首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blood–brain barrier (BBB) forms a protective barrier around the brain, with the important function of maintaining brain homeostasis. Pathways thought to initiate BBB dysfunction include the kinin system, excitotoxicity, neutrophil recruitment, mitochondrial alterations and macrophage/microglial activation, all of which converge on the same point—reactive oxygen species (ROS). Interestingly, ROS also provide a common trigger for many downstream pathways that directly mediate BBB compromise such as oxidative damage, tight junction (TJ) modification and matrix metalloproteinases (MMP) activation. These observations suggest that ROS are key mediators of BBB breakdown and implicate antioxidants as potential neuroprotectants in conditions like stroke and traumatic brain injury (TBI). This review explores some of the pathways both upstream and downstream of ROS that have been implicated in increased BBB permeability and discusses the role of ROS and antioxidants in neuropathology.  相似文献   

2.
Traumatic brain injury (TBI) is a widespread cause of death and a major source of adult disability. Subsequent pathological events occurring in the brain after TBI, referred to as secondary injury, continue to damage surrounding tissue resulting in substantial neuronal loss. One of the hallmarks of the secondary injury process is microglial activation resulting in increased cytokine production. Notwithstanding that recent studies demonstrated that caloric restriction (CR) lasting several months prior to an acute TBI exhibits neuroprotective properties, understanding how exactly CR influences secondary injury is still unclear. The goal of the present study was to examine whether CR (50% of daily food intake for 3 months) alleviates the effects of secondary injury on neuronal loss following cortical stab injury (CSI). To this end, we examined the effects of CR on the microglial activation, tumor necrosis factor-α (TNF-α) and caspase-3 expression in the ipsilateral (injured) cortex of the adult rats during the recovery period (from 2 to 28 days) after injury. Our results demonstrate that CR prior to CSI suppresses microglial activation, induction of TNF-α and caspase-3, as well as neurodegeneration following injury. These results indicate that CR strongly attenuates the effects of secondary injury, thus suggesting that CR may increase the successful outcome following TBI.  相似文献   

3.
Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonula occludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate adverse or beneficial effects of volatile anesthetics on patients at risk for cerebral edema.  相似文献   

4.
Blood‐brain barrier (BBB) disruption and neuronal apoptosis are important pathophysiological processes after traumatic brain injury (TBI). In clinical stroke, Dl‐3n‐butylphthalide (Dl‐NBP) has a neuroprotective effect with anti‐inflammatory, anti‐oxidative, anti‐apoptotic and mitochondrion‐protective functions. However, the effect and molecular mechanism of Dl‐NBP for TBI need to be further investigated. Here, we had used an animal model of TBI and SH‐SY5Y/human brain microvascular endothelial cells to explore it. We found that Dl‐NBP administration exerts a neuroprotective effect in TBI/OGD and BBB disorder, which up‐regulates the expression of tight junction proteins and promotes neuronal survival via inhibiting mitochondrial apoptosis. The expressions of autophagy‐related proteins, including ATG7, Beclin1 and LC3II, were significantly increased after TBI/OGD, and which were reversed by Dl‐NBP treatment both in vivo and in vitro. Moreover, rapamycin treatment had abolished the effect of Dl‐NBP for TBI recovery. Collectively, our current studies indicate that Dl‐NBP treatment improved locomotor functional recovery after TBI by inhibiting the activation of autophagy and consequently blocking the junction protein loss and neuronal apoptosis. Dl‐NBP, as an anti‐inflammatory and anti‐oxidative drug, may act as an effective strategy for TBI recovery.  相似文献   

5.
Experimental studies have demonstrated significant secondary damage (including cell apoptosis, blood–brain barrier disruption, inflammatory responses, excitotoxic damage, and free radical production) after traumatic brain injury (TBI). Quercetin is a natural flavonoid found in high quantities in fruits and vegetables, and may be a potential antioxidant and free radical scavenger. The purpose of this study was to determine the effects of quercetin on TBI-induced upregulation of oxidative stress, inflammation, and apoptosis in adult Sprague–Dawley rats. Animals were subjected to Feeney’s weight-drop injury, thus inducing the parietal contusion brain injury model. Quercetin was administered (30 mg/kg intraperitoneal injection) 0, 24, 48, and 72 h after TBI. Quercetin reduced cognitive deficits, the number of TUNEL- and ED-1-positive cells, the protein expressions of Bax and cleaved-caspase-3 proteins, and the levels of TBARS and proinflammatory cytokines, and increased the activity of antioxidant enzymes (GSH-Px, SOD, and CAT) at 1 week after TBI. Our results suggest that in TBI rats, quercetin improves cognitive function owing to its neuroprotective action via the inhibition of oxidative stress, leading to a reduced inflammatory response, thereby reducing neuronal death.  相似文献   

