首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interferon gamma-induced GTPase (IGTP), which is also named Irgm3, has been widely described in regulating host resistance against intracellular pathogens. Previous researches have demonstrated that IGTP exerts beneficial function during coxsackievirus B3 (CVB3) infection. However, little information is available regarding the role of IGTP in central nervous system. Here, our study revealed that IGTP may have an essential role during ICH-induced neuronal apoptosis. We found the expression level of IGTP adjacent to hematoma was strongly increased after ICH, accompanied with the up-regulation of proliferating cell nuclear antigen (PCNA), active-caspase-3, p-GSK-3β, and Bax. IGTP was also observed to be co-localized with PCNA in astrocytes and active-caspase-3 in neurons, indicating its association with astrocyte proliferation and neuronal apoptosis after ICH. Finally, in vitro study, knocking down IGTP with IGTP-specific siRNA promoted active-caspase-3, p-GSK-3β, and Bax expression, and led to more severe neuronal apoptosis after ICH. All these results above suggested that IGTP might play a critical role in protecting neurons from apoptosis after ICH.  相似文献   

2.
Somatostatins are peptide hormones that regulate diverse cellular processes, such as neurotransmission, cell proliferation, apoptosis, and endocrine signaling as well as inhibiting the release of many hormones and other secretory proteins. SSTR1 is a member of the superfamily of somatostatin receptors possessing seven-transmembrane segments. Aberrant expression of SSTR1 has been implicated in several human diseases, including pseudotumor cerebri, and oncogenic osteomalacia. In this study, we investigated a potential role of SSTR1 in the regulation of neuronal apoptosis in the course of intracerebral hemorrhage (ICH). A rat ICH model in the caudate putamen was established and subjected to behavioral tests. Western blot and immunohistochemistry indicated a remarkable up-regulation of SSTR1 expression surrounding the hematoma after ICH. Double-labeled immunofluorescence showed that SSTR1 was mostly co-localized with neurons, and was rarely distributed in activated astrocytes and microglia. Additionally, SSTR1 co-localized with active-caspase-3 and bcl-2 around the hematoma. The expression of active-caspase-3 was parallel with that of SSTR1 in a time-dependent manner. In addition, SSTR1 knockdown specifically resulted in reduced neuronal apoptosis in PC12 cells. All our findings suggested that up-regulated SSTR1 contributed to neuronal apoptosis after ICH, which was accompanied with reduced expression of bcl-2.  相似文献   

3.
Interferon regulatory factor 3 (IRF3) is a member of IRF family which plays a significant role in the innate immune response, apoptosis, and oncogenesis. Mounting evidence has demonstrated that IRF3 was involved in central nervous system disease such as cerebral ischemic injury through promoting neuronal apoptosis. However, it remains unclear about the underlying mechanisms of IRF3 upon neuronal apoptosis following intracerebral hemorrhage (ICH). In the present study, we established an adult rat ICH model by injecting autologous whole blood into the right basal ganglia and evaluated their neurological deficits by behavioral tests. IRF3 protein level was up-regulated adjacent to the hematoma following ICH when compared with the sham brain cortex by western blot and immunohistochemistry. Immunofluorescent staining indicated IRF3 was mainly localized in neurons, a few in astrocytes. In addition, we also detected that IRF3 co-localized with active caspase-3 which is a neuronal apoptosis marker. Furthermore, in vitro study, knocking down IRF3 by using IRF3 interference in primary cortical neurons reduced the expression of active caspase-3 and Bax while increased Bcl-2. In conclusion, we speculated that IRF3 might exert pro-apoptotic function in neurons after ICH.  相似文献   

