首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotrophic invasive hyphae (IH) of the blast fungus Magnaporthe oryzae secrete effectors to alter host defenses and cellular processes as they successively invade living rice (Oryza sativa) cells. However, few blast effectors have been identified. Indeed, understanding fungal and rice genes contributing to biotrophic invasion has been difficult because so few plant cells have encountered IH at the earliest infection stages. We developed a robust procedure for isolating infected-rice sheath RNAs in which ∼20% of the RNA originated from IH in first-invaded cells. We analyzed these IH RNAs relative to control mycelial RNAs using M. oryzae oligoarrays. With a 10-fold differential expression threshold, we identified known effector PWL2 and 58 candidate effectors. Four of these candidates were confirmed to be fungal biotrophy-associated secreted (BAS) proteins. Fluorescently labeled BAS proteins were secreted into rice cells in distinct patterns in compatible, but not in incompatible, interactions. BAS1 and BAS2 proteins preferentially accumulated in biotrophic interfacial complexes along with known avirulence effectors, BAS3 showed additional localization near cell wall crossing points, and BAS4 uniformly outlined growing IH. Analysis of the same infected-tissue RNAs with rice oligoarrays identified putative effector-induced rice susceptibility genes, which are highly enriched for sensor-transduction components rather than typically identified defense response genes.  相似文献   

2.
Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice.  相似文献   

3.
4.
5.
The physiological and metabolic processes of host plants are manipulated and remodeled by phytopathogenic fungi during infection, revealed obvious signs of biotrophy of the hemibiotrophic pathogen. As we known that effector proteins play key roles in interaction of hemibiotrophic fungi and their host plants. BAS4 (biotrophy-associated secreted protein 4) is an EIHM (extrainvasive hyphal membrane) matrix protein that was highly expressed in infectious hyphae. In order to study whether BAS4 is involved in the transition of rice blast fungus from biotrophic to necrotrophic phase, The susceptible rice cultivar Lijiangxintuanheigu (LTH) that were pre-treated with prokaryotic expression product of BAS4 and then followed with inoculation of the blast strain, more serious blast disease symptom, more biomass such as sporulation and fungal relative growth, and lower expression level of pathogenicity-related genes appeared in lesion of the rice leaves than those of the PBS-pretreated-leaves followed with inoculation of the same blast strain, which demonstrating that BAS4 invitro changed rice defense system to facilitate infection of rice blast strain. And the susceptible rice cultivar (LTH) were inoculated withBAS4-overexpressed blast strain, we also found more serious blast disease symptom and more biomass also appeared in lesion of leaves inoculated with BAS4-overexpressed strain than those of leaves inoculated with the wild-type strain, and expression level of pathogenicity-related genes appeared lower in biotrophic phase and higher in necrotrophic phase of infection, indicating BAS4 maybe in vivo regulate defense system of rice to facilitate transition of biotrophic to necrotrophic phase. Our data demonstrates that BAS4 in vitro and in vivo participates in transition from the biotrophic to the necrotrophic phase of Magnaporthe oryzae.  相似文献   

6.
7.
Li W  Zhong S  Li G  Li Q  Mao B  Deng Y  Zhang H  Zeng L  Song F  He Z 《Cell research》2011,21(5):835-848
Emerging evidence suggests that E3 ligases play critical roles in diverse biological processes, including innate immune responses in plants. However, the mechanism of the E3 ligase involvement in plant innate immunity is unclear. We report that a rice gene, OsBBI1, encoding a RING finger protein with E3 ligase activity, mediates broad-spectrum disease resistance. The expression of OsBBI1 was induced by rice blast fungus Magnaporthe oryzae, as well as chemical inducers, benzothiadiazole and salicylic acid. Biochemical analysis revealed that OsBBI1 protein possesses E3 ubiquitin ligase activity in vitro. Genetic analysis revealed that the loss of OsBBI1 function in a Tos17-insertion line increased susceptibility, while the overexpression of OsBBI1 in transgenic plants conferred enhanced resistance to multiple races of M. oryzae. This indicates that OsBBI1 modulates broad-spectrum resistance against the blast fungus. The OsBBI1-overexpressing plants showed higher levels of H(2)O(2) accumulation in cells and higher levels of phenolic compounds and cross-linking of proteins in cell walls at infection sites by M. oryzae compared with wild-type (WT) plants. The cell walls were thicker in the OsBBI1-overexpressing plants and thinner in the mutant plants than in the WT plants. Our results suggest that OsBBI1 modulates broad-spectrum resistance to blast fungus by modifying cell wall defence responses. The functional characterization of OsBBI1 provides insight into the E3 ligase-mediated innate immunity, and a practical tool for constructing broad-spectrum resistance against the most destructive disease in rice.  相似文献   

