首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical investigation of the freshwater microalga Chlorella sorokiniana led to the isolation of a monogalactosyldiacylglycerol (MGDG)-rich fraction possessing dose-dependent inhibitory activity against pancreatic lipase activity. The MGDG-rich fraction contains 12 MGDGs identified by LC/HRMS analysis. Among them, three MGDGs were new compounds, namely, (2S)-1-O-(7Z,10Z-hexadecadienoyl)-2-O-(7Z,10Z,13Z-hexadecatrienoyl)-3-O-β-D-galactopyranosylglycerol (1), (2S)-1-O-linoleoyl-2-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (6), and (2S)-1-O-oleoyl-2-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (8). The major galactolipids were isolated by semipreparative HPLC and tested for their effect toward pancreatic lipase inhibitory activity. All the tested MGDGs showed significant reduction of pancreatic lipase activity indicating possible beneficial use for management of lipase-related disorders such as obesity.  相似文献   

2.
Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aβ1–42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aβ also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aβ1–42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aβ1–42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aβ1–42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aβ1–42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3β. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.  相似文献   

3.
A series of novel 2-(chromon-3-yl)-4,5-diphenyl-1H-imidazoles (4a-h) were synthesized by one pot condensation of substituted 3-formylchromones (1a-h), benzil (2) and ammonium acetate (3) in refluxing acetic acid at 110 °C under N2 atmosphere. Allylation of compounds 4a-h with allyl bromide in the presence of fused K2CO3 furnished N-allyl-2-(chromon-3-yl)-4,5-diphenyl-1H-imidazoles (6a-h). The synthesized compounds were characterized spectroscopically and evaluated for in vitro antimicrobial activity against various pathogenic bacterial and fungal strains by disc diffusion method. Compounds bearing electron withdrawing substituents such as bromo (4f) showed significant inhibitory activity against S. cerevisiae (MIC 1.4 μg/ml) and 4g containing chloro substituent, displayed more inhibitory potential against C. albicans (MIC 1.5), as compared to the standard drugs. Compounds 6a and 4c exhibit remarkable inhibitory potential against B. subtilis with MIC 0.98 and 1.23, respectively. The time kill assay for active compound 6a was performed by viable cell count (VCC) method to elucidate the microbicidal nature of 2-(chromon-3-yl)imidazoles. A molecular docking study of most active compounds with target ‘lanosterol 14α-demethylase’ (CYP51) was performed to unravel the mode of antifungal action.  相似文献   

4.
Chiral cyclic β-hydroxy ketones represent key motifs in the production of natural products of biological interest. Although the molecules are structurally simple, they require cumbersome synthetic steps to get access to them and their synthesis remains a challenge in organic chemistry. In this report, we describe a straightforward approach to enantiomerically enriched (R)- and (S)-3-hydroxycyclopentanone 2a, (R)- and (S)-3-hydroxycyclohexanone 2b, and (R)- and (S)-3-hydroxycycloheptanone 2c involving a transesterification resolution of the racemates using whole cells of marine microorganisms as catalysts and vinyl acetate the acyl donor and solvent. Twenty-six strains from a wide collection of isolates from marine sediments were screened, and seven strains were found to markedly catalyze the resolution in an asymmetric fashion. Using the strain Serratia sp., (R)-2a was isolated in 27% yield with 92% ee and (S)-2a in 65% yield with 43% ee, corresponding to an E-value of 37; (R)-2b was isolated in 25% yield with 91% ee and (S)-2b in 67% yield with 39% ee, corresponding to an E-value of 40; and (R)-2c was isolated in 30% yield with 96% ee and (S)-2c in 63% yield with 63% ee, corresponding to an E-value of 75.  相似文献   

5.

Key message

Leaf relative water content, leaf area, leaf fresh weight, and SPAD chlorophyll meter readings along with Co - rbcL and Co - rbcS expression can be used for evaluating Camellia oleifera responses to combined drought and heat stress and subsequent recovery after rainfall events.

Abstract

Leaf characteristics, soluble protein and total soluble sugar contents as well as Rubisco-related gene expression in three cultivars of C. oleifera were measured during a combined drought and heat stress period and after subsequent rainfall events. Leaf relative water content (RWC) was significantly correlated with leaf area (LA), leaf fresh weight (FW), SPAD chlorophyll meter readings, and the levels of Co-rbcL and Co-rbcS expression. Results suggest that leaf RWC, LA, leaf FW, SPAD readings together with Co-rbcL and Co-rbcS expression can be used for evaluating responses of C. oleifera cultivars to combined drought and heat stress and subsequent recovery after rainfall events. Rubisco activase might be used for evaluating plant recovery after rainfall. This study identified cultivars differing in tolerance to the combined stress and recovery. Information derived from this study should be valuable for improving survivability and productivity of C. oleifera cultivars.
  相似文献   

6.
7.