4.
Karyopherin α2 (KPNA2) plays a central role in nucleocytoplasmic transport. It is involved in controlling the flow of genetic information and the modulation of diverse cellular activities. Here we explored the KPNA2′s roles during the pathophysiological processes of intracerebral hemorrhage (ICH). An ICH rat model was built and evaluated according to behavioral testing. Using Western blot, immunohistochemistry, and immunofluorescence, significant upregulation of KPNA2 was found in neurons in brain areas surrounding the hematoma following ICH. Increasing KPNA2 level was found to be accompanied by the upregulation of active caspase-3, Bax, and decreased expression of Bcl-2. Besides, KPNA2 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. What’s more, knocking down KPNA2 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, KPNA2 may play a role in promoting the brain secondary damage following ICH.  相似文献   

5.
Ubiquitinating enzymes catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action. Ubiquitin-specific protease 4 (USP4) is a member of the ubiquitin-specific protease (USP) family of DUBs that has a role in spliceosome regulation. In the present study, we demonstrated that USP4 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant up-regulation of USP4 in neurons adjacent to the hematoma following ICH by the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing USP4 level was found to be accompanied by the up-regulation of active caspase-3, γH2AX, Bax, and decreased expression of Bcl-2. In addition, USP4 co-localized well with γH2AX in the nucleus in the ICH model and hemin-induced apoptosis model. Moreover, in vitro study, knocking down USP4 by USP4-specific siRNA in PC12 cells reduced active caspase-3 expression. All these results above suggested that USP4 may be involved in neuronal apoptosis after ICH.  相似文献   

6.
7.
目的:利用N-甲基-D-天门冬氨酸(NMDA)诱发新生小鼠脑皮质神经元损伤模型,探讨神经活性甾体别孕烯醇酮对脑皮质神经元的保护作用及其机制。方法:应用RT-PCR和Western blot法检测别孕烯醇酮对β2-γ-氨基丁酸受体(β2-GABA-R)表达和对蛋白激酶B(PKB,又称为Akt)磷酸化的影响。应用Western blot和DNA-Ladder方法检测NMDA诱发的神经元凋亡及别孕烯醇酮对NMDA诱发凋亡的影响。结果:Western blot和RT-PCR分析表明0.5×10-6mol/L-5×10-6mol/L别孕烯醇酮使Akt磷酸化增加并促进β2-GABA-R mRNA的表达。1×10-6mol/L别孕烯醇酮预处理小鼠脑皮质神经元有抗凋亡作用,但5×10-6mol/L别孕烯醇酮预处理小鼠脑皮质神经元使NMDA诱发的DNA-Ladder减弱明显,并能有效抵抗NMDA诱发的活化型PRAP、Caspase-3、Caspase-9的增加。结论:别孕烯醇酮可通过促进β2-GABA-R表达和增加Akt磷酸化抵抗NMDA诱发的脑皮质神经元凋亡。  相似文献   

8.
The insulin-like growth factor (IGF) system is linked to CNS pathological states. The functions of IGFs are modulated by a family of binding proteins termed insulin-like growth factor binding proteins (IGFBPs). Here, we demonstrate that IGFBP-6 may be associated with neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant upregulation of IGFBP-6 in neurons adjacent to the hematoma following ICH with the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing IGFBP-6 level was found to be accompanied by the upregulation of Bax, Bcl-2, and active caspase-3. Besides, IGFBP-6 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. Knocking down IGFBP-6 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, IGFBP-6 may play a role in promoting the brain secondary damage following ICH.  相似文献   

9.
10.
EP3 is prostaglandin E2 receptor subtype 3 and mediates the activation of several signaling pathways, changing in cAMP levels, calcium mobilization, and activation of phospholipase C. Previous studies demonstrated a direct role for EP3 in various neurodegenerative disorders, such as stroke and Alzheimer disease. However, the distribution and function of EP3 in ICH diseases remain unknown. Here, we demonstrate that EP3 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). From the results of Western blot and immunohistochemistry, we obtained a significant up-regulation of EP3 in neurons adjacent to the hematoma following ICH. Up-regulation of EP3 was found to be accompanied by the increased expression of active caspase-3 and pro-apoptotic Bcl-2-associated X protein (Bax) and decreased expression of anti-apoptotic protein B cell lymphoma-2 (Bcl-2) in vivo and vitro studies. Furthermore, the expression of these three proteins reduced active caspase-3 and Bax expression, while increased Bcl-2 were changed after knocking down EP3 by RNA interference in PC12 cells, further confirmed that EP3 might exert its pro-apoptotic function on neuronal apoptosis. Thus, EP3 may play a role in promoting the neuronal apoptosis following ICH.  相似文献   

