首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EP3 is prostaglandin E2 receptor subtype 3 and mediates the activation of several signaling pathways, changing in cAMP levels, calcium mobilization, and activation of phospholipase C. Previous studies demonstrated a direct role for EP3 in various neurodegenerative disorders, such as stroke and Alzheimer disease. However, the distribution and function of EP3 in ICH diseases remain unknown. Here, we demonstrate that EP3 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). From the results of Western blot and immunohistochemistry, we obtained a significant up-regulation of EP3 in neurons adjacent to the hematoma following ICH. Up-regulation of EP3 was found to be accompanied by the increased expression of active caspase-3 and pro-apoptotic Bcl-2-associated X protein (Bax) and decreased expression of anti-apoptotic protein B cell lymphoma-2 (Bcl-2) in vivo and vitro studies. Furthermore, the expression of these three proteins reduced active caspase-3 and Bax expression, while increased Bcl-2 were changed after knocking down EP3 by RNA interference in PC12 cells, further confirmed that EP3 might exert its pro-apoptotic function on neuronal apoptosis. Thus, EP3 may play a role in promoting the neuronal apoptosis following ICH.  相似文献   

2.
RBM5 (RNA-binding motif protein 5), a nuclear RNA binding protein, is known to trigger apoptosis and induce cell cycle arrest by regulating the activity of the tumor suppressor protein p53. However, its expression and function in spinal cord injury (SCI) are still unknown. To investigate whether RBM5 is involved in central nervous system injury and repair, we performed an acute SCI model in adult rats in this study. Our results showed RBM5 was unregulated significantly after SCI, which was accompanied with an increase in the levels of apoptotic proteins such as p53, Bax, and active caspase-3. Immunofluorescent labeling also showed that traumatic SCI induced RBM5 location changes and co-localization with active caspase-3 in neurons. To further probe the role of RBM5, a neuronal cell line PC12 was employed to establish an apoptotic model. Knockdown of RBM5 apparently decreased the level of p53 as well as active caspase-3, demonstrating its pro-apoptotic role in neurons by regulating expressions of p53 and caspase-3. Taken together, our findings indicate that RBM5 promotes neuronal apoptosis through modulating p53 signaling pathway following SCI.  相似文献   

3.
Ubiquitinating enzymes catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action. Ubiquitin-specific protease 4 (USP4) is a member of the ubiquitin-specific protease (USP) family of DUBs that has a role in spliceosome regulation. In the present study, we demonstrated that USP4 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant up-regulation of USP4 in neurons adjacent to the hematoma following ICH by the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing USP4 level was found to be accompanied by the up-regulation of active caspase-3, γH2AX, Bax, and decreased expression of Bcl-2. In addition, USP4 co-localized well with γH2AX in the nucleus in the ICH model and hemin-induced apoptosis model. Moreover, in vitro study, knocking down USP4 by USP4-specific siRNA in PC12 cells reduced active caspase-3 expression. All these results above suggested that USP4 may be involved in neuronal apoptosis after ICH.  相似文献   

4.
Interferon regulatory factor 3 (IRF3) is a member of IRF family which plays a significant role in the innate immune response, apoptosis, and oncogenesis. Mounting evidence has demonstrated that IRF3 was involved in central nervous system disease such as cerebral ischemic injury through promoting neuronal apoptosis. However, it remains unclear about the underlying mechanisms of IRF3 upon neuronal apoptosis following intracerebral hemorrhage (ICH). In the present study, we established an adult rat ICH model by injecting autologous whole blood into the right basal ganglia and evaluated their neurological deficits by behavioral tests. IRF3 protein level was up-regulated adjacent to the hematoma following ICH when compared with the sham brain cortex by western blot and immunohistochemistry. Immunofluorescent staining indicated IRF3 was mainly localized in neurons, a few in astrocytes. In addition, we also detected that IRF3 co-localized with active caspase-3 which is a neuronal apoptosis marker. Furthermore, in vitro study, knocking down IRF3 by using IRF3 interference in primary cortical neurons reduced the expression of active caspase-3 and Bax while increased Bcl-2. In conclusion, we speculated that IRF3 might exert pro-apoptotic function in neurons after ICH.  相似文献   

5.
The insulin-like growth factor (IGF) system is linked to CNS pathological states. The functions of IGFs are modulated by a family of binding proteins termed insulin-like growth factor binding proteins (IGFBPs). Here, we demonstrate that IGFBP-6 may be associated with neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant upregulation of IGFBP-6 in neurons adjacent to the hematoma following ICH with the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing IGFBP-6 level was found to be accompanied by the upregulation of Bax, Bcl-2, and active caspase-3. Besides, IGFBP-6 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. Knocking down IGFBP-6 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, IGFBP-6 may play a role in promoting the brain secondary damage following ICH.  相似文献   