Key message

Molecular analysis of a zeta subfamily GST gene from T. hispida involved in ABA and methyl viologen tolerance in transgenic Arabidopsis and Tamarix.

Abstract

Glutathione S-transferase (GST) genes are important for the improvement of plant abiotic stress tolerance, and our previous study demonstrated that the ThGSTZ1 gene from Tamarix hispida improves plant salt and drought tolerance. To further understand the role of ThGSTZ1 in the response of plants to abscisic acid (ABA) and oxidative stress, three ThGSTZ1-overexpressing transgenic Arabidopsis thaliana lines were analyzed in the current study. The results showed that the transgenic lines exhibited higher biomass accumulation, higher activities of GST and other protective enzymes, and less reactive oxygen species (ROS) and cell damage than wild-type (WT) plants under ABA and methyl viologen (MV) stress. In addition, the analysis of a transgenic T. hispida line transiently expressing ThGSTZ1 confirmed these results. The activities of GST, glutathione peroxidase, and superoxide dismutase were markedly higher in the ThGSTZ1-overexpressing lines compared with the control lines under both ABA and MV treatments, and the transgenic lines also exhibited a lower degree of electrolyte leakage (EL) and a decreased H2O2 content. All these results suggested that ThGSTZ1 can also improve plant ABA and oxidation tolerance by regulating ROS metabolism and that ThGSTZ1 represents an excellent candidate gene for molecular breeding to increase plant stress tolerance.
  相似文献   

8.
An increase in oxidative stress is a key factor responsible for neurotoxicity induction and cell death leading to neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. Plant phenolics exert diverse bioactivities i.e., antioxidant, anti-inflammatory, and neuroprotective effects. Herein, phenolic compounds, namely protocatechuic aldehyde (PCA) constituents of Hydnophytum formicarum Jack. including vanillic acid (VA) and trans-ferulic acid (FA) found in Spilanthes acmella Murr., were explored for anti-neurodegenerative properties using an in vitro model of oxidative stress-induced neuroblastoma SH-SY5Y cells. Exposure of the neuronal cells with H2O2 resulted in the decrease of cell viability, but increasing in the level of reactive oxygen species (ROS) together with morphological changes and inducing cellular apoptosis. SH-SY5Y cells pretreated with 5 µM of PCA, VA, and FA were able to attenuate cell death caused by H2O2-induced toxicity, as well as decreased ROS level and apoptotic cells after 24 h of treatment. Pretreated SH-SY5Y cells with phenolic compounds also helped to upregulate H2O2-induced depletion of the expressions of sirtuin-1 (SIRT1) and forkhead box O (FoxO) 3a as well as induce the levels of antioxidant (superoxide dismutase (SOD) 2 and catalase) and antiapoptotic B-cell lymphoma 2 (Bcl-2) proteins. The findings suggest that these phenolics might be promising compounds against neurodegeneration.  相似文献   

9.

Key message

The QTL qCTB10 - 2 controlling cold tolerance at the booting stage in rice was delimited to a 132.5 kb region containing 17 candidate genes and 4 genes were cold-inducible.

Abstract

Low temperature at the booting stage is a major abiotic stress-limiting rice production. Although some QTL for cold tolerance in rice have been reported, fine mapping of those QTL effective at the booting stage is few. Here, the near-isogenic line ZL31-2, selected from a BC7F2 population derived from a cross between cold-tolerant variety Kunmingxiaobaigu (KMXBG) and the cold-sensitive variety Towada, was used to map a QTL on chromosome 10 for cold tolerance at the booting stage. Using BC7F3 and BC7F4 populations, we firstly confirmed qCTB10-2 and gained confidence that it could be fine mapped. QTL qCTB10-2 explained 13.9 and 15.9% of the phenotypic variances in those two generations, respectively. Using homozygous recombinants screened from larger BC7F4 and BC7F5 populations, qCTB10-2 was delimited to a 132.5 kb region between markers RM25121 and MM0568. 17 putative predicted genes were located in the region and only 5 were predicted to encode expressed proteins. Expression patterns of these five genes demonstrated that, except for constant expression of LOC_Os10g11820, LOC_Os10g11730, LOC_Os10g11770, and LOC_Os10g11810 were highly induced by cold stress in ZL31-2 compared to Towada, while LOC_Os10g11750 showed little difference. Our results provide a basis for identifying the genes underlying qCTB10-2 and indicate that markers linked to the qCTB10-2 locus can be used to improve the cold tolerance of rice at the booting stage by marker-assisted selection.
  相似文献   

10.

Key message

Rsc15, a novel locus underlying soybean resistance to SMV, was fine mapped to a 95-kb region on chromosome 6. The Rsc15- mediated resistance is likely attributed to the gene GmPEX14 , the relative expression of which was highly correlated with the accumulation of H 2 O 2 along with the activities of POD and CAT during the early stages of SMV infection in RN-9.

Abstract

Soybean mosaic virus (SMV) causes severe yield losses and seed quality deterioration in soybean [Glycine max (L.) Merr.] worldwide. A series of single dominant SMV resistance genes have been identified on respective soybean chromosomes 2, 13 and 14, while one novel locus, Rsc15, underlying resistance to the virulent SMV strain SC15 from soybean cultivar RN-9 has been recently mapped to a 14.6-cM region on chromosome 6. However, candidate gene has not yet been identified within this region. In the present study, we aimed to fine map the Rsc15 region and identify candidate gene(s) for this invaluable locus. High-resolution fine-mapping revealed that the Rsc15 gene was located in a 95-kb genomic region which was flanked by the two simple sequence repeat (SSR) markers SSR_06_17 and BARCSOYSSR_06_0835. Allelic sequence comparison and expression profile analysis of candidate genes inferred that the gene Glyma.06g182600 (designated as GmPEX14) was the best candidate gene attributing for the resistance of Rsc15, and that genes encoding receptor-like kinase (RLK) (i.e., Glyma.06g175100 and Glyma.06g184400) and serine/threonine kinase (STK) (i.e., Glyma.06g182900 and Glyma.06g183500) were also potential candidates. High correlations were established between the relative expression level of GmPEX14 and the hydrogen peroxide (H2O2) concentration and activities of catalase (CAT) and peroxidase (POD) during the early stages of SMV-SC15 infection in RN-9. The results of the present study will be useful in marker-assisted breeding for SMV resistance and will lead to further understanding of the molecular mechanisms of host resistance against SMV.
  相似文献   

11.

Key message

The cucumber male sterility gene ms - 3 was fine mapped in a 76 kb region harboring an MMD1 -like gene Csa3M006660 that may be responsible for the male sterile in cucumber.

Abstract

A cucumber (Cucumis sativus L.) male sterile mutant (ms-3) in an advanced-generation inbred line was identified, and genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, ms-3, which was stably inherited. Histological studies suggested that the main cause of the male sterility was defective microsporogenesis, resulting in no tetrad or microspores being formed. Bulked segregant analysis (BSA) and genotyping of an F2 population of 2553 individuals were employed used to fine map ms-3, which was delimited to a 76 Kb region. In this region, a single non-synonymous SNP was found in the Csa3M006660 gene locus, which was predicted to result in an amino acid change. Quantitative RT-PCR analysis of Csa3M006660 was consistent with the fact that it plays a role in the early development of cucumber pollen. The protein encoded by Csa3M006660 is predicted to be homeodomain (PHD) finger protein, and the high degree of sequence conservation with homologs from a range of plant species further suggested the importance of the ms-3 non-synonymous mutation. The data presented here provide support for Csa3M006660 as the most likely candidate gene for Ms-3.
  相似文献   

12.
A strain of the fungus Gliocladium roseum YMF1.00133 was found to secrete nematicidal metabolites against nematodes Panagrellus redivivus, Caenothabditis elegans and Bursaphelenchus xylophilus in experiments searching for nematicidal fungi. Through bioassay-guided fractionations, a unique trioxopiperazine alkaloid, gliocladin C (compound 1), and an alkylane resorcinol, 5-n-heneicosylresorcinol (compound 2) were obtained from the methanol extract of the fungus and determined by single-crystal X-ray analysis and spectroscopic data. In vitro immersion experiments showed that the ED50 values of compounds 1 and 2 after 24 h incubation were 15 and 30 μg/mL against C. elegans, 50 and 80 μg/mL against P. redivivus, and 200 and 180 μg/mL against B. xylophilus, respectively. The X-ray diffraction data of compound 1 and the nematicidal activity of compounds 1 and 2 were reported for the first time.  相似文献   

