首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long noncoding RNAs (lncRNAs) display essential roles in cancer progression. FLVCR1-AS1 is a rarely investigated lncRNAs involved in various human cancers, such as hepatocellular carcinoma and lung cancer. However, its function in glioma has not been clarified. In our study, we found that FLVCR1-AS1 was highly expressed in glioma tissues and cell lines. And upregulation of FLVCR1-AS1 predicted poor prognosis in patients with glioma. Moreover, FLVCR1-AS1 knockdown inhibited proliferation, migration and invasion of glioma cells. Through bioinformatics analysis, we identified that FLVCR1-AS1 was a sponge for miR-4731-5p to upregulate E2F2 expression. Moreover, rescue assays indicated that FLVCR1-AS1 modulated E2F2 expression to participate in glioma progression. Altogether, our research demonstrates that the FLVCR1-AS1/miR-4731-5p/E2F2 axis is a novel signaling in glioma and may be a potential target for tumor therapy.  相似文献   

2.
We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a expression in human astrocytes does not affect cell survival and cell cycle. We uncovered the oncogenes c-Met, Notch-1 and Notch-2 as direct targets of miR-34a that are inhibited by miR-34a transfection. We found that c-Met levels in human glioma specimens inversely correlate with miR-34a levels. We showed that c-Met and Notch partially mediate the inhibitory effects of miR-34a on cell proliferation and cell death. We also found that mir-34a expression inhibits in vivo glioma xenograft growth. We concluded that miR-34a is a potential tumor suppressor in brain tumors that acts by targeting multiple oncogenes. In this extra view, we briefly review and discuss the implications of these findings and present new data on the effects of miR-34a in glioma stem cells. The new data show that miR-34a expression inhibits various malignancy endpoints in glioma stem cells. Importantly, they also show for the first time that miR-34a expression induces glioma stem cell differentiation. Altogether, the data suggest that miR-34a is a tumor suppressor and a potential potent therapeutic agent that acts by targeting multiple oncogenic pathways in brain tumors and by inducing the differentiation of cancer stem cells.  相似文献   

3.
Leucine-rich repeat C4 (LRRC4) has been shown to inhibit glioma cell proliferation, however, little is known about the mechanism(s) underlying the action of LRRC4. Here, we show that two glioblstoma U251 cell clones stably expressing LRRC4 were established. LRRC4 expression significantly inhibited the expression of some cytokines and their receptors determined by microarray and Western blot assays, and dramatically reduced cytokine-induced AP-1, NF-kB, and CyclinD1 activation in glioma cells. Furthermore, LRRC4 expression in glioma cells significantly downregulated spontaneous and cytokine-induced expression of K-RAS and phosphorylation of c-Raf, ERK, AKT, NF-kBp65, p70S6K, and PKC, suggesting that LRRC4 inhibited receptor tyrosine kinase (RTK) signaling pathways. Moreover, treatment with bFGF, IGF1, or IGF2 stimulated LRRC4(-/-), but not the LRRC4(+), glioma cell proliferation, indicating that LRRC4 mitigated cytokine-stimulated proliferation in glioma cells. In addition, treatment of LRRC4(-/-) glioma cells with EGF, IGF2, or PDGF promoted long distance mobilization, but induced little migration in LRRC4(+) glioma cells, suggesting that LRRC4 retarded cytokine-promoted glioma cell migration in vitro. Finally, human vessel endothelial cells (ECV304) treated with VEGF grew, aligned and formed hollow tube-like structures in vitro. In contrast, LRRC4(+) ECV304 treated with VEGF failed to form vessel-tube structures. Collectively, LRRC4 expression inhibited the expression of some growth factors, cytokines and their receptors, and the capacity of glioma cells responding to cytokine stimulation, leading to inhibition of glioma cell proliferation. Conceivably, induction of LRRC4 expression may provide new intervention for human glioma in the clinic.  相似文献   