6.
Molecular mechanisms in the pathogenesis of traumatic brain injury   总被引:15,自引:0,他引:15  
Traumatic brain injury (TBI) is a serious neurodisorder commonly caused by car accidents, sports related events or violence. Preventive measures are highly recommended to reduce the risk and number of TBI cases. The primary injury to the brain initiates a secondary injury process that spreads via multiple molecular mechanisms in the pathogenesis of TBI. The events leading to both neurodegeneration and functional recovery after TBI are generalized into four categories: (i) primary injury that disrupts brain tissues; (ii) secondary injury that causes pathophysiology in the brain; (iii) inflammatory response that adds to neurodegeneration; and (iv) repair-regeneration that may contribute to neuronal repair and regeneration to some extent following TBI. Destructive multiple mediators of the secondary injury process ultimately dominate over a few intrinsic protective measures, leading to activation of cysteine proteases such as calpain and caspase-3 that cleave key cellular substrates and cause cell death. Experimental studies in rodent models of TBI suggest that treatment with calpain inhibitors (e.g., AK295, SJA6017) and neurotrophic factors (e.g., NGF, BDNF) can prevent neuronal death and dysfunction in TBI. Currently, there is still no precise therapeutic strategy for the prevention of pathogenesis and neurodegeneration following TBI in humans. The search continues to explore new therapeutic targets and development of promising drugs for the treatment of TBI.  相似文献   

7.
Traumatic brain injury (TBI) is one of the main concerns worldwide as there is still no comprehensive therapeutic intervention. Astrocytic water channel aquaporin-4 (AQP-4) system is closely related to the brain edema, water transport at blood-brain barrier (BBB) and astrocyte function in the central nervous system (CNS). Minocycline, a broad-spectrum semisynthetic tetracycline antibiotic, has shown anti-inflammation, anti-apoptotic, vascular protection and neuroprotective effects on TBI models. Here, we tried to further explore the underlying mechanism of minocycline treatment for TBI, especially the relationship of minocycline and AQP4 during TBI treatment. In present study, we observed that minocycline efficaciously reduces the elevation of AQP4 in TBI mice. Furthermore, minocycline significantly reduced neuronal apoptosis, ameliorated brain edema and BBB disruption after TBI. In addition, the expressions of tight junction protein and astrocyte morphology alteration were optimized by minocycline administration. Similar results were found after treating with TGN-020 (an inhibitor of AQP4) in TBI mice. Moreover, these effects were reversed by cyanamide (CYA) treatment, which notably upregulated AQP4 expression level in vivo. In primary cultured astrocytes, small-interfering RNA (siRNA) AQP4 treatment prevented glutamate-induced astrocyte swelling. To sum up, our study suggests that minocycline improves the functional recovery of TBI through reducing AQP4 level to optimize BBB integrity and astrocyte function, and highlights that the AQP4 may be an important therapeutic target during minocycline treating for TBI.  相似文献   

8.
In addition to immediate brain damage, traumatic brain injury (TBI) initiates a cascade of pathophysiological events producing secondary injury. The biochemical and cellular mechanisms that comprise secondary injury are not entirely understood. Herein, we report a substantial deregulation of cerebral sphingolipid metabolism in a mouse model of TBI. Sphingolipid profile analysis demonstrated increases in sphingomyelin species and sphingosine concurrently with up-regulation of intermediates of de novo sphingolipid biosynthesis in the brain. Investigation of intracellular sites of sphingosine accumulation revealed an elevation of sphingosine in mitochondria due to the activation of neutral ceramidase (NCDase) and the reduced activity of sphingosine kinase 2 (SphK2). The lack of change in gene expression suggested that post-translational mechanisms are responsible for the shift in the activities of both enzymes. Immunoprecipitation studies revealed that SphK2 is complexed with NCDase and cytochrome oxidase (COX) subunit 1 in mitochondria and that brain injury hindered SphK2 association with the complex. Functional studies showed that sphingosine accumulation resulted in a decreased activity of COX, a rate-limiting enzyme of the mitochondrial electron transport chain. Knocking down NCDase reduced sphingosine accumulation in mitochondria and preserved COX activity after the brain injury. Also, NCDase knockdown improved brain function recovery and lessened brain contusion volume after trauma. These studies highlight a novel mechanism of secondary TBI involving a disturbance of sphingolipid-metabolizing enzymes in mitochondria and suggest a critical role for mitochondrial sphingosine in promoting brain injury after trauma.  相似文献   