8.
Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice blast fungus Magnaporthe oryzae overcomes this first line of plant defense by secreting an effector protein, Secreted LysM Protein1 (Slp1), during invasion of new rice cells. We demonstrate that Slp1 accumulates at the interface between the fungal cell wall and the rice plasma membrane, can bind to chitin, and is able to suppress chitin-induced plant immune responses, including generation of reactive oxygen species and plant defense gene expression. Furthermore, we show that Slp1 competes with CEBiP for binding of chitin oligosaccharides. Slp1 is required by M. oryzae for full virulence and exerts a significant effect on tissue invasion and disease lesion expansion. By contrast, gene silencing of CEBiP in rice allows M. oryzae to cause rice blast disease in the absence of Slp1. We propose that Slp1 sequesters chitin oligosaccharides to prevent PAMP-triggered immunity in rice, thereby facilitating rapid spread of the fungus within host tissue.  相似文献   

9.
10.
The fungus Magnaporthe grisea, commonly referred to as the rice blast fungus, is responsible for destroying from 10% to 30% of the world's rice crop each year. The fungus attaches to the rice leaf and forms a dome-shaped structure, the appressorium, in which enormous pressures are generated that are used to blast a penetration peg through the rice cell walls and infect the plant. We develop a model of the appressorial design in terms of a bioelastic shell that can explain the shape of the appressorium, and its ability to maintain that shape under the enormous increases in turgor pressure that can occur during the penetration phase.  相似文献   

11.
Two purified oligosaccharide elicitors generatable from fungal cell walls, N-acetylchitoheptaose and a tetraglucosyl glucitol from rice blast fungus (Magnaporthe grisea), synergistically activated phytoalexin biosynthesis in cultured rice cells. Inhibition experiments for the binding of radiolabeled N-acetylchitooligosaccharide elicitor to the plasma membrane from rice cells indicate that the two elicitors are recognized by different receptors. These results also indicate the presence of a positive interaction between the signal transduction cascade downstream of each elicitor/receptor, which enhances resistance against pathogens.  相似文献   

12.
Understanding how pathogenic fungi adapt to host plant cells is of major concern to securing global food production. The hemibiotrophic rice blast fungus Magnaporthe oryzae, cause of the most serious disease of cultivated rice, colonizes leaf cells asymptomatically as a biotroph for 4–5 days in susceptible rice cultivars before entering its destructive necrotrophic phase. During the biotrophic growth stage, M. oryzae remains undetected in the plant while acquiring nutrients and growing cell-to-cell. Which fungal processes facilitate in planta growth and development are still being elucidated. Here, we used gene functional analysis to show how components of the NADPH-requiring glutathione and thioredoxin antioxidation systems of M. oryzae contribute to disease. Loss of glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes resulted in strains severely attenuated in their ability to grow in rice cells and that failed to produce spreading necrotic lesions on the leaf surface. Glutathione reductase, but not thioredoxin reductase or thioredoxin peroxidase, was shown to be required for neutralizing plant generated reactive oxygen species (ROS). The thioredoxin proteins, but not glutathione reductase, were shown to contribute to cell-wall integrity. Furthermore, glutathione and thioredoxin gene expression, under axenic growth conditions, was dependent on both the presence of glucose and the M. oryzae sugar/ NADPH sensor Tps1, thereby suggesting how glucose availability, NADPH production and antioxidation might be connected. Taken together, this work identifies components of the fungal glutathione and thioredoxin antioxidation systems as determinants of rice blast disease that act to facilitate biotrophic colonization of host cells by M. oryzae.  相似文献   

13.
The hemibiotrophic fungus Colletotrichum truncatum causes anthracnose disease on lentils and a few other grain legumes. It shows initial symptomless intracellular growth, where colonized host cells remain viable (biotrophy), and then switches to necrotrophic growth, killing the colonized host plant tissues. Here, we report a novel effector gene, CtNUDIX, from C. truncatum that is exclusively expressed during the late biotrophic phase (before the switch to necrotrophy) and elicits a hypersensitive response (HR)-like cell death in tobacco leaves transiently expressing the effector. CtNUDIX homologs, which contain a signal peptide and a Nudix hydrolase domain, may be unique to hemibiotrophic fungal and fungus-like plant pathogens. CtNUDIX lacking a signal peptide or a Nudix motif failed to induce cell death in tobacco. Expression of CtNUDIX:eGFP in tobacco suggested that the fusion protein might act on the host cell plasma membrane. Overexpression of CtNUDIX in C. truncatum and the rice blast pathogen, Magnaporthe oryzae, resulted in incompatibility with the hosts lentil and barley, respectively, by causing an HR-like response in infected host cells associated with the biotrophic invasive hyphae. These results suggest that C. truncatum and possibly M. oryzae elicit cell death to signal the transition from biotrophy to necrotrophy.  相似文献   

14.
Treatment of suspension-cultured cells of rice (Oryza sativa L.) with cell wall extract of rice blast fungus (Magnaporthe grisea) elicits a rapid generation of H2O2, alkalinization of culture medium, and eventual cell death. To elucidate genes involved in these processes, we exploited SAGE (Serial Analysis of Gene Expression) technique for the molecular analysis of cell death in suspension-cultured cells treated with the elicitor. Among the downregulated genes in the elicitor-treated cells, a BI-1 gene coding for Bax inhibitor was identified. Transgenic rice cells overexpressing Arabidopsis BI-1 gene showed sustainable cell survival when challenged with M. grisea elicitor. Thus, the plant Bax inhibitor plays a functional role in regulating cell death in the rice cell culture system.  相似文献   

15.
Rice (Oryza sativa) plants carrying the Pi-i resistance gene to blast fungus Magnaporthe oryzae restrict invaded fungus in infected tissue via hypersensitive reaction or response (HR), which is accompanied by rapid ethylene production and formation of small HR lesions. Ethylene biosynthesis has been implicated to be important for blast resistance; however, the individual roles of ethylene and cyanide, which are produced from the precursor 1-aminocyclopropane-1-carboxylic acid, remain unevaluated. In this study, we found that Pi-i-mediated resistance was compromised in transgenic rice lines, in which ethylene biosynthetic enzyme genes were silenced and then ethylene production was inhibited. The compromised resistance in transgenic lines was recovered by exogenously applying cyanide but not ethephon, an ethylene-releasing chemical in plant tissue. In a susceptible rice cultivar, treatment with cyanide or 1-aminocyclopropane-1-carboxylic acid induced the resistance to blast fungus in a dose-dependent manner, while ethephon did not have the effect. Cyanide inhibited the growth of blast fungus in vitro and in planta, and application of flavonoids, secondary metabolites that exist ubiquitously in the plant kingdom, enhanced the cyanide-induced inhibition of fungal growth. These results suggested that cyanide, whose production is triggered by HR in infected tissue, contributes to the resistance in rice plants via restriction of fungal growth.  相似文献   

16.
The rice blast fungus Magnaporthe oryzae is a global food security threat due to its destruction of cultivated rice. Of the world's rice harvest, 10–30 % is lost each year to this pathogen, and changing climates are likely to favor its spread into new areas. Insights into how the fungus might be contained could come from the wealth of molecular and cellular studies that have been undertaken in order to shed light on the biological underpinnings of blast disease, aspects of which we review herein. Infection begins when a three-celled spore lands on the surface of a leaf, germinates, and develops the specialized infection structure called the appressorium. The mature appressorium develops a high internal turgor that acts on a thin penetration peg, forcing it through the rice cuticle and into the underlying epidermal cells. Primary then invasive hyphae (IH) elaborate from the peg and grow asymptomatically from one living rice cell to another for the first few days of infection before host cells begin to die and characteristic necrotic lesions form on the surface of the leaf, from which spores are produced to continue the life cycle. To gain new insights into the biology of rice blast disease, we argue that, conceptually, the infection process can be viewed as two discrete phases occurring in markedly different environments and requiring distinct biochemical pathways and morphogenetic regulation: outside the host cell, where the appressorium develops in a nutrient-free environment, and inside the host cell, where filamentous growth occurs in a glucose-rich, nitrogen-poor environment, at least from the perspective of the fungus. Here, we review the physiological and metabolic changes that occur in M. oryzae as it transitions from the surface to the interior of the host, thus enabling us to draw lessons about the strategies that allow M. oryzae cells to thrive in rice cells.  相似文献   