4.
Aberrant expression of MEG3 has been shown in various cancers. The purpose of this study is to evaluate the effect of MEG3 on glioma cells and the use of potential chemotherapeutics in glioma by modulating MEG3 expression. Cell viability, migration and chemosensitivity were assayed. Cell death was evaluated in MEG3 overexpressing and MEG3 suppressed cells. MEG3 expression was compared in patient-derived glioma cells concerning IDH1 mutation and WHO grades. Silencing of MEG3 inhibited cell proliferation and reduced cell migration while overexpression of MEG3 promoted proliferation in glioma cells. MEG3 inhibition improved the chemosensitivity of glioma cells to 5-fluorouracil (5FU) but not to navitoclax. On the other hand, there is no significant effect of MEG3 expression on temozolamide (TMZ) treatment which is a standard chemotherapeutic agent in glioma. Suppression of the MEG3 gene in patient-derived oligodendroglioma cells also showed the same effect whereas glioblastoma cell proliferation and chemosensitivity were not affected by MEG3 inhibition. Further, as a possible cell death mechanism of action apoptosis was investigated. Although MEG3 is a widely known tumour suppressor gene and its loss is associated with several cancer types, here we reported that MEG3 inhibition can be used for improving the efficiency of known chemotherapeutic drug sensitivity. We propose that the level of MEG3 should be evaluated in the treatment of different glioma subtypes that are resistant to effective drugs to increase the potential effective drug applications.  相似文献   

5.
The receptor protein tyrosine phosphatase PTPµ has a cell‐adhesion molecule‐like extracellular segment and a catalytically active intracellular segment. This structure gives PTPµ the ability to transduce signals in response to cell–cell adhesion. Full‐length PTPµ is down‐regulated in glioma cells by proteolysis which is linked to increased migration of these cells in the brain. To gain insight into the substrates PTPµ may be dephosphorylating to suppress glioma cell migration, we used a substrate trapping method to identify PTPµ substrates in tumor cell lines. We identified both PKCδ and PLCγ1 as PTPµ substrates. As PLCγ1 activation is linked to increased invasion of cancer cells, we set out to determine whether PTPµ may be upstream of PLCγ1 in regulating glioma cell migration. We conducted brain slice assays using U87‐MG human glioma cells in which PTPµ expression was reduced by shRNA to induce migration. Treatment of the same cells with PTPµ shRNA and a PLCγ1 inhibitor prevented migration of the cells within the brain slice. These data suggest that PLCγ1 is downstream of PTPµ and that dephosphorylation of PLCγ1 is likely to be a major pathway through which PTPµ suppresses glioma cell migration. J. Cell. Biochem. 112: 39–48, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
MicroRNAs (miRNAs) 是一类长度约为22 nt的非编码的调控性小RNA,它们在诸多的生命活动中发挥重要作用,如参与调控细胞的增殖、分化、凋亡以及肿瘤的发生发展. MicroRNA-449a/b (miR 449a/b) 是脊椎动物中进化保守的miRNA,作为抑癌基因,参与了许多癌症的发生过程,但其在结肠癌中的作用尚不清楚. 本文利用实时荧光定量技术研究了miR-449a/b在结肠癌组织中的表达. 利用双荧光素酶报告基因检测系统及Western印迹鉴定miR-449a/b的靶基因. 应用MTS法和Transwell分别检测miR-449a/b对结肠癌细胞增殖和迁移的影响. 检测组蛋白乙酰化酶抑制剂曲古菌素A (trichostatin A, TSA) 对结肠癌细胞中miR-449a/b表达的影响. 研究结果表明:与正常结肠组织相比,miR-449a/b在结肠癌组织中低表达;miR 449a/b能够结合到FRA-1 mRNA 3′-非翻译区 (3′-untranslated region, 3′-UTR),从而抑制结肠癌细胞HCT116内源Fra 1的表达;外源转染miR-449a/b明显抑制结肠癌细胞HCT116的增殖和迁移;并且TSA处理能够诱导结肠癌细胞HCT116中miR-449a/b的表达. 以上结果提示: miR-449a/b可能通过抑制靶基因Fra-1的表达,进而抑制结肠癌细胞的增殖和迁移.  相似文献   

7.
8.
Glioma is a common malignant tumour of the brain. In this study, we aimed to investigate diagnostic biomarkers and its role in glioma. Weighted gene co-expression network analysis (WGCNA) and Cytoscape software were used to screen the marker genes in glioma. RT-qPCR and Western blotting methods were performed to determine the expression of PAICS, ERCC1 and XPA genes in glioma tissues. Expression level of PAICS in different grades of glioma was examined by immunohistochemistry. CCK8 and Colony formation assays were used to detect cell proliferation. Cell adhesion assay was used to detect adhesion ability. Wound healing and transwell tests were used to detect cell migration ability. Flow cytometry was used to detect cell cycle and apoptosis. According to the predicted co-expression network, we identified the hub gene PAICS. Furthermore, we observed that PAICS expression level was up-regulated in glioma tissues compared with normal tissues, and the expression level was correlated with the grade of glioma. Moreover, we found PAICS can promote glioma cells proliferation and migration in vitro. Flow cytometry results showed that si-PAICS cells were stalled at the G1 phase compared with the si-NC cells and knocking down PAICS expression can increase apoptotic rate. PAICS can regulate the mRNA and protein levels of nucleotide excision repair pathway core genes ERCC1 and XPA. l -aspartic acid can affect the expression of PAICS and then inhibit glioma cell proliferation. Our results indicated that PAICS can promote glioma proliferation and migration. PAICS may act as a potential diagnostic marker and a therapeutic target for glioma.  相似文献   