9.
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.  相似文献   

10.
Traumatic brain injury (TBI) is the leading cause of death and disability for people under the age of 45 years worldwide. Neuropathology after TBI is the result of both the immediate impact injury and secondary injury mechanisms. Secondary injury is the result of cascade events, including glutamate excitotoxicity, calcium overloading, free radical generation, and neuroinflammation, ultimately leading to brain cell death. In this study, the P2X7 receptor (P2X7R) was detected predominately in microglia of the cerebral cortex and was up-regulated on microglial cells after TBI. The microglia transformed into amoeba-like and discharged many microvesicle (MV)-like particles in the injured and adjacent regions. A P2X7R antagonist (A804598) and an immune inhibitor (FTY720) reduced significantly the number of MV-like particles in the injured/adjacent regions and in cerebrospinal fluid, reduced the number of neurons undergoing apoptotic cell death, and increased the survival of neurons in the cerebral cortex injured and adjacent regions. Blockade of the P2X7R and FTY720 reduced interleukin-1βexpression, P38 phosphorylation, and glial activation in the cerebral cortex and improved neurobehavioral outcomes after TBI. These data indicate that MV-like particles discharged by microglia after TBI may be involved in the development of local inflammation and secondary nerve cell injury.  相似文献   

11.
Traumatic brain injury (TBI) provokes primary and secondary damage on endothelium and brain parenchyma, leading neurons die rapidly by necrosis. The mammalian target of rapamycin signalling pathway (mTOR) manages numerous aspects of cellular growth, and it is up-regulated after moderate to severe traumatic brain injury (TBI). Currently, the significance of this increased signalling event for the recovery of brain function is unclear; therefore, we used two different selective inhibitors of mTOR activity to discover the functional role of mTOR inhibition in a mouse model of TBI performed by a controlled cortical impact injury (CCI). Treatment with KU0063794, a dual mTORC1 and mTORC2 inhibitor, and with rapamycin as well-known inhibitor of mTOR, was performed 1 and 4 hours subsequent to TBI. Results proved that mTOR inhibitors, especially KU0063794, significantly improved cognitive and motor recovery after TBI, reducing lesion volumes. Also, treatment with mTOR inhibitors ameliorated the neuroinflammation associated with TBI, showing a diminished neuronal death and astrogliosis after trauma. Our findings propose that the involvement of selective mTORC1/2 inhibitor may represent a therapeutic strategy to improve recovery after brain trauma.  相似文献   

12.
Glutamate-mediated excitotoxicity is known to cause secondary brain damage following stroke and traumatic brain injury (TBI). However, clinical trials using NMDA antagonists failed. Thus, glial excitatory amino acid transporters (EAATs) might be a promising target for therapeutic intervention. METHODS AND RESULTS: We examined expression of EAAT1 (GLAST) and EAAT2 (Glt-1) in 36 TBI cases by immunohistochemistry. Cortical expression of both EAATs decreased rapidly and widespread throughout the brain (in lesional, adjacent and remote areas) following TBI. In the white matter numbers of EAAT1+ parenchymal cells increased 39-fold within 24h (p<0.001) and remained markedly elevated till later stages in the lesion (90-fold, p<0.01) and in peri-lesional regions (86-fold, p<0.01). In contrast, EAAT2+ parenchymal cells and EAAT1+ or EAAT2+ perivascular cells did not increase significantly. Within the first days following TBI mainly activated microglia and thereafter mainly reactive astrocytes expressed EAAT1. Perivascular monocytes and foamy macrophages lacked EAAT1 immunoreactivity. We conclude that following TBI i) loss of cortical EAATs contributes to secondary brain damage, ii) glial EAAT1 expression reflects a potential neuroprotective function of microglia and astrocytes, iii) microglial EAAT1 expression is restricted to an early stage of activation, iv) blood-derived monocytes do not express EAAT1 and v) pharmacological modification of glial EAAT expression might further limit neuronal damage.  相似文献   