11.
During hemorrhagic stroke induced by intracerebral hemorrhage (ICH), brain injury occurs from the deleterious actions of hemoglobin byproducts; induction of heme oxygenase-1 (HO-1) also plays a critical role in the neurotoxicity in ICH. Valproic acid (VPA), which is a commonly used drug in the treatment of epilepsy, has been reported to have neuroprotective effects against various neuronal insults including ischemic stroke. We investigated the effect of VPA on HO-1-mediated neurotoxicity in an experimental model of ICH. We investigated the effects of VPA on HO-1 protein in primary cortical neurons: (1) the expression levels of HO-1 mRNA and protein measured by RT-PCR and Western blotting; (2) the cell viability and ROS generation by MTT reduction assay and ROS measurement; (3) the signal pathway regulated by VPA using IP-Western blotting; (4) the effects of VPA on hemin-induced cell death by hemin microinjection and immunohistochemistry in vivo. VPA treatment partially blocked cell death induced by hemin, which is released from hemoglobin during ICH, both in rat primary cortical neurons and rat brain. Treatment of VPA significantly decreased the expression of HO-1 protein both in vitro and in vivo. Hemin treatment induced HO-1 protein expression and this was partially blocked by pretreatment with VPA, which might be mediated by increased ubiquitination and degradation of HO-1 via ERK1/2 and JNK activation in primary cortical neurons. Our results indicate that VPA inhibits hemin toxicity by downregulating HO-1 protein expression, and provide a therapeutic strategy to attenuate intracerebral hemorrhagic injury.  相似文献   

12.
Contrary to cell cycle-associated cyclin-dependent kinases, CDK5 is best known for its regulation of signaling processes in regulating mammalian CNS development. Studies of CDK5 have focused on its phosphorylation, although the diversity of CDK5 functions in the brain suggests additional forms of regulation. Here we expanded on the functional roles of CDK5 glycosylation in neurons. We showed that CDK5 was dynamically modified with O-GlcNAc in response to neuronal activity and that glycosylation represses CDK5-dependent apoptosis by impairing its association with p53 pathway. Blocking glycosylation of CDK5 alters cellular function and increases neuronal apoptosis in the cell model of the ICH. Our findings demonstrated a new role for O-glycosylation in neuronal apoptosis and provided a mechanistic understanding of how glycosylation contributes to critical neuronal functions. Moreover, we identified a previously unknown mechanism for the regulation of activity-dependent gene expression, neural development, and apoptosis.  相似文献   

13.
The hematopoietic cell kinase (Hck) is a member of the Src family protein kinases which regulates many signal transduction pathways including cell growth, proliferation, differentiation, migration, and apoptosis. However, the expression and function of Hck after intracerebral hemorrhage (ICH) are unknown. Western blot, immunohistochemistry, and immunofluorescence showed that Hck was obviously up-regulation in neurons adjacent to the hematoma after ICH. In addition, the temporary raise of Hck expression was paralleled with the expression of p53, Bax, and active caspase-3, suggesting that Hck was involved in neuronal apoptosis. Hck siRNA dramatically decrease hemin-induced expression of p53, Bax, and active caspase-3 as well as the amount of apoptotic SH-SY5Y cells in vitro. Furthermore, Hck interacted with p53. Hence, Hck might promote neuronal apoptosis via p53 signaling pathway after ICH.  相似文献   