13.
Four new imidazole-based ligands, 4-((1H-imidazol-4-yl)methyl)-2-phenyl-4,5-dihydrooxyzole (L OL 1), 4-((1H-imidazol-4-yl)methyl)-2-(tert-butyl)-4,5-dihydrooxyzole (L OL 2), 4-((1H-imidazol-4-yl)methyl)-2-methyl-4,5-dihydrooxyzole (L OL 3), and N-(2,2-dimethylpropylidene)-2-(1-trityl-1H-imidazol-4-yl-)ethyl amine (L imz 1), have been synthesized. The corresponding copper(I) complexes [Cu(I)(L OL 1)(CH3CN)]PF6 (CuL OL 1), [Cu(I)(L OL 2)(CH3CN)]PF6 (CuL OL 2), [Cu(I)(L OL 3)(CH3CN)]PF6 (CuL OL 3), [Cu(I)(L imz 1)(CH3CN)2]PF6 (CuL imz 1) as well as the Cu(I) complex derived from the known ligand bis(1-methylimidazol-2-yl)methane (BIMZ), [Cu(I)(BIMZ)(CH3CN)]PF6 (CuBIMZ), are screened as catalysts for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC-H2) to 3,5-di-tert-butylquinone (3,5-DTBQ). The primary reaction product of these oxidations is 3,5-di-tert-butylsemiquinone (3,5-DTBSQ) which slowly converts to 3,5-DTBQ. Saturation kinetic studies reveal a trend of catalytic activity in the order CuL OL 3 ≈ CuL OL 1 > CuBIMZ > CuL OL 2 > CuL imz 1. Additionally, the catalytic activity of the copper(I) complexes towards the oxygenation of monophenols is investigated. As substrates 2,4-di-tert-butylphenol (2,4-DTBP-H), 3-tert-butylphenol (3-TBP-H), 4-methoxyphenol (4-MeOP-H), N-acetyl-l-tyrosine ethyl ester monohydrate (NATEE) and 8-hydroxyquinoline are employed. The oxygenation products are identified and characterized with the help of UV/Vis and NMR spectroscopy, mass spectrometry, and fluorescence measurements. Whereas the copper complexes with ligands containing combinations of imidazole and imine functions or two imidazole units (CuL imz 1 and CuBIMZ) are found to exhibit catalytic tyrosinase activity, the systems with ligands containing oxazoline just mediate a stoichiometric conversion. Correlations between the structures of the complexes and their reactivities are discussed.  相似文献   

14.
A new anti-Prelog short-chain dehydrogenase/reductase (SDR) encoding gene lcsdr was cloned from Lactobacillus composti DSM 18527, and heterologously expressed in Escherichia coli. LcSDR is nicotinamide adenine dinucleotide phosphate (NADPH)-dependent and has a molecular weight of approximately 30 kDa. The optimal pH and temperature were 6.5 and 30?°C, respectively. The maximal reaction rate Vmax was 133.9 U mg?1; the Michaelis–Menten constant K m of LcSDR were 0.345 mM for acetophenone (1a), and 0.085 mM for NADPH. Through introducing an EsGDH-catalyzed NADPH regeneration system, a biocatalytic process for (R)-1-phenylethanol ((R)-1b) was developed with outstanding time–space yield. Under the optimized conditions, 50 g l?1 1a was converted to (R)-1b in 2 h with a yield of 93.8%, enantiomeric excess of product (e.e.p) above 99% and space–time yield of 562.8 g l?1 d?1.  相似文献   

15.

Main conclusion

Paper-bagging treatment can transform non-transcribed MdMYB1 - 2 and MdMYB1 - 3 alleles into transcribed alleles through epigenetic regulations, resulting in the red pigmentation of a normally non-red apple cultivar ‘Mutsu.’ Anthocyanin biosynthesis in apples is regulated by MdMYB1/A/10, an R2R3-Type MYB gene. ‘Mutsu,’ a triploid apple cultivar harboring non-transcribed MdMYB1-2 and MdMYB1-3 alleles, retains green skin color under field conditions. However, it can show red/pink pigmentation under natural or artificial ultraviolet-B (UV-B) light exposure after paper-bagging and bag removal treatment. In the present study, we found that in ‘Mutsu,’ paper bagging-induced red pigmentation was due to the activation of non-transcribed MdMYB1-2/-3 alleles, which triggered the expression of downstream anthocyanin biosynthesis genes in a UV-B-dependent manner. By monitoring the epigenetic changes during UV-B-induced pigmentation, no significant differences in DNA methylation and histone modifications in the 5′ upstream region of MdMYB1-2/-3 were recorded between the UV-B-treated fruit skin (red) and the fruit skin treated only by white light (green). In contrast, bag treatment lowered the DNA methylation in this region of MdMYB1-2/-3 alleles. Similarly, higher levels of histone H3 acetylation and trimethylation of H3 tail at lysine 4, and lower level of trimethylation of H3 tail at lysine 27 were observed in the 5′ upstream region of MdMYB1-2/-3 in the skin of the fruit immediately after bag removal. These results suggest that bagging treatment can induce epigenetic changes, facilitating the binding of trans factor(s) to MdMYB1-2/-3 alleles, resulting in the activation of these MYBs after bag removal.
  相似文献   

16.