13.
Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Following the initial insult, severe TBI progresses to a secondary injury phase associated with biochemical and cellular changes. The secondary injury is thought to be responsible for the development of many of the neurological deficits observed after TBI and also provides a window of opportunity for therapeutic intervention. Matrix metalloproteinase-9 (MMP-9 or gelatinase B) expression is elevated in neurological diseases and its activation is an important factor in detrimental outcomes including excitotoxicity, mitochondrial dysfunction and apoptosis, and increases in inflammatory responses and astrogliosis. In this study, we used an experimental mouse model of TBI to examine the role of MMP-9 and the therapeutic potential of SB-3CT, a mechanism-based gelatinase selective inhibitor, in ameliorating the secondary injury. We observed that activation of MMP-9 occurred within one day following TBI, and remained elevated for 7 days after the initial insult. SB-3CT effectively attenuated MMP-9 activity, reduced brain lesion volumes and prevented neuronal loss and dendritic degeneration. Pharmacokinetic studies revealed that SB-3CT and its active metabolite, p-OH SB-3CT, were rapidly absorbed and distributed to the brain. Moreover, SB-3CT treatment mitigated microglial activation and astrogliosis after TBI. Importantly, SB-3CT treatment improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. These results demonstrate that MMP-9 is a key target for therapy to attenuate secondary injury cascades and that this class of mechanism-based gelatinase inhibitor–with such desirable pharmacokinetic properties–holds considerable promise as a potential pharmacological treatment of TBI.  相似文献   

14.

Background

Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. Toll-like receptors (TLRs) are signaling receptors in the innate immune system, although emerging evidence indicates their role in brain injury. We have therefore investigated the role played by TLR4 signaling pathway in the development of mechanisms of secondary inflammatory process in traumatic brain injury (TBI) differ in mice that lack a functional TLR4 signaling pathway.

Methods/Principal Findings

Controlled cortical impact injury was performed on TLR4 knockout (KO) mice (C57BL/10ScNJ) and wild-type (WT) mice (C57BL/10ScNJ). TBI outcome was evaluated by determination of infarct volume and assessment of neurological scores. Brains were collected at 24 h after TBI. When compared to WT mice, TLR4 KO mice had lower infarct volumes and better outcomes in neurological and behavioral tests (evaluated by EBST and rotarod test). Mice that lacked TLR4 had minor expression of TBI-induced GFAP, Chymase, Tryptase, IL-1β, iNOS, PARP and Nitrotyrosine mediators implicated in brain damage. The translocation of expression of p-JNK, IκB-α and NF-κB pathway were also lower in brains from TLR4 KO mice. When compared to WT mice, resulted in significant augmentation of all the above described parameters. In addition, apoptosis levels in TLR4 KO mice had minor expression of Bax while on the contrary with Bcl-2.

Conclusions/Significance

Our results clearly demonstrated that absence of TLR4 reduces the development of neuroinflammation, tissues injury events associated with brain trauma and may play a neuroprotective role in TBI in mice.  相似文献   

15.

Background

Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB) permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acting on multiple targets, may be an effective strategy to treat TBI. Valproate, a widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK)-3, and histone deacetylases (HDACs), and therefore may attenuate a number of TBI-associated pathologies.

Methodology/Principal Findings

Using a rodent model of TBI, we tested if post-injury administration of valproate can decrease BBB permeability, reduce neural damage and improve cognitive outcome. Dose-response studies revealed that systemic administration of 400 mg/kg (i.p.), but not 15, 30, 60 or 100 mg/kg, increases histone H3 and H4 acetylation, and reduces GSK-3 activity, in the hippocampus. Thirty min post-injury administration of 400 mg/kg valproate improved BBB integrity as indicated by a reduction in Evans Blue dye extravasation. Consistent with its dose response to inhibit GSK-3 and HDACs, valproate at 400 mg/kg, but not 100 mg/kg, reduced TBI-associated hippocampal dendritic damage, lessened cortical contusion volume, and improved motor function and spatial memory. These behavioral improvements were not observed when SAHA (suberoylanilide hydroxamic acid), a selective HDAC inhibitor, was administered.