6.
7.
Karyopherin α2 (KPNA2) plays a central role in nucleocytoplasmic transport. It is involved in controlling the flow of genetic information and the modulation of diverse cellular activities. Here we explored the KPNA2′s roles during the pathophysiological processes of intracerebral hemorrhage (ICH). An ICH rat model was built and evaluated according to behavioral testing. Using Western blot, immunohistochemistry, and immunofluorescence, significant upregulation of KPNA2 was found in neurons in brain areas surrounding the hematoma following ICH. Increasing KPNA2 level was found to be accompanied by the upregulation of active caspase-3, Bax, and decreased expression of Bcl-2. Besides, KPNA2 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. What’s more, knocking down KPNA2 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, KPNA2 may play a role in promoting the brain secondary damage following ICH.  相似文献   

8.
9.
The present study examined kinetics of apoptosis and expression of apoptosis-related proteins Bcl-2, Bax, and caspase-3 in the CA3 hippocampus cells after diffuse brain injury (DBI) induced experimentally in rats. Percentage of apoptotic cells and expressions of above proteins were examined by flow cytometry and immunohistochemistry. Substantial neuronal apoptosis was documented in the CA3 hippocampus cells after DBI (22.26 ± 2.97 % at 72 h after DBI vs. 2.92 ± 0.88 % in sham-operated animals). Expression of Bc1-2 decreased, while expression of Bax and caspase-3 increased after DBI, with caspase-3 expression peaking after that of Bax (72 vs. 48 h, respectively). Further, the Bc1-2/Bax expression ratio decreased prior to increase of caspase-3 expression. In conclusion, cell apoptosis and altered expressions of Bcl-2, Bax, and caspase-3 are present in the CA3 region of hippocampus after experimental DBI. Changes in the Bc1-2/Bax expression ratio may facilitate activation of caspase-3 and aggravate neuronal apoptosis after brain injury.  相似文献   

10.
The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors.  相似文献   

11.
Lee SC  Chan J  Clement MV  Pervaiz S 《Proteomics》2006,6(8):2386-2394
The study investigated the molecular basis of resveratrol (RSV)-evoked apoptosis in four (Bax+/-, Bax-/-, p53+/+, and p53-/-) HCT116 colon cancer cell lines. RSV induced apoptosis in all the cells in a dose-dependent manner; however, Bax+/- and p53+/+ cells were more susceptible than their knockout counterparts (Bax-/- and p53-/-, respectively). Using Bax+/- cells as a model, proteomic analysis revealed four RSV-responsive events: fragmentation of lamin A/C protein; increase in concentration of a more basic isoelectric variant of the ribosomal protein P0; and decrease in concentration of dUTPase as well as stathmin 1. Lamin A cleavage in response to RSV treatment was confirmed using Western blot analysis. Caspase-6 was activated, which was evidenced by cleavage and accumulation in active form of caspase-6 as well as upregulation of the protease activity. RSV-elicited lamin A cleavage and apoptosis were entirely abrogated by the peptide inhibitors of caspase-6. Likewise, partial knockdown of caspase-6 expression using small interfering RNA resulted in significant inhibition of RSV-elicited lamin A cleavage and apoptosis. Furthermore, the lower apoptosis sensitivity of the knockout cells (Bax-/- and p53-/-) correlated with the relatively reduced processing of caspase-6 and lamin A cleavage. Taken together, these data highlight the critical role of caspase-6 and its cleavage of lamin A in apoptotic signaling triggered by RSV in the colon carcinoma cells, which can be activated in the absence of Bax or p53.  相似文献   

12.
Interferon gamma-induced GTPase (IGTP), which is also named Irgm3, has been widely described in regulating host resistance against intracellular pathogens. Previous researches have demonstrated that IGTP exerts beneficial function during coxsackievirus B3 (CVB3) infection. However, little information is available regarding the role of IGTP in central nervous system. Here, our study revealed that IGTP may have an essential role during ICH-induced neuronal apoptosis. We found the expression level of IGTP adjacent to hematoma was strongly increased after ICH, accompanied with the up-regulation of proliferating cell nuclear antigen (PCNA), active-caspase-3, p-GSK-3β, and Bax. IGTP was also observed to be co-localized with PCNA in astrocytes and active-caspase-3 in neurons, indicating its association with astrocyte proliferation and neuronal apoptosis after ICH. Finally, in vitro study, knocking down IGTP with IGTP-specific siRNA promoted active-caspase-3, p-GSK-3β, and Bax expression, and led to more severe neuronal apoptosis after ICH. All these results above suggested that IGTP might play a critical role in protecting neurons from apoptosis after ICH.  相似文献   

13.
DNA damage activates apoptosis in several neuronal populations and is an important component of neuropathological conditions. While it is well established that neuronal apoptosis, induced by DNA damage, is dependent on the key cell death regulators p53 and Bax, it is unknown which proteins link the p53 signal to Bax. Using rat sympathetic neurons as an in vitro model of neuronal apoptosis, we show that cytosine arabinoside is a DNA damaging drug that induces the expression of the BH3-only pro-apoptotic genes Noxa, Puma and Bim. Increased expression occurred after p53 activation, measured by its phosphorylation at serine 15, but prior to the conformational change of Bax at the mitochondria, cytochrome c (cyt c) release and apoptosis. Hence Noxa, Puma and Bim could potentially link p53 to Bax. We directly tested this hypothesis by the use of nullizygous mice. We show that Puma, but not Bim or Noxa, is a crucial mediator of DNA damage-induced neuronal apoptosis. Despite the powerful pro-apoptotic effects of overexpressed Puma in Bax-expressing neurons, Bax nullizygous neurons were resistant to Puma-induced death. Therefore, Puma provides the critical link between p53 and Bax, and is both necessary and sufficient to mediate DNA damage-induced apoptosis of sympathetic neurons.  相似文献   

14.
15.
16.
We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21WAF1/Cip1 and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21WAF1/Cip1 and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma.  相似文献   

17.
In an attempt to clarify the protective effect of puerarin on toxin-insulted dopaminergic neuronal death, this present study was carried out by using a typical Parkinson's disease (PD) model - 1-methyl-4-phenylpyridinium iodide (MPP(+))-induced dopaminergic SH-SY5Y cellular model. Data are presented, which showed that puerarin up-regulated Akt phosphorylation in both of MPP(+)-treated and non-MPP(+)-treated cells. The presence of PI3K inhibitor LY294002 completely blocked puerarin-induced activation of Akt phosphorylation. Moreover, puerarin decreased MPP(+)-induced cell death, which was blocked by phosphoinositide 3-kinase (PI3K) inhibitor LY294002. We further demonstrated that puerarin protected against MPP(+)-induced p53 nuclear accumulation, Puma (p53-upregulated mediator of apoptosis) and Bax expression and caspase-3-dependent programmed cell death (PCD). This protection was blocked by applying a PI3K/Akt inhibitor. Additionally, it was Pifithrin-α, but not Pifithrin-μ, which blocked MPP(+)-induced Puma and Bax expression, caspase-3 activation and cell death. Collectively, these data suggest that the activation of PI3K/Akt pathway is involved in the protective effect of puerarin against MPP(+)-induced neuroblastoma SH-SY5Y cell death through inhibiting nuclear p53 accumulation and subsequently caspase-3-dependent PCD. Puerarin might be a potential therapeutic agent for PD.  相似文献   

18.
19.
20.
Using short hairpin RNA against p53, transient ectopic expression of wild-type p53 or mutant p53 (R248W or R175H), and a p53- and p21-dependent luciferase reporter assay, we demonstrated that growth arrest and apoptosis of FaDu (human pharyngeal squamous cell carcinoma), Hep3B (hepatoma), and MG-63 (osteosarcoma) cells induced by aloe-emodin (AE) are p53-independent. Co-immunoprecipitation and small interfering RNA (siRNA) studies demonstrated that AE caused S-phase cell cycle arrest by inducing the formation of cyclin A-Cdk2-p21 complexes through extracellular signal-regulated kinase (ERK) activation. Ectopic expression of Bcl-X(L) and siRNA-mediated Bax attenuation significantly inhibited apoptosis induced by AE. Cyclosporin A or the caspase-8 inhibitor Z-IETD-FMK blocked AE-induced loss of mitochondrial membrane potential and prevented increases in reactive oxygen species and Ca(++). Z-IETD-FMK inhibited AE-induced apoptosis, Bax expression, Bid cleavage, translocation of tBid to mitochondria, ERK phosphorylation, caspase-9 activation, and the release of cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G from mitochondria. The stability of the mRNAs encoding caspase-8 and -10-associated RING proteins (CARPs) 1 and 2 was affected by AE, whereas CARP1 or 2 overexpression inhibited caspase-8 activation and apoptosis induced by AE. Collectively, our data indicate AE induces caspase-8-mediated activation of mitochondrial death pathways by decreasing the stability of CARP mRNAs in a p53-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号