首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the fine specificity of anti-lipid A antibodies to identify conserved lipid A antigens. Because lipid A derived from many different Gram-negative bacteria has similar biologic activities, the conserved regions may be of particular importance for the immunostimulatory and toxic properties of lipid A. We found that five of nine antibodies bound to a wide variety of Gram-negative bacteria. All these widely cross-reactive antibodies bound to the same antigenic site within lipid A. Polymyxin B, an inhibitor of lipid A activity, bound to this site as well. The widely cross-reactive antibodies bound to native and base-hydrolyzed lipid A equally well, and also bound to the monosaccharide precursor lipid X. The less cross-reactive antibodies recognized base-hydrolyzed lipid A poorly, and did not recognize lipid X at all. Other investigators have shown that lipid X has some of the activities of lipid A in vitro and can inhibit the lethal toxicity of LPS in vivo. On the basis of this study, we suggest that lipid X contains a conserved lipid A epitope as well.  相似文献   

2.
Leukocytes and other cells show an enhanced intensity of mobile lipid in their 1H NMR spectra under a variety of conditions. Such conditions include stimulation, which has recently been shown to involve detergent-resistant, plasma membrane domains (DRMs) often called lipid rafts. As there is much speculation surrounding the origin of cellular NMR-visible lipid, we analysed subcellular fractions, including DRMs, by NMR spectroscopy. We demonstrated that DRMs isolated by density gradient centrifugation from lymphoid (CEM-T4, stimulated Jurkat cells), and monocytoid (THP-1) cells produced NMR-visible, lipid signals. Large scale subfractionation of THP-1 cells determined that while cytoplasmic lipid droplets constituted much of the total NMR-visible lipid, the contribution of DRMs was significant. Qualitative and quantitative lipid analyses revealed that DRMs and lipid droplets differed in their lipid composition. DRMs were enriched in cholesterol and ganglioside GM1, and contained relatively unsaturated fatty acids compared with the lipid droplets. Both lipid droplets and DRMs contained neutral lipids (triacylgycerols, cholesterol ester, fatty acids in THP-1 cells) that could, in addition to phospholipids, contribute to the NMR-visible lipid. The lipid droplets also exhibited different protein profiles and contained 500-fold less protein than DRMs, confirming that DRMs and droplets were fractionated as separate entities. The NMR-visible lipid in DRMs is therefore unlikely to be a contaminant from lipid droplets. We propose a micropartitioning of the NMR-visible mobile lipid of whole cells between intracellular lipid droplets, where most of this lipid resides, and detergent-resistant plasma membrane domains.  相似文献   

3.
Toll-like receptor 4 (TLR4)-mediated responses, which are induced by the lipid A portion of lipopolysaccharide, are important for host defense against Salmonellae infection. A variety of different data indicate that the acylation state of lipid A can alter TLR4-mediated responses. The S. typhimurium virulence gene product PhoP/PhoQ signals the presence of host microenvironments to regulate the expression of a lipid A 3-O-deacylase, PagL, and a lipid A palmitoyltransferase, PagP. We now demonstrate that 3-O-deacylation and palmitoylation of lipid A decreases its ability to induce TLR4-mediated signaling. Deacylated lipid A, deacylated and palmitoylated lipid A, palmitoylated lipid A, and unmodified lipid A species were purified from Escherichia coli heterologously expressing PagL and/or PagP. The purified lipid A preparations showed spectra of a single lipid A species on mass spectrometry and gave a single band on thin layer chromatography. The activity of purified lipid A species was examined using human and mouse cell lines that express recombinant human TLR4. Compared with unmodified lipid A, the modified lipid A species are 30-100-fold less active in the ability to induce NF-kappaB-dependent reporter activation. These results suggest that the lipid A modifications reduce TLR4-signaling as part of Salmonellae adaptation to host environments.  相似文献   

4.
5.
All eukaryotic organisms store excess lipid in intracellular lipid droplets. These dynamic structures are associated with and regulated by numerous proteins. Perilipin 2, an abundant protein on most lipid droplets, promotes neutral lipid accumulation in lