously characterized structural intermediate in the B-->Z transition. The present results show that crystallization of d(CGCGATCGCG) in the presence of cobalt hexammine is not alone sufficient to induce the left-handed Z-DNA conformation. This investigation represents the first application of off-resonance Raman spectroscopy for characterization of highly chromophoric DNA and illustrates the feasibility of the Raman method for investigating other structurally perturbed states of DNA-cobalt hexammine complexes.  相似文献   

8.
Dostál L  Chen CY  Wang AH  Welfle H 《Biochemistry》2004,43(30):9600-9609
Members of the Sso7d/Sac7d protein family and other related proteins are believed to play an important role in DNA packaging and maintenance in archeons. Sso7d/Sac7d are small, abundant, basic, and nonspecific DNA-binding proteins of the hyperthermophilic archeon Sulfolobus. Structures of several complexes of Sso7d/Sac7d with DNA octamers are known. These structures are characterized by sequence unspecific minor groove binding of the proteins and sharp kinking of the double helix. Corresponding Raman vibrational signatures have been identified in this study. A Raman spectroscopic analysis of Sac7d binding to the oligonucleotide decamer d(GAGGCGCCTC)(2) reveals large conformational perturbations in the DNA structure upon complex formation. Perturbed Raman bands are associated with the vibrational modes of the sugar phosphate backbone and frequency shifts of bands assigned to nucleoside vibrations. Large changes in the DNA backbone and partial B- to A-form DNA transitions are indicated that are closely associated with C2'-endo/anti to C3'-endo/anti conversion of the deoxyadenosyl moiety upon Sac7d binding. The major spectral feature of Sac7d binding is kinking of the DNA. Raman markers of minor groove binding do not largely contribute to spectral differences; however, clear indications for minor groove binding come from G-N2 and G-N3 signals that are supported by Trp24 features. Trp24 is the only tryptophan present in Sac7d and binds to guanine N3, as has been demonstrated clearly in X-ray structures of Sac7d-DNA complexes. No changes of the Sac7d secondary structure have been detected upon DNA binding.  相似文献   

9.
10.
The Z-DNA crystal structures of d(CGCGTG) and d(CGCGCG) are compared by laser Raman spectroscopy. Raman bands originating from vibrations of the phosphodiester groups and sensitive to the DNA backbone conformation are similar for the two structures, indicating no significant perturbation to the Z-DNA backbone as a result of the incorporation of G.T mismatches. Both Z structures also exhibit Raman markers at 625 and 670 cm-1, assigned respectively to C3'-endo/syn-dG (internal) and C2'-endo/syn-dG conformers (3' terminus). Additional Raman intensity near 620 and 670 cm-1 in the spectrum of the d(CGCGTG) crystal is assigned to C4'-exo/syn-dG conformers at the mismatch sites (penultimate from the 5' terminus). A Raman band at 1680 cm-1, detected only in the d(CGCGTG) crystal, is assigned to the hydrogen-bonded dT residues and is proposed as a definitive marker of the Z-DNA wobble G.T pair. For aqueous solutions, the Raman spectra of d(CGCGTG) and d(CGCGCG) are those of B-DNA, but with significant differences between them. For example, the usual B-form marker band at 832 cm-1 in the spectrum of d(CGCGTG) is about 40% less intense than the corresponding band in the spectrum of d(CGCGCG), and the former structure exhibits a companion band at 864 cm-1 not observed for d(CGCGCG). The simplest interpretation of these results is that the conventional B-form OPO geometry occurs for only 6 of the 10 OPO groups of d(CGCGTG). The remaining four OPO groups, believed to be those at or near the mismatch site, are in an "unusual B" conformation which generates the 864 cm-1 band.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Benevides JM  Thomas GJ 《Biochemistry》2005,44(8):2993-2999
Structural effects of binding the intercalating drug ethidium bromide (EtBr) to 160 base pair (bp) fragments of nucleosomal calf thymus DNA have been probed by the method of Raman difference spectroscopy. With the use of a near-infrared (NIR) laser source to excite the Raman spectrum at 752 nm, vibrational signatures of both the EtBr intercalant and DNA target have been identified in spectra of the drug-DNA complexes. Analysis of the results obtained on complexes consisting of 1 EtBr bound/10 bp leads to the following conclusions: (i) Raman markers diagnostic of DNA phosphodiester conformation are converted from the B type to the A type with EtBr binding, commensurate with the proportion of ethidium-bound nucleotides in the complex. (ii) Ethidium binding converts deoxynucleoside sugar puckers from the C2'-endo to the C3'-endo conformation, also consistent with binding stoichiometry. Both pyrimidine and purine deoxynucleoside sugar puckers are perturbed by the phenanthridinium ring intercalation. (iii) Phenanthridinium insertion between bases is accomplished with no apparent change in hypochromicities of purine or pyrimidine Raman markers, indicating that base-phenanthridinium interactions provide compensatory hypochromic effects. (iv) Novel Raman markers of helix unwinding have been identified and assigned primarily to methylene deformation modes of the deoxyribosyl C2'H(2) and C5'H(2) groups. The present study provides new insights into drug-DNA recognition in solution and demonstrates the feasibility of NIR-Raman spectroscopy for structural studies of highly chromophoric DNA complexes.  相似文献   

12.
13.
Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) induce the greatest structural changes in B-DNA. The Raman (vibrational) band differences are extensive and indicate partial disordering of the B-form backbone, reduction in base stacking, reduction in base pairing, and specific metal interaction with acceptor sites on the purine (N7) and pyrimidine (N3) rings. Many of the observed spectral changes parallel those accompanying thermal denaturation of B-DNA and suggest that the metals link the bases of denatured DNA. While exocyclic carbonyls of dT, dG, and dC may stabilize metal ligation, correlation plots show that perturbations of the carbonyls are mainly a consequence of metal-induced denaturation of the double helix. Transition metal interactions with the DNA phosphates are weak in comparison to interactions with the bases, except in the case of Cu2+, which strongly perturbs both base and phosphate group vibrations. On the other hand, the Raman signature of B-DNA is largely unperturbed by Mg2+, Ca2+, Sr2+, and Ba2+, suggesting much weaker interactions of the alkaline earth metals with both base and phosphate sites. A notable exception is a moderate perturbation by alkaline earths of purine N7 sites in 160-base pair DNA, with Ca2+ causing the greatest effect. Correlation plots demonstrate a strong interrelationship between perturbations of Raman bands assigned to ring vibrations of the bases and those of bands assigned to exocyclic carbonyls and backbone phosphodiester groups. However, strong correlations do not occur between the Raman phosphodioxy band (centered near 1092 cm-1) and other Raman bands, suggesting that the former is not highly sensitive to the structural changes induced by divalent metal cations. The structural perturbations induced by divalent cations are much greater for > 23-kilobase pair DNA than for 160-base pair DNA, as evidenced by both the Raman difference spectra and the tendency toward the formation of insoluble aggregates. In the presence of transition metals, aggregation of high-molecular-weight DNA is evident at temperatures as low as 11 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The solution structure of the alternating pyrimidine-purine DNA duplex [d(GCGTATACGC)]2 has been determined using two-dimensional nuclear magnetic resonance techniques and distance geometry methods. Backbone distance constraints derived from experimental nuclear Overhauser enhancement and J-coupling torsion angle constraints were required to adequately define the conformation of the inter-residue backbone linkages and to avoid underwinding of the duplex. The distance geometry structures were further refined by back-calculation of the two-dimensional nuclear Overhauser enhancement spectra to correct spin-diffusion distance errors. Fifteen final structures for [d(GCGTATACGC)]2 were generated from the refined experimental distance bounds. These structures all exhibit fully wound B-form geometry with small penalty values (< 1.5 A) against the distance bounds and small pair-wise root-mean-square deviation values (typically 0.6 A to 1.5 A). The final structures exhibit positive base-pair inclination with respect to the helix axis, a marked alternation in rise and twist, and are shorter and wider than classical fiber B-form DNA. The purines were found to adopt a sugar pucker close to the C-2'-endo conformation while pyrimidine sugars exhibited significantly lower pseudorotation phase angles in the C-1'-exo to C-2'-endo range. The minor groove cross-strand steric clashes at pyrimidine-purine steps that would exist in pure B-DNA are attenuated by an increased rise at these steps (and an increased roll angle at TpA steps). Concomitantly the backbone torsion angles of the pyrimidine moieties have larger gamma values, larger epsilon values, and smaller zeta values than the purines. The structures generated by distance geometry methods were also compared with those obtained from restrained molecular dynamics with empirical force-field potentials. The results indicate that the nuclear magnetic resonance/distance geometry approach alone is capable of elucidating most of the salient structural features of double-stranded helical nucleic acids in solution without resorting to empirical energy potentials and without using any structural assumptions from crystallographic data.  相似文献   

15.
The solution structure of two double helical nucleic acid fragments, viz, r(CGCGCG) and d(CGCGCG), was probed by means of two-dimensional nuclear Overhauser effect spectroscopy. The two compounds were selected as models for the A-type and B-type double helical conformations, respectively, and it is shown that for each of the two model compounds the intensities of the NOE cross peaks between base- and H2' (deoxy)ribose proteins are qualitatively in correspondence with the relative NOE intensities expected on basis of the supposed duplex conformations. Thus our results indicate that NOE-data can be used to differentiate between A-and B-type double helical conformations in solution. Coupling constant data show that, except for G(6), all ribose rings in r(CGCGCG) adopt pure N (C3'-endo) conformations thereby manifesting that this molecule takes up a regular A-type double helical conformation in solution. In contrast, the deoxyribose rings in d(CGCGCG) retain conformational freedom in the duplex state, albeit that the N/S-equilibrium is biased towards the S (C2'-endo) sugar conformation. This finding indicates that in solution the B-DNA backbone is highly dynamic.  相似文献   

16.
High resolution NMR data on UNCG and GNRA tetraloops (where N is any of the four nucleotides and R is a purine) have shown that they contain ribonucleosides with unusual 2'-endo/anti and 3'-endo/syn conformations, in addition to the 3'-endo/anti ones which are regularly encountered in RNA chains. In the current study, Raman spectroscopy has been used to probe these nucleoside conformations and follow the order (hairpin) to disorder (random chain) structural transitions in aqueous phase in the 5-80 degreesC temperature range. Spectral evolution of GCAA and GAAA tetraloops, as formed in very short hairpins with only three G.C base pairs in their stems (T m >60 degreesC), are reported and compared with those previously published on UUCG and UACG tetraloops, for which the syn orientation of the terminal guanine as well as the 2'-endo/anti conformation of the third rC residue have been confirmed by means of vibrational marker bands. Raman data obtained as a function of temperature show that the first uracil in the UUCG tetraloop is stacked and the two middle residues (rU and rC) are in the 2'-endo/anti conformation, in agreement with the previously published NMR results. As far as the new data concerning the GNRA type tetraloops are concerned, they lead us to conclude that: (i) in both cases (GCAA and GAAA tetraloops) the adenine bases are stacked; (ii) the second rC residue in the GCAA tetraloop has a 3'-endo/anti conformation; (iii) the sugar pucker associated with the third rA residue in both tetraloops possibly undergoes a 3'-endo/2'-endo interconversion as predicted by NMR results; (iv) the stem adopts a regular A-form structure; (v) all other nucleosides of these two GNRA tetraloops possess the usual 3'-endo/anti conformation.  相似文献   

17.
The presence of A(n) and A(n)T(n) tracts in double-helical sequences perturbs the structural properties of DNA molecules, resulting in the formation of an alternate conformation to standard B-DNA known as B'-DNA. Evidence for a transition occurring prior to duplex melting in molecules containing A(n) tracts was previously detected by circular dichroism (CD) and calorimetric studies. This premelting transition was attributed to a conformational change from B'- to B-DNA. Structural features of A(n) and A(n)T(n) tracts revealed by X-ray crystallography include a large degree of propeller twisting of adenine bases, narrowed minor grooves, and the formation of three-centered H-bonds between dA and dT bases. We report UV resonance Raman (UVRR) and CD spectroscopic studies of two related DNA dodecamer duplexes, d(CGCAAATTTGCG)(2) (A(3)T(3)) and d(CGCATATATGCG)(2) [(AT)(3)]. These studies address the presence of three-centered H-bonds in the B' conformation and gauge the impact of these putative H-bonds on the structural and thermodynamic properties of the A(3)T(3) duplex. UVRR and CD spectra reveal that the premelting transition is only observed for the A(3)T(3) duplex, is primarily localized to the dA and dT bases, and is associated with base stacking interactions. Spectroscopic changes associated with the premelting transition are not readily detectable for the sugar-phosphate backbone or the cytosine and guanosine bases. The temperature-dependent concerted frequency shifts of dA exocyclic NH(2) and dT C4=O vibrational modes suggest that the A(3)T(3) duplex forms three-centered hydrogen bonds at low temperatures, while the (AT)(3) duplex does not. The enthalpy of this H-bond, estimated from the thermally induced frequency shift of the dT C4=O vibrational mode, is approximately 1.9 kJ/mol or 0.46 kcal/mol.  相似文献   

18.
Crystal structure of a DNA.RNA hybrid, d(CTCCTCTTC).r(gaagagagag), with an adenine bulge in the polypurine RNA strand was determined at 2.3 A resolution. The structure was solved by the molecular replacement method and refined to a final R-factor of 19.9% (Rfree 22.2%). The hybrid duplex crystallized in the space group I222 with unit cell dimensions, a = 46.66 A, b = 47.61 A and c = 54.05 A, and adopts the A-form conformation. All RNA and DNA sugars are in the C3'-endo conformation, the glycosyl angles in anti conformation and the majority of the C4'-C5' torsion angles in g+ except two trans angles, in conformity with the C3'-endo rigid nucleotide hypothesis. The adenine bulge is looped out and it is also in the anti C3'-endo conformation. The bulge is involved in a base-triple (C.g)*a interaction with the end base-pair (C9.g10) in the minor groove of a symmetry-related molecule. The 2' hydroxyl group of g15 is hydrogen bonded to O2P and O5' of g17, skipping the bulged adenine a16 and stabilizing the sugar-phosphate backbone of the hybrid. The hydrogen bonding and the backbone conformation at the bulged adenine site is very similar to that found in the crystal structure of a protein-RNA complex.  相似文献   

19.
The solution conformations of the dinucleotide d(TT) and the modified duplex d(CGCGAATTCGCG)2 with N3'--> P5' phosphoramidate internucleoside linkages have been studied using circular dichroism (CD) and NMR spectroscopy. The CD spectra indicate that the duplex conformation is similar to that of isosequential phosphodiester RNA, a A-type helix, and is different from that of DNA, a B-type helix, NMR studies of model dimers d(TpT) and N3'--> P5' phosphoramidate d(TnpT) show that the sugar ring conformation changes from predominantly C2'-endo to C3'-endo when the 3'-phosphoester is replaced by a phosphoramidate group. Two-dimensional NMR (NOESY, DQF-COSY and TOCSY spectra) studies of the duplex provide additional details about the A-type duplex conformation of the oligonucleotide phosphoramidate and confirm that all furanose rings of 3'-aminonucleotides adopt predominantly N-type sugar puckering.  相似文献   

20.
The temperature dependence of the Raman spectrum of poly(dA).poly(dT) (dA: deoxyadenosine; dT: thymidine), a model for DNA containing consecutive adenine.thymine (A.T) pairs, has been analyzed using a spectrometer of high spectral precision and sensitivity. Three temperature intervals are distinguished: (a) premelting (10 < t < 70 degrees C), in which the native double helix is structurally altered but not dissociated into single strands; (b) melting (70 < t < 80 degrees C), in which the duplex is dissociated into single strands; and (c) postmelting (80 < t degrees C), in which no significant structural change can be detected. The distinctive Raman difference signatures observed between 10 and 70 degrees C and between 70 and 80 degrees C are interpreted in terms of the structural changes specific to premelting and melting transitions, respectively. Premelting alters the low-temperature conformation of the deoxyribose-phosphate backbone and eliminates base hydrogen bonding that is distinct from canonical Watson-Crick hydrogen bonding; these premelting perturbations occur without disruption of base stacking. Conversely, melting eliminates canonical Watson-Crick pairing and base stacking. The results are compared with those reported previously on poly(dA-dT).poly(dA-dT), the DNA structure consisting of alternating A.T and T.A pairs (L. Movileanu, J. M. Benevides, and G. J. Thomas, Jr. Journal of Raman Spectroscopy, 1999, Vol. 30, pp. 637-649). Poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) exhibit strikingly dissimilar temperature-dependent Raman profiles prior to the onset of melting. However, the two duplexes exhibit very similar melting transitions, including the same Raman indicators of ruptured Watson-Crick pairing, base unstacking and collapse of backbone order. A detailed analysis of the data provides a comprehensive Raman assignment scheme for adenosine and thymidine residues of B-DNA, delineates Raman markers diagnostic of consecutive A.T and alternating A.T/T.A tracts of DNA, and identifies the distinct Raman difference signatures for premelting and melting transitions in the two types of sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号