首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In melanoma patients, CD8+ cytotoxic T cells have been found recognizing self-proteins of which the expression is restricted to the melanocytic lineage. These melanocyte differentiation antigens are expressed in normal melanocytes as well as in 80–100% of primary and metastatic melanoma. In this report, six HLA-A*0201–subtyped metastatic melanoma patients vaccinated with dendritic cells (DCs) pulsed with autologous tumor lysates and keyhole limpet hemocyanin (KLH) were screened for the presence of CD8+ T cells specific for three HLA-A*0201–binding peptides derived from the melanosomal antigens MART-1/Melan-A, gp100, and tyrosinase. For this purpose, nonstimulated as well as in vitro peptide-stimulated peripheral blood mononuclear cells (PBMCs) were tested for peptide-specific IFN- release by enzyme-linked immunosorbent spot (ELISpot) assays. Furthermore, expression of the melanosomal antigens MART-1/Melan-A, gp100, and tyrosinase in tumor lesions was analyzed by immunohistochemistry before and after vaccination. We also used the ELISpot technique to investigate whether KLH-specific T cells were induced and whether these cells released type 1 (IFN-) and/or type 2 (IL-13) cytokines. Our data show induction of CD8+ T cells specific for the melanosomal peptides MART-1/Melan-A27–35 or tyrosinase1–9, as well as IFN-–releasing KLH-specific T cells, in two of six vaccinated melanoma patients, but do not support an association between the induction of these T cells and clinical responses.  相似文献   

2.
"Cancer-germline" genes such as those of the MAGE family are expressed in many tumors and in male germline cells, but are silent in normal tissues. They encode shared tumor-specific Ags, which have been used in therapeutic vaccination trials of cancer patients. MAGE-3 is expressed in 74% of metastatic melanoma and in 50% of carcinomas of esophagus, head and neck, bladder, and lung. We report here the identification of a new MAGE-3 peptide, which is recognized by three different CD4(+) T cell clones isolated from a melanoma patient vaccinated with a MAGE-3 protein. These clones, which express different TCRs, recognize an HLA-DR1 peptide ACYEFLWGPRALVETS, which corresponds to the MAGE-3(267-282) and the MAGE-12(267-282) protein sequences. One of the T cell clones, which expresses LFA-1 at a high level, lysed tumor cells expressing DR1 and MAGE-3. Another of these DR1-restricted CD4(+) clones recognized not only the MAGE-3/12 peptide but also homologous peptides encoded by genes MAGE-1, 2, 4, 6, 10, and 11.  相似文献   

3.
We previously characterized the CTL response of a melanoma patient who experienced tumor regression following vaccination with an ALVAC virus coding for a MAGE-A3 Ag. Whereas anti-vaccine CTL were rare in the blood and inside metastases of this patient, anti-tumor CTL recognizing other tumor Ags, mainly MAGE-C2, were 100 times more frequent in the blood and considerably enriched in metastases following vaccination. In this study we report the analysis of the CTL response of a second melanoma patient who showed a mixed tumor response after vaccination with dendritic cells pulsed with two MAGE-A3 antigenic peptides presented, respectively, by HLA-A1 and HLA-DP4. Anti-MAGE-3.A1 CD8 and anti-MAGE-3.DP4 CD4 T cells became detectable in the blood after vaccination at a frequency of approximately 10(-5) among the CD8 or CD4 T cells, respectively, and they were slightly enriched in slowly progressing metastases. Additional anti-tumor CTL were present in the blood at a frequency of 2x10(-4) among the CD8 T cells and, among these, an anti-MAGE-C2 CTL clone was detected only following vaccination and was enriched by >1,000-fold in metastases relative to the blood. The striking similarity of these results with our previous observations further supports the hypothesis that the induction of a few anti-vaccine T cells may prime or restimulate additional anti-tumor T cell clones that are mainly responsible for the tumor regression.  相似文献   