9.
ABCE1是ATP结合盒蛋白亚家族成员之一,在病毒感染,细胞增殖,抗凋亡,翻译起始和核糖体生物发生等过程中有重要的作用。为了探讨ABCE1对神经胶质瘤细胞U251增殖、迁移和凋亡的作用,本研究通过实时荧光定量PCR和免疫印迹实验检测ABCE1在神经胶质瘤细胞和正常胶质细胞中的mRNA和蛋白质表达水平,结果发现ABCE1在神经胶质瘤细胞U251中的表达高于在正常胶质细胞中的表达。利用siRNA靶向沉默ABCE1后,神经胶质瘤细胞U251中ABCE1 mRNA和蛋白的表达水平均显著减少,细胞的凋亡率显著提高,细胞增殖和迁移明显受到抑制,而且细胞对化疗药物替莫唑胺的敏感性增强。此外,沉默ABCE1后,Bcl-2的mRNA和蛋白质表达水平显著下调,而Bax的mRNA和蛋白质表达水平显著上调。以上研究结果表明,ABCE1与神经胶质瘤细胞的增殖和迁移密切相关,通过siRNA靶向沉默ABCE1基因可显著降低U251细胞的增殖和迁移能力。  相似文献   

10.
The effect of vitamin E on proliferation, integrin expression, adhesion, and migration in human glioma cells has been studied. gamma-tocopherol at 50 microM concentration exerted more inhibitory effect than alpha-tocopherol at the same concentration on glioma cell proliferation. Integrin alpha5 and beta1 protein levels were increased upon both alpha- and gamma-tocopherol treatments. In parallel, an increase in the alpha5beta1 heterodimer cell surface expression was observed. The tocopherols inhibited glioma cell-binding to fibronectin where gamma-tocopherol treatment induced glioma cell migration. Taken together, the data reported here are consistent with the notion that the inhibition of glioma cell proliferation induced by tocopherols may be mediated, at least in part, by an increase in integrin alpha5 and beta1 expression. Cell adhesion is also negatively affected by tocopherols, despite a small increase in the surface appearance of the alpha5beta1 heterodimer. Cell migration is stimulated by gamma-tocopherol. It is concluded that alpha5 and beta1 integrin expression and surface appearance are not sufficient to explain all the observations and that other integrins or in general other factors may be associated with these events.  相似文献   

11.
BackgroundGlioma is the most common cancer in the central nervous system. Previous studies have revealed that the miR-376 family is crucial in tumour development; however, its detailed mechanism in glioma is not clear.MethodsCellular mRNA or protein levels of miR-376a, SIRT1, VEGF and YAP1 were detected via qRT–PCR or Western blotting. We analysed the proliferation, angiogenesis and migration abilities of glioma cell lines using colony formation, tube formation and Transwell assays. A luciferase assay was performed to determine whether miR-376a could recognize SIRT1 mRNA. Xenograft experiments were performed to analyse the tumorigenesis capacity of glioma cell lines in nude mice. The angiogenesis marker CD31 in xenograft tumours was detected via immunohistochemistry (IHC).ResultsmiR-376a expression was lower in glioma cells than in normal astrocytes. miR-376a mimic inhibited SIRT1, YAP1, and VEGF expression and suppressed the proliferation, migration and angiogenesis abilities of the glioma cell lines LN229 and A172, whereas miR-376a inhibitor exerted the opposite functions. In a luciferase assay, miR-376a inhibited the luciferase activity of WT-SIRT1. SIRT1 overexpression upregulated YAP1 and VEGF in glioma cells and promoted proliferation, migration and angiogenesis. Xenografts with ectopic miR-376a expression exhibited lower volumes and weights and a slower growth curve. Overexpression of miR-376a inhibited YAP1/VEGF signalling and angiogenesis by inhibiting SIRT1 in xenograft tissues.ConclusionmiR-376a directly targets and inhibits SIRT1 in glioma cells. Downregulation of SIRT1 resulted in decreased YAP1 and VEGF signalling, which led to suppression of glioma cell proliferation, migration and angiogenesis.  相似文献   