17.
In the devastating rice blast fungus Magnaporthe oryzae, six Magnaporthe appressoria‐specific (MAS) proteins are encoded by MoGAS1, MoGAS2 and MoMAS3MoMAS6. MoGAS1 and MoGAS2 were previously characterized as M. oryzae virulence factors; however, the roles of the other four genes are unknown. Here, we found that, although the loss of any MAS gene did not affect appressorial formation or vegetative growth, ∆Momas3 and ∆Momas5 mutant strains (but not the others) were reduced in virulence on susceptible CO‐39 rice seedlings. Focusing on ∆Momas3 and ∆Momas5 mutant strains, we found that they could penetrate host leaf surfaces and fill the first infected rice cell but did not spread readily to neighbouring cells, suggesting they were impaired for biotrophic growth. Live‐cell imaging of fluorescently labelled MoMas3 and MoMas5 proteins showed that during biotrophy, MoMas3 localized to the apoplastic compartment formed between fungal invasive hyphae and the plant‐derived extra‐invasive hyphal membrane while MoMas5 localized to the appressoria and the penetration peg. The loss of either MoMAS3 or MoMAS5 resulted in the accumulation of reactive oxygen species (ROS) in infected rice cells, resulting in the triggering of plant defences that inhibited mutant growth in planta. ∆Momas3 and ∆Momas5 biotrophic growth could be remediated by inhibiting host NADPH oxidases and suppressing ROS accumulation. Thus, MoMas3 and MoMas5 are novel virulence factors involved in suppressing host plant innate immunity to promote biotrophic growth.  相似文献   

18.
19.
This review describes current advances in understanding the biology of plant infection by the rice blast fungus Magnaporthe grisea. Development of the specialized infection structure, the appressorium, in M. grisea has recently been shown to be controlled by cell cycle progression and initiation of autophagic, programmed cell death in the fungal spore. Re-cycling of the contents of the fungal spore and peroxisomal fatty acid beta-oxidation are therefore important processes for appressorium function. Following entry to the host plant, new evidence suggests that M. grisea grows biotrophically within rice cells, bounded by the plant plasmalemma, and the fungus moves from cell-to-cell by means of plasmodesmata. Biotrophic proliferation of the fungus is likely to require secretion of effector proteins and suppression of host defences. Consistent with this, a component of the polarized exocytosis machinery of M. grisea is necessary for pathogenicity and also for induction of host defences in an incompatible interaction. Large-scale insertional mutagenesis is now allowing the rapid analysis of gene function in M. grisea, heralding a new approach to the study of this important fungal pathogen.  相似文献   

20.
The rice Oryza sativa selenium-binding protein homologue (OsSBP) gene encodes a homologue of mammalian selenium-binding proteins, and it has been isolated as one of the genes induced by treating a plant with a cerebroside elicitor from rice blast fungus. The possible role of OsSBP in plant defense was evaluated by using a transgenic approach. Plants overexpressing OsSBP showed enhanced resistance to a virulent strain of rice blast fungus as well as to rice bacterial blight. The expression of defense-related genes and the accumulation of phytoalexin after infection by rice blast fungus were accelerated in the OsSBP overexpressors. A higher level of H(2)O(2) accumulation and reduced activity of such scavenging enzymes as ascorbate peroxidase and catalase were seen when the OsSBP-overexpressing plants were treated with the protein phosphatase 1 inhibitor, calyculin A. These results suggest that the upregulation of OsSBP expression conferred enhanced tolerance to different pathogens, possibly by increasing plant sensitivity to endogenous defense responses. Additionally, the OsSBP protein might have a role in modulating the defense mechanism to biotic stress in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号