4.
Quantitative evaluation of T cell responses of patients receiving antitumoral vaccination with a protein is difficult because of the large number of possible HLA-peptide combinations that could be targeted by the response. To evaluate the responses of patients vaccinated with protein MAGE-3, we have developed an approach that involves overnight stimulation of blood T cells with autologous dendritic cells loaded with the protein, sorting by flow cytometry of the T cells that produce IFN-gamma, cloning of these cells, and evaluation of the number of T cell clones that secrete IFN-gamma upon stimulation with the Ag. An important criterion is that T cell clones must recognize not only stimulator cells loaded with the protein, but also stimulator cells transduced with the MAGE-3 gene, so as to exclude the T cells that recognize contaminants generated by the protein production system. Using this approach it is possible to measure T cell frequencies as low as 10(-6). We analyzed the frequencies of anti-vaccine CD4 T cells in five metastatic melanoma patients who had been injected with a MAGE-3 protein without adjuvant and showed evidence of tumor regression. Anti-MAGE-3 CD4 T cells were detected in one of the five patients. The frequency of the anti-MAGE-3 CD4 T cells was estimated at 1/60,000 of the CD4 T cells in postvaccination blood samples, representing at least an 80-fold increase in the frequency found before immunization. The frequencies of one anti-MAGE-3 CD4 T cell clonotype were confirmed by PCR analysis on blood lymphocytes. The 13 anti-MAGE-3 clones, which corresponded to five different TCR clonotypes, recognized the same peptide presented by HLA-DR1.  相似文献   

5.
Between March 1999 and May 2000, 18 HLA-A*0201+ patients with metastatic melanoma were enrolled in a phase I trial using a dendritic cell (DC) vaccine generated by culturing CD34+ hematopoietic progenitors. This vaccine includes Langerhans cells. The DC vaccine was loaded with four melanoma peptides (MART-1/MelanA, tyrosinase, MAGE-3, and gp100), Influenza matrix peptide (Flu-MP), and keyhole limpet hemocyanin (KLH). Ten patients received eight vaccinations, one patient received six vaccinations, one patient received five vaccinations, and six patients received four vaccinations. Peptide-specific immunity was measured by IFN-γ production and tetramer staining in blood mononuclear cells. The estimated median overall survival was 20 months (range: 2–83), and the median event-free survival was 7 months (range: 2–83). As of August 2005, four patients are alive (three patients had M1a disease and one patient had M1c disease). Three of them have had no additional therapy since trial completion; two of them had solitary lymph node metastasis, and one patient had liver metastasis. Patients who survived longer were those who mounted melanoma peptide-specific immunity to at least two melanoma peptides. The present results therefore justify the design of larger follow-up studies to assess the immunological and clinical outcomes in patients with metastatic melanoma vaccinated with peptide-pulsed CD34-derived DCs.Joseph W. Fay and A. Karolina Palucka have equally contributed to this work  相似文献   

6.
Mice immunized by the intranasal route with dendritic cells harvested from the lungs and then pulsed with Ag85 (LDC-Ag85) were able to prime naive CD4(+) T cells in vivo. As a result splenic CD4(+) T cells from these immunized mice were able to produce IFNgamma following culture with Mycobacterium tuberculosis-infected antigen presenting cells. Hematoxylin and eosin stained lung sections from LDC-Ag85 immunized mice after they had been exposed to aerosol challenge with M. tuberculosis showed a florid infiltration of macrophages and lymphocytes into granulomas and parenchymal tissues when compared to lung sections from control groups implanted with dendritic cells pulsed with ovalbumin. In addition, using immunohistochemistry, these tissues appeared to have more CD4(+) and CD8(+) cells than the control groups. This was confirmed by flow cytometric analysis which showed that lung cell digests contained increased numbers of CD4 and CD8 interferongamma secreting cells. Despite this increase however, no evidence was seen that indicated that the LDC-Ag85 immunized mice were more resistant to M. tuberculosis infection than mice immunized with LDC pulsed with an irrelevant protein. Instead, the potent inflammatory response in the LDC-Ag85 resulted in serious consolidation of the lung tissue.  相似文献   

7.
We have developed an individualized melanoma vaccine based on autologous dendritic cells (DCs) transfected with autologous tumor-mRNA. The vaccine targets the unique spectrum of tumor antigens in each patient and may recruit multiple T cell clones. In a recent phase I/II trial, we demonstrated T cell responses against vaccine antigens in 9/19 patients evaluable by T cell assays. Here, we report a follow-up study that was conducted to characterize interesting T cell responses and to investigate the effects of long-term booster vaccination. Two patients were selected for continued vaccine therapy. The clinical follow-up suggested a favorable clinical development in both patients. The immunological data (T cell proliferation/IFNgamma ELISPOT/Bioplex cytokine assays) indicated sustained T cell responses and suggested an enhancing effect of booster vaccinations. Both CD4(+) and CD8(+) T cell responses were demonstrated. From post-vaccination samples, we generated 39 T cell clones that responded specifically to stimulation by mRNA-transfected DCs and 12 clones that responded to mock-transfected DCs. These data clearly indicate a two-component vaccine response, against transfected and non-transfected antigens. T cell receptor (TCR) clonotype mapping, performed on 11 tDC-specific clones, demonstrated that 10/11 clones had different TCRs. The results thus indicate a broad spectrum T cell response against antigens encoded by the transfected tumor-mRNA. We generally observed mixed Th1/Th2 cytokine profiles, even in T cell clones that were confirmed to be derived from a single cell. This finding suggests that cytokine patterns after cancer vaccination may be more complex than indicated by the classic Th1/Th2 dichotomy.  相似文献   

8.

Background

Safety and cellular immunogenicity of rising doses and varying regimens of a poly-epitope vaccine were evaluated in advanced metastatic melanoma. The vaccine comprised plasmid DNA and recombinant modified vaccinia virus Ankara (MVA) both expressing a string (Mel3) of seven HLA.A2/A1 epitopes from five melanoma antigens.

Methods

Forty-one HLA-A2 positive patients with stage III/IV melanoma were enrolled. Patient groups received one or two doses of DNA.Mel3 followed by escalating doses of MVA.Mel3. Immunisations then continued eight weekly in the absence of disease progression. Epitope-specific CD8+ T cell responses were evaluated using ex-vivo tetramer and IFN-γ ELISPOT assays. Safety and clinical responses were monitored.

Results

Prime-boost DNA/MVA induced Melan-A-specific CD8+ T cell responses in 22/31 (71%) patients detected by tetramer assay. ELISPOT detected a response to at least one epitope in 10/31 (32%) patients. T cell responder rates were <50% with low-dose DNA/MVA, or MVA alone, rising to 91% with high-dose DNA/MVA. Among eight patients showing evidence of clinical benefit—one PR (24 months+), five SD (5 months+) and two mixed responses—seven had associated immune responses. Melan-A-tetramer+ immunity was associated with a median 8-week increase in time-to-progression (P = 0.037) and 71 week increase in survival (P = 0.0002) compared to non-immunity. High-dose vaccine was well tolerated. The only significant toxicities were flu-like symptoms and injection-site reactions.

Conclusions

DNA.Mel3 and MVA.Mel3 in a prime-boost protocol generated high rates of immune response to melanoma antigen epitopes. The treatment was well tolerated and the correlation of immune responses with patient outcomes encourages further investigation.  相似文献   

9.
We have analyzed the T cell responses of HLA-A1 metastatic melanoma patients with detectable disease, following vaccination with a recombinant ALVAC virus, which bears short MAGE-1 and MAGE-3 sequences coding for antigenic peptides presented by HLA-A1. To evaluate the anti-MAGE CTL responses, we resorted to antigenic stimulation of blood lymphocytes under limiting dilution conditions, followed by tetramer analysis and cloning of the tetramer-positive cells. The clones were tested for their specific lytic ability and their TCR sequences were obtained. Four patients who showed tumor regression were analyzed, and an anti-MAGE-3.A1 CTL response was observed in three of these patients. Postvaccination frequencies of anti-MAGE-3.A1 CTL were 3 x 10(-6), 3 x 10(-3), and 3 x 10(-7) of the blood CD8 T cells, respectively. These three responses were monoclonal. No anti-MAGE-1.A1 CTL response was observed. These results indicate that, like peptide immunization, ALVAC immunization produces monoclonal responses. They also suggest that low-level antivaccine CTL responses can initiate a tumor regression process. Taken together, our analysis of anti-MAGE-3.A1 T cell responses following peptide or ALVAC vaccination shows a degree of correlation between CTL response and tumor regression, but firm conclusions will require larger numbers.  相似文献   