12.
13.
Neurokinin-1 receptor (NK1R) occurs naturally on human glioblastomas. Its activation mediates glioma cell proliferation. However, it is unknown whether NK1R is directly involved in tumor cell migration. In this study, we found human hemokinin-1 (hHK-1), via NK1R, dose-dependently promoted the migration of U-251 and U-87 cells. In addition, we showed that hHK-1 enhanced the activity of MMP-2 and the expression of MMP-2 and MT1-matrix metalloproteinase (MMP), which were responsible for cell migration, because neutralizing the MMPs with antibodies decreased cell migration. The involved mechanisms were then investigated. In U-251, hHK-1 induced significant calcium efflux; phospholipase C inhibitor U-73122 reduced the calcium mobilization, the up-regulation of MMP-2 and MT1-MMP, and the cell migration induced by hHK-1, which meant the migration effect of NK1R was mainly mediated through the Gq-PLC pathway. We further demonstrated that hHK-1 boosted rapid phosphorylation of ERK, JNK, and Akt; inhibition of ERK and Akt effectively reduced MMP-2 induction by hHK-1. Meanwhile, inhibition of ERK, JNK, and Akt reduced the MT1-MMP induction. hHK-1 stimulated significant phosphorylation of p65 and c-JUN in U-251. Reporter gene assays indicated hHK-1 enhanced both AP-1 and NF-κB activity; inhibition of ERK, JNK, and Akt dose-dependently suppressed the NF-κB activity; only the inhibition of ERK significantly suppressed the AP-1 activity. Treatment with specific inhibitors for AP-1 or NF-κB strongly blocked the MMP up-regulation by hHK-1. Taken together, our data suggested NK1R was a potential regulator of human glioma cell migration by the up-regulation of MMP-2 and MT1-MMP.  相似文献   

14.
Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3′-untranslated region (3′-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.  相似文献   

15.
Accumulating evidence suggests that a unique set of receptor tyrosine kinases, known as discoidin domain receptors (DDRs), plays a role in cancer progression by interacting with the surrounding collagen matrix. In this study, we investigated the expression and role of DDR1 in human gastric cancer metastasis. Proliferation, migration, invasion, and tube formation assays were conducted in DDR1-expressing MKN74 gastric cancer cells and corresponding DDR1-silenced cells. The effects of DDR1 on tumor growth and metastasis were examined in orthotopically implanted and experimental liver metastasis models in nude mice. The expression of DDR1 in surgical specimens was analyzed by immunohistochemistry. DDR1 was expressed in human gastric cancer cell lines, and its expression in human gastric tumors was associated with poor prognosis. Among seven gastric cancer cell lines, MKN74 expressed the highest levels of DDR1. DDR1-silenced MKN74 cells showed unaltered proliferation activity. In contrast, migration, invasion, and tube formation were significantly reduced. When examined in an orthotopic nude mouse model, DDR1-silenced implanted tumors significantly reduced angiogenesis and lymphangiogenesis, thereby leading to reductions in lymph node metastasis and liver metastasis. In a model of experimental liver metastasis, DDR1-silenced cells almost completely inhibited liver colonization and metastasis. DDR1 deficiency led to reduced expression of the genes encoding vascular endothelial growth factor (VEGF)-A, VEGF-C, and platelet-derived growth factor-B. These results suggest that DDR1 is involved in gastric cancer tumor progression and that silencing of DDR1 inhibits multiple steps of the gastric cancer metastasis process.  相似文献   

16.
Background/aim: MiR-125b plays an important role in breast cancer. The current study was to explore the expression and function of miR-125b in triple negative breast cancer cells. Materials and methods: The expression of miR-125b in human TNBC samples and cell lines were examined by qRT-PCR. MTT, scratch assays and transwell assays were utilized to observe the proliferation, migration and invasion ability. MiR-125b’s target gene and downstream signaling pathways were investigated by Luciferase Reporter Assays, qRT-PCR, immunofluorescence assays and western bolt. Results: MiR-125b was highly expressed in human TNBC tissues and cell lines. Inhibiting miR-125b expression suppressed the proliferation, cell migration and invasion. The three-prime untranslated region (3´-UTR) of adenomatous polyposis coli (APC) mRNA contains miR-125b binding sites, and inhibiting miR-125b expression suppressed the activity of the intracellular Wnt/β-catenin pathways and EMT. Conclusion: Inhibiting miR-125b regulates the Wnt/β-catenin pathway and EMT to suppress the proliferation and migration of MDA-MB-468 TNBC cells.  相似文献   

17.
Breast cancer metastasis suppressor 1 (BRMS1) is a metastasis suppressor gene in several solid tumors. However, the expression and function of BRMS1 in glioma have not been reported. In this study, we investigated whether BRMS1 play a role in glioma pathogenesis. Using the tissue microarray technology, we found that BRMS1 expression is significantly decreased in glioma compared with tumor adjacent normal brain tissue (P<0.01, χ2 test) and reduced BRMS1 staining is associated with WHO stages (P<0.05, χ2 test). We also found that BRMS1 was significantly downregulated in glioma cell lines compared to normal human astrocytes (P<0.01, χ2 test). Furthermore, we demonstrated that BRMS1 overexpression inhibited glioma cell invasion by suppressing uPA, NF-κB, MMP-2 expression and MMP-2 enzyme activity. Moreover, our data showed that overexpression of BRMS1 inhibited glioma cell migration and adhesion capacity compared with the control group through the Src-FAK pathway. Taken together, this study suggested that BRMS1 has a role in glioma development and progression by regulating invasion, migration and adhesion activities of cancer cells.  相似文献   

18.
Tumor necrosis factor receptor-associated factor 6 (TRAF6), which plays an important role in inflammation and immune response, is an essential adaptor protein for the NF-κB (nuclear factor κB) signaling pathway. Recent studies have shown that TRAF6 played an important role in tumorigenesis and invasion by suppressing NF-κB activation. However, up to now, the biologic role of TRAF6 in glioma has still remained unknown. To address the expression of TRAF6 in glioma cells, four glioma cell lines (U251, U-87MG, LN-18, and U373) and a non-cancerous human glial cell line SVG p12 were used to explore the protein expression of TRAF6 by Western blot. Our results indicated that TRAF6 expression was upregulated in human glioma cell lines, especially in metastatic cell lines. To investigate the role of TRAF6 in cell proliferation, apoptosis, invasion, and migration of glioma, we generated human glioma U-87MG cell lines in which TRAF6 was either overexpressed or depleted. Subsequently, the effects of TRAF6 on cell viability, cell cycle distribution, apoptosis, invasion, and migration in U-87MG cells were determined with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry analysis, transwell invasion assay, and wound-healing assay. The results showed that knockdown of TRAF6 could decrease cell viability, suppress cell proliferation, invasion and migration, and promote cell apoptosis, whereas overexpression of TRAF6 displayed the opposite effects. In addition, the effects of TRAF6 on the expression of phosphor-NF-κB (p-p65), cyclin D1, caspase 3, and MMP-9 were also probed. Knockdown of TRAF6 could lower the expression of p-p65, cyclin D1, and MMP-9, and raise the expression of caspase 3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, invasion, and migration of U-87MG cell, as well as inhibition of apoptosis of U-87MG cell by abrogating activation of NF-κB.  相似文献   

19.
Enolase‐phosphatase 1 (ENOPH1), a newly identified enzyme involved in l ‐methionine biosynthesis, is associated with anxiety and depression. In this study, ENOPH1 was found to play a crucial role in promoting the proliferation and migration of glioma cells. Among high‐grade glioma patients, the overall survival of the group showing high ENOPH1 expression was shorter than that of the group showing low ENOPH1 expression. ENOPH1 knockdown inhibited glioma cell proliferation and migration. In parallel, ENOPH1 knockdown suppressed tumor growth capacity and prolonged survival in an orthotopic glioma model. Mechanistically, we found that ENOPH1 activates the PI3K/AKT/mTOR signaling pathway by regulating THEM4. In conclusion, ENOPH1 is an important mediator that promotes glioma cell proliferation and migration.  相似文献   

20.
Integrin-linked kinase (ILK) is a ubiquitously expressed serine/threonine protein kinase that has been implicated in cancer development, progression and metastasis. The aim of the present study was to characterize the role of ILK in glioma cell invasion and migration. We generated a recombinant eukaryotic expression vector containing the human ILK gene and transfected it into human glioma SHG-44 cells. Real-time PCR and western blot analysis were used to identify the stable transformants. The wound healing and Transwell invasion assays showed that ectopic overexpression of ILK in SHG-44 cells significantly promoted their migration and invasion capabilities in culture. This was accompanied by a decrease in expression of E-cadherin and an increase in expression of Snail and Slug. Moreover, the decrease in E-cadherin expression induced by ILK overexpression was greatly restored by the nuclear factor-κB (NF-κB) inhibitor BAY 11-7028 or small interfering RNA targeting NF-κB p65, indicating an involvement of NF-κB in ILK-induced down-regulation of E-cadherin. In conclusion, our data underscore a novel role for ILK in glioma invasion and metastasis processes, implicating potential for therapeutic interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号