14.
The JNKs have been implicated in a variety of biological functions in mammalian cells, including apoptosis and the responses to stress. However, the physiological role of these pathways in the intracerebral hemorrhage (ICH) has not been fully elucidated. In this study, we identified a MAPK kinase kinase (MAPKKK), MEKK1, may be involved in neuronal apoptosis in the processes of ICH through the activation of JNKs. From the results of western blot, immunohistochemistry and immunofluorescence, we obtained a significant up-regulation of MEKK1 in neurons adjacent to the hematoma following ICH. Increasing MEKK1 level was found to be accompanied with the up-regulation of p-JNK 3, p53, and c-jun. Besides, MEKK1 co-localized well with p-JNK in neurons, indicating its potential role in neuronal apoptosis. What’s more, our in vitro study, using MEKK1 siRNA interference in PC12 cells, further confirmed that MEKK1 might exert its pro-apoptotic function on neuronal apoptosis through extrinsic pathway. Thus, MEKK1 may play a role in promoting the brain damage following ICH.  相似文献   

15.
To explore the effects of atorvastatin on hydrocephalus, neurocyte apoptosis, and the level of plasma matrix metalloproteinase-9 (MMP-9) after intracerebral hemorrhage (ICH) in rats. A rat model of ICH was established by intracerebral injection of collagenase. The brain water content was determined by the wet/dry weight ratio, ultrastructural changes in brain tissue were observed by electron microscopy, and the level of plasma MMP-9 was quantified by ELISA. Atorvastatin showed significant effects in reducing the brain water content, blocking neuron apoptosis, and decreasing plasma MMP-9 in rats with ICH. There was a positive linear correlation between plasma MMP-9 and the brain water content. Atorvastatin can significantly relieve brain edema, decrease the brain injury caused by MMP-9 and protect neurons in rats with ICH.  相似文献   

16.
17.
《Free radical research》2013,47(5):368-375
Abstract

Oxidative stress (OS) is involved in the progression of intracerebral haemorrhage (ICH)-induced secondary brain injury. The pathway involving Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) is currently recognised as the major endogenous regulatory system against oxidative injury. Although its beneficial role has been described for ICH, the time course of Keap1-Nrf2 pathway expression, the activity of downstream antioxidative enzymes, and the association with brain oedema and neurological deficits have not been fully investigated. In this study, we investigated the temporal changes in expression of Keap1, Nrf2, and their downstream antioxidative proteins in the ICH rat brain. We additionally quantified the relationship between these gene and protein changes with brain water content and neurological behaviour scores. After blood infusion, Keap1 showed decreased expression starting at 8 h, whereas Nrf2 began to show a significant increase at 2 h with a peak at 24 h. Keap1 and Nrf2 are chiefly expressed in neuronal cells but not in glial cells. The downstream antioxidative enzymes such as haemeoxygenase-1 (HO-1), glutathione (GSH), thioredoxin (TRX), and glutathione-S-transferase (GST-α1) increased to different degrees during the early stages of ICH. Among these enzymes, HO-1 showed a significant time-dependent increase starting 8 h after ICH. In addition, there was a positive correlation between the HO-1 level and brain water content. In combination, these results suggest that activation of the Keap1-Nrf2 pathway may play an important endogenous neuroprotective role during OS after ICH. Because HO-1 expression is temporally associated with brain oedema – reflective of the severity of brain injury – it may be used as a biomarker of haeme-mediated oxidative damage after ICH.  相似文献   