10.
Eleven AJCC stage IV melanoma patients with progressive disease after treatment with biochemotherapy were treated with autologous dendritic cells pulsed with heterologous tumor cell lysates. The vaccine used mature DCs (CD1a+++, CD40++, CD80++, CD83+, and CD86+++) generated from peripheral blood monocytes in the presence of GM-CSF and IL-4. After 7 days, DCs were matured with a defined cocktail of cytokines (IL-1+IL-6+TNF-+PGE2) and simultaneously pulsed with lysates of heterologous melanoma cell lines, for 2 days. A total of 4×106 DCs was injected monthly under ultrasound control in an inguinal lymph node of normal appearance. The study was closed when all patients died as a consequence of tumor progression. No sign of toxicity was observed during the study. One patient experienced a partial response lasting 5 months, and two patients showed a mixed response which lasted 3 months. The median survival of the whole group was 7.3 months (range 3–14 months). This vaccination program had specific antitumoral activity in highly pretreated and large tumor burden stage IV melanoma patients and was well tolerated. The clinical responses and the median survival of the group of patients, together with the low toxicity of our DC vaccine, suggest that this approach could be applied to earlier AJCC stage IV melanoma patients.  相似文献   

11.
We describe an HLA-A1 melanoma patient who has mounted a spontaneous cytolytic T cell (CTL) response against an antigenic peptide encoded by gene MAGE-A3 and presented by HLA-A1. The frequency of anti-MAGE-3.A1 CTLp was 5×10−7 of the blood CD8 cells, with a dominant clonotype which was present in six out of seven independent anti-MAGE-3.A1 CTL clones. After vaccination with a recombinant poxvirus coding for the MAGE-3.A1 antigen, the blood frequency of anti-MAGE-3.A1 CTLp increased tenfold. Twenty-two independent CTL clones were derived. Surprisingly, only one of them corresponded to the dominant clonotype present before vaccination. Two new clonotypes were repeated 12 and 7 times, respectively. Our interpretation of these results is that the spontaneous anti-MAGE-3.A1 CTL response pre-existing to vaccination was polyclonal, and that the vaccine restimulated only some of these clones. To estimate the incidence of spontaneous anti-MAGE-3.A1 CTL responses in melanoma patients with a tumor expressing gene MAGE-A3, we measured the blood frequency of anti-MAGE-3.A1 T cells in 45 patients, and found only two clear responses.  相似文献   

12.
A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion   总被引:1,自引:0,他引:1  
Ags derived from commonly mutated oncogenic proteins seem ideally suited as targets for tumor immunotherapy. Nonetheless, only a few mutated epitopes efficiently presented by human tumors have thus far been identified. We describe here an approach to identify such epitopes. This approach involves: 1) identifying tumors expressing a ras mutation and isolating the tumor-infiltrating lymphocytes (TIL); 2) transfecting COS cells to induce expression of unknown mutated peptides in the context of a patient's HLA class I molecules; and 3) screening epitope recognition by using TIL from the tumors expressing a ras mutation. By using this approach, there appeared to be a N-ras mutation (a glutamine-to-arginine exchange at residue 61 (Q61R)), detected in a melanoma lesion, which was recognized specifically by the autologous TIL in the HLA-A*0101 context. The ras peptide 55-64(Q61R) was the epitope of these TIL and was regularly presented by Q61R-mutated HLA-A*0101(+) melanoma cell lines. This peptide and its wild-type homolog (55-64(wt)) bound to HLA-A*0101 with similar affinities. However, only the mutated peptide could induce specific CTL expansion from PBL. All the CTL clones specific to the mutated peptide, failed to recognize the wild-type sequence on both COS and melanoma cells. These data thus show that oncogenic protein mutations can create shared tumor-specific CTL epitopes, efficiently presented by tumor cells, and that screening for oncogene-transfected COS cell recognition by TIL (from tumors containing mutations) is a powerful approach for the identification of these epitopes.  相似文献   

13.
Anchor residue-modified peptides derived from tumor-associated Ag have demonstrated success in engendering immune responses in clinical studies. However, tumor regression does not always correlate with immune responses. One hypothesis to explain this is that CTL resulting from such immunization approaches are variable in antitumor potency. In the present study, we evaluated this hypothesis by characterizing the activity of tumor-associated Ag-specific CTL. We chose an anchor residue-modified peptide from gp100, G209-2M, and used peptide-pulsed dendritic cells to generate CTL from PBMC of HLA-A2(+) normal donors. The specificities and avidities of the resulting CTL were evaluated. The results demonstrate that CTL generated by G209-2M can be classified into three categories: G209-2M-specific CTL which are cytotoxic only to G209-2M-pulsed targets; peptide-specific CTL which recognize both G209 and G209-2M peptides but not melanomas; and melanoma-reactive CTL which recognize peptide-pulsed targets as well as HLA-A2(+)gp100(+) melanomas. CTL that kill only peptide-pulsed targets require a higher peptide concentration to mediate target lysis, whereas CTL that lyse melanomas need a lower peptide concentration. Increasing peptide density on melanomas by loading exogenous G209 peptide enhances their sensitivity to peptide-specific CTL. High avidity CTL clones also demonstrate potent antimelanoma activity in melanoma model in nude mice. Injection of G209 peptide around transplanted tumors significantly enhances the antitumor activity of low avidity CTL. These results suggest that peptide stimulation causes expansion of T cell populations with a range of avidities. Successful immunotherapy may require selective expansion of the higher-avidity CTL and intratumor injection of the peptide may enhance the effect of peptide vaccines.  相似文献   

14.
15.
Vaccine strategies designed to elicit strong cell-mediated immune responses to HIV Ags are likely to lead to protective immunity against HIV infection. Dendritic cells (DC) are the most potent APCs capable of priming both MHC class I- and II-restricted, Ag-specific T cell responses. Utilizing a system in which cultured DC from HIV-seronegative donors were used as APC to present HIV-1 Ags to autologous T cells in vitro, the strength and specificity of primary HIV-specific CTL responses generated to exogenous HIV-1 Nef protein as well as intracellularly expressed nef transgene product were investigated. DC expressing the nef gene were able to stimulate Nef-specific CTL, with T cells from several donors recognizing more than one epitope restricted by a single HLA molecule. Primary Nef-specific CTL responses were also generated in vitro using DC pulsed with Nef protein. T cells primed with Nef-expressing DC (via protein or transgene) were able to lyse MHC class I-matched target cells pulsed with defined Nef epitope peptides as well as newly identified peptide epitopes. The addition of Th1-biasing cytokines IL-12 or IFN-alpha, during priming with Nef-expressing DC, enhanced the Nef-specific CTL responses generated using either Ag-loading approach. These results suggest that this in vitro vaccine model may be useful in identifying immunogenic epitopes as vaccine targets and in evaluating the effects of cytokines and other adjuvants on Ag-specific T cell induction. Successful approaches may provide information important to the development of prophylactic HIV vaccines and are envisioned to be readily translated into clinical DC-based therapeutic vaccines for HIV-1.  相似文献   

16.
17.
Although immunological tolerance to self Ags represents an important mechanism to prevent normal tissue injury, there is growing evidence that tolerance to tumor Ags, which often represent normal peripherally expressed proteins, is not absolute and can be effectively reverted. Prostate-specific Ag (PSA) is a self Ag expressed by both normal and malignant prostatic epithelium, and therefore offers a unique opportunity to examine the ability of self Ags to serve as specific CTL targets. In this study, we investigated the efficacy of autologous dendritic cells (DC) transfected with mRNA encoding PSA to stimulate CTL against PSA Ags in vitro. Ag in form of RNA carries the advantage to encode multiple epitopes for many HLA alleles, thus permitting induction of CTL responses among many cancer patients independent of their HLA repertoire. In this study, we show that PSA mRNA-transfected DC were capable of stimulating primary CTL responses against PSA Ags in vitro. The PSA-specific CTL did not cross-react with kallikrein Ags, a protein, which shares significant homology with PSA, suggesting that harmful autoimmune toxicity may not represent a significant problem with this approach. PSA RNA-transfected DC generated from male or female healthy volunteers or from cancer patients were equally effective in stimulating PSA-specific CTL in vitro, implying that neither natural tolerance to PSA Ags nor tumor-mediated T cell anergy may represent major barriers for CTL generation against the self Ag PSA. This study provides a preclinical rationale for using PSA RNA-transfected DC in active or adoptive immunization protocols.  相似文献   