Key message

Using map-based cloning, we delimited the Ms - cd1 gene responsible for the male sterile phenotype in B. oleracea to an approximately 39-kb fragment. Expression analysis suggests that a new predicted gene, a homolog of the Arabidopsis SIED1 gene, is a potential candidate gene.

Abstract

A dominant genic male sterile (DGMS) mutant 79-399-3 in Brassica oleracea (B. oleracea) is controlled by a single gene named Ms-cd1, which was genetically mapped on chromosome C09. The derived DGMS lines of 79-399-3 have been successfully applied in hybrid cabbage breeding and commercial hybrid seed production of several B. oleracea cultivars in China. However, the Ms-cd1 gene responsible for the DGMS has not been identified, and the molecular basis of the DGMS is unclear, which then limits its widespread application in hybrid cabbage seed production. In the present study, a large BC9 population with 12,269 individuals was developed for map-based cloning of the Ms-cd1 gene, and Ms-cd1 was mapped to a 39.4-kb DNA fragment between two InDel markers, InDel14 and InDel24. Four genes were identified in this region, including two annotated genes based on the available B. oleracea annotation database and two new predicted open reading frames (ORFs). Finally, a newly predicted ORF designated Bol357N3 was identified as the candidate of the Ms-cd1 gene. These results will be useful to reveal the molecular mechanism of the DGMS and develop more practical DGMS lines with stable male sterility for hybrid seed production in cabbage.
  相似文献   

17.
18.

Key message

We cloned TaSdr - A1 gene, and developed a gene-specific marker for TaSdr - A1 . A QTL for germination index at the TaSdr - A1 locus was identified in the Yangxiaomai/Zhongyou 9507 RIL population.

Abstract

Pre-harvest sprouting (PHS) affects yield and end-use quality in bread wheat (Triticum aestivum L.). In the present study we found an association between the TaSdr-A1 gene and PHS tolerance in bread wheat. TaSdr-A1 on chromosome 2A was cloned using a homologous cloning approach. Sequence analysis of TaSdr-A1 revealed an SNP at position 643, with the G allele being present in genotypes with lower germination index (GI) values and A in those with higher GI. These alleles were designated as TaSdr-A1a and TaSdr-A1b, respectively. A cleaved amplified polymorphism sequence (CAPS) marker Sdr2A based on the SNP was developed, and linkage mapping and QTL analysis were conducted to confirm the association between TaSdr-A1 and seed dormancy. Sdr2A was located in a 2.9 cM interval between SSR markers Xgwm95 and Xgwm372. A QTL for GI at the TaSdr-A1 locus explained 6.6, 7.3, and 8.2 % of the phenotypic variances in a Yangxiaomai/Zhongyou 9507 RIL population grown at Beijing, Shijiazhuang, and the averaged data from the two environments, respectively. Two sets of Chinese wheat cultivars used for validating the TaSdr-A1 polymorphism and the corresponding gene-specific marker Sdr2A showed that TaSdr-A1 was significantly associated with GI. Among 29 accessions with TaSdr-A1a, 24 (82.8 %) were landraces, indicating the importance of Chinese wheat landraces as sources of PHS tolerance. This study identified a novel PHS resistance allele TaSdr-A1a mainly presented in Chinese landraces and it is likely to be the causal gene for QPhs.ccsu-2A.3, providing new information for an understanding of seed dormancy.
  相似文献   

19.
Four (1, 2, 4 and 6) synthetic quaternary ammonium derivatives of pyranochromenones and (coumarinyloxy)acetamides were synthesized and investigated for their antimicrobial efficacy on MRSA (Methicillin-resistant Staphylococcus aureus), and multi-drug resistant Pseudomonas aeruginosa, Salmonella enteritidis and Mycobacterium tuberculosis H37Rv strain. One of the four compounds screened i.e. N,N,N-triethyl-10-((4,8,8-trimethyl-2-oxo-2,6,7,8-tetrahydropyrano[3,2-g]chromen-10-yl)oxy)decan-1-aminium bromide (1), demonstrated significant activity against S. aureus, P. aeruginosa and M. tuberculosis with MIC value of 16, 35, and 15.62 µg/ml respectively. The cytotoxicity evaluation of compound 1 on A549 cell lines showed it to be a safe antimicrobial molecule, TEM study suggested that the compound led to the rupture of the bacterial cell walls.  相似文献   

20.

Key message

Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition.

Abstract

The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号