18.
Objective To explore the expression of HIF-1α, neuronal apoptosis and the influence of traditional Chinese medicine Sanqi on hematoma after brain injury in rats. Methods Ninety SD rats were divided into 3 groups randomly: blank control group, traumatic brain injury (TBI) group and Sanqi intervention group, and they were decapitated after brain injury at different time points: 6 h, 1 d, 2 d, 3 d, 5 d, 7 d. The model of cerebral hemorrhage was made by autologous non-coagulation in stereotactic locator, the expression of HIF-1α and TUNEL-positive cells (apoptotic cells) in the perihematomal area was detected by immunohistochemistry. Results In blank control group, a small amount of HIF-1α was expressed and apoptotic cells were observed. The expression of HIF-1α was up-regulated in the brain injury group from 6 h, and the apoptotic cells increased in abundance. The peak of HIF-1α was reached at 3 d, then decreased, and remained at the high level on the 7 d. Compared with blank control group, the TBI group was statistically significant (P < 0.05). The Chinese medicine Sanqi intervention group significantly up-regulated HIF-1α’expression and decreased neuronal apoptosis, which was statistically significant (P < 0.05). Conclusion HIF-1α’s expression was up-regulated around the hematoma after brain injury, and the apoptosis of nerve cells was obviously increased. The traditional Chinese medicine Sanqi can significantly increase the expression of HIF-1α, reduce the apoptosis around the hematoma, and thus play a neuroprotective role.  相似文献   

19.
Erythropoietin (EPO), a pleiotropic cytokine involved in erythropoiesis, is tissue-protective in ischemic, traumatic, toxic and inflammatory injuries. In this study, we investigated the effect of EPO in experimental intracerebral hemorrhage (ICH). Two hours after inducing ICH via the stereotaxic infusion of collagenase, recombinant human EPO (500 or 5000 IU/kg, ICH + EPO group) or PBS (ICH + vehicle group) was administered intraperitoneally, then once daily afterwards for 1 or 3 days. ICH + EPO showed the better functional recovery in both rotarod and modified limb placing tests. The brain water content was decreased in ICH + EPO dose-dependently, as compared with ICH + vehicle. The effect of EPO on the brain water content was inhibited by N(omega)-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 mg/kg). Mean hemorrhage volume was also decreased in ICH + EPO. EPO reduced the numbers of TUNEL +, myeloperoxidase + or OX-42 + cells in the perihematomal area. In addition, EPO reduced the mRNA level of TNF-alpha, Fas and Fas-L, as well as the activities of caspase-8, 9 and 3. EPO treatment showed up-regulations of endothelial nitric oxide synthase (eNOS) and p-eNOS, pAkt, pSTAT3 and pERK levels. These data suggests that EPO treatment in ICH induces better functional recovery with reducing perihematomal inflammation and apoptosis, coupled with activations of eNOS, STAT3 and ERK.  相似文献   

20.
Expression of apoptotic protease activating factor-1 (Apaf-1) gradually decreases during brain development, and this decrease is likely responsible for the decreased sensitivity of brain tissue to apoptosis. However, the mechanism by which Apaf-1 expression is decreased remains elusive. In the present study, we found that four microRNAs (miR-23a/b and miR-27a/b) of miR-23a-27a-24 and miR-23b-27b-24 clusters play key roles in modulating the expression of Apaf-1. First, we found that miR-23a/b and miR-27a/b suppressed the expression of Apaf-1 in vitro. Interestingly, the expression of the miR-23-27-24 clusters in the mouse cortex gradually increased in a manner that was inversely correlated with the pattern of Apaf-1 expression. Second, hypoxic injuries during fetal distress caused reduced expression of the miR-23b and miR-27b that was inversely correlated with an elevation of Apaf-1 expression during neuronal apoptosis. Third, we made neuronal-specific transgenic mice and found that overexpressing the miR-23b and miR-27b in mouse neurons inhibited the neuronal apoptosis induced by intrauterine hypoxia. In conclusion, our results demonstrate, in central neural system, that miR-23a/b and miR-27a/b are endogenous inhibitory factors of Apaf-1 expression and regulate the sensitivity of neurons to apoptosis. Our findings may also have implications for the potential target role of microRNAs in the treatment of neuronal apoptosis-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号