18.
The recent identification of the sequences of the peptides derived from a number of human melanomaassociated antigens has presented opportunities for developing a specific-peptide-based vaccine in this form of cancer. Since antigen-presenting cells (APC) play a crucial role in the induction of the T-cell-mediated immune response, we examined whether or not ex vivo cultured APC, bearing the appropriate MHC restricting elements, when pulsed with a relevant melanoma-specific cytotoxic-T-lymphocyte(CTL)-determined peptide, can present the peptide to the CTL. Here we show that a population of cells, derived from the monocyte/macrophage lineage from peripheral blood and grown in granulocyte/macrophage-colony-stimulating factor, exhibit many essential characteristics of professional APC (dendritic-type morphology with a proportion of the population, the B7 molecule, and high levels of MHC class I and class II molecules, CD11b and CD54 molecules) and are capable of efficiently presenting the nonapeptide, EADPTGHSY, encoded by the melanoma antigen MAGE-1 gene, to the MAGE-1-specific CTL clone, 82/30. These results suggest that this type of autologous ex vivo cultured population of professional APC, when pulsed with the relevant-CTL-determined peptide, can serve as a novel type of candidate vaccine for active specific immunization against HLAA1-positive patients with melanoma expressing the MAGE-1 antigen.This work was supported by a PHS grant CA 61398 and in part by the Lavery Cancer Research Fund  相似文献   

19.
The induction of cytotoxic T lymphocytes (CTL) from peripheral blood mononuclear cells (PBMC) using MAGE peptide has been investigated in order to use MAGE antigens immunotherapeutically. We therefore developed a simplified method for inducing peptide-specific CTL that kill tumor cells expressing MAGE from the PBMC of either healthy donors or even cancer patients. Since the spleen is a major lymphoid organ, we used a simple method to examine the capacity of spleen cells to generate MAGE-specific CTL by in vitro stimulation with MAGE peptide in gastric cancer patients. The CTL responses could thus be induced from unseparated spleen cells in HLA-A2 patients with gastric carcinoma expressing MAGE-3 by stimulating these cells with autologous spleen cells pulsed with HLA-A2-restricted MAGE-3 peptide as antigen-presenting cells and by using keyhole limpet hemocyanin and interleukin-7 for the primary culture. The induced CTL were thus able to lyse HLA-A2-positive carcinoma cells transfected with MAGE-3 and expressing MAGE-3, as well as the target cells pulsed with the peptide, in an HLA-class-I or -A2-restricted manner. Since MAGE-specific CTL could be induced from the spleen cells of gastric cancer patients, the spleen appears to play an important role in either clinical tumor vaccination or the treatment of cancer patients by adoptive immunotherapeutic approaches using the MAGE peptide. Received: 3 December 1998 / Accepted: 30 March 1999  相似文献   

20.
Activation of T-helper cells is dependent upon the appropriate presentation of antigen-derived peptides on MHC class II molecules expressed on antigen presenting cells. In the current study we explored the repertoire of peptides presented on MHC class II molecules on human monocyte derived dendritic cells (moDCs) from four HLA-typed healthy donors. MHC class II-bound peptides could be routinely recovered from small cultures containing 5 × 10(6) cells. A fraction of the identified peptides were derived from proteins localized in the plasma membrane, endosomes, and lysosomes, but the majority of peptides that were presented on MHC class II originate from other organelles. Subsequently, we studied the antigen-specific peptide repertoire after endocytosis of a soluble antigen. Blood coagulation factor VIII (FVIII) was chosen as the antigen since our current knowledge on MHC class II presented peptides derived from this immunogenic therapeutic protein is limited. Analysis of the total repertoire of MHC class II-associated peptides revealed that per individual sample 20-50 FVIII-derived peptides were presented on FVIII-pulsed moDCs. Repertoires of FVIII-derived peptides eluted from moDCs derived from a panel of four HLA typed donors revealed that some MHC class II-presented FVIII peptides were presented by multiple donors, whereas the presentation of other FVIII peptides was donor-specific. In total 32 different core peptides were presented on FVIII-pulsed moDCs from four HLA-typed donors. Together our findings provide an unbiased approach to identify peptides that are presented by MHC class II on antigen-loaded moDCs from individual donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号