Conclusion/Significance

Our findings indicate that valproate given soon after TBI can be neuroprotective. As clinically proven interventions that can be used to minimize the damage following TBI are not currently available, the findings from this report support the further testing of valproate as an acute therapeutic strategy.  相似文献   

16.
Li Y  Lu ZY  Ogle M  Wei L 《Neurochemical research》2007,32(12):2132-2141
Recombinant human erythropoietin (rhEPO), a neurovascular protective agent, therapeutically supports angiogenesis after stroke by enhancing endogenous up-regulation of vascular endothelial growth factor (VEGF). Increased VEGF expression has been characterized to negatively impact the integrity of the blood brain barrier (BBB), causing brain edema and secondary injury. The present study investigated the rhEPO-induced BBB protection after stroke and how it might be achieved by affecting VEGF pathway. rhEPO treatment (5,000 U/kg, i.p., 30 min before stroke and once a day for three days after stroke) reduced Evans blue leakage and brain edema after ischemia. The expression of the BBB integrity markers, occludin, α-catenin and β-catenin, in the brain was preserved in animals received rhEPO. rhEPO up-regulated VEGF expression; however, the expression of VEGF receptor-2 (fetal liver kinase receptor, Flk-1) was significantly reduced in rhEPO-treated animals three days after stroke. We propose that, disregarding increased VEGF levels, rhEPO protects against ischemia-induced BBB damage at least partly by down-regulating Flk-1 expression and the response to VEGF signaling in the acute phase after stroke.  相似文献   

17.

Background and Purpose

Recent evidence has supported the neuroprotective effect of bpV (pic), an inhibitor of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), in models of ischemic stroke. However, whether PTEN inhibitors improve long-term functional recovery after traumatic brain injury (TBI) and whether PTEN affects blood brain barrier (BBB) permeability need further elucidation. The present study was performed to address these issues.

Methods

Adult Sprague-Dawley rats were subjected to fluid percussion injury (FPI) after treatment with a well-established PTEN inhibitor bpV (pic) or saline starting 24 h before FPI. Western blotting, real-time quantitative PCR, or immunostaining was used to measure PTEN, p-Akt, or MMP-9 expression. We determined the presence of neuron apoptosis by TUNEL assay. Evans Blue dye extravasation was measured to evaluate the extent of BBB disruption. Functional recovery was assessed by the neurological severity score (NSS), and Kaplan-Meier analysis was used for survival analysis.

Results

PTEN expression was up-regulated after TBI. After bpV (pic) treatment, p-Akt was also up-regulated. We found that bpV (pic) significantly decreased BBB permeability and reduced the number of TUNEL-positive cells. We further demonstrated that PTEN inhibition improved neurological function recovery in the early stage after TBI.

Conclusion

These data suggest that treatment with the PTEN inhibitor bpV (pic) has a neuroprotective effect in TBI rats.  相似文献   

18.
19.
Traumatic brain injury (TBI) was induced by a weight-drop device using 300 g–1 m weight-height impact. The study groups were: control, alpha-lipoic acid (LA) (100 mg/kg, po), TBI, and TBI + LA (100 mg/kg, po). Forty-eight hours after the injury, neurological scores were measured and brain samples were taken for histological examination or determination of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na+-K+ ATPase activities, whereas cytokines (TNF-α, IL-1β) were determined in blood. Brain oedema was evaluated by wet–dry weight method and blood–brain barrier (BBB) permeability was evaluated by Evans Blue (EB) extravasation. As a result, neurological scores mildly increased in trauma groups. Moreover, TBI caused a significant decrease in brain GSH and Na+-K+ ATPase activity, which was accompanied with significant increases in TBARS level, MPO activity and plasma proinflammatory cytokines. LA treatment reversed all these biochemical indices as well as histopathological alterations. TBI also caused a significant increase in brain water content and EB extravasation which were partially reversed by LA treatment. These findings suggest that LA exerts neuroprotection by preserving BBB permeability and by reducing brain oedema probably by its anti-inflammatory and antioxidant properties in the TBI model.  相似文献   

20.
In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential neuroprotective treatment could alleviate ongoing neurodegeneration, cell death and neurological impairment following TBI. Various neuroprotective drug candidates have been described, tested and proven effective in pre-clinical studies, including glutamate receptor antagonists, calcium-channel blockers, and caspase inhibitors. However, most of the scientific efforts have failed in translating the experimental results into clinical trials. Despite intensive research, effective neuroprotective therapies are lacking in the clinic, and TBI continues to be a major cause of morbidity and mortality.This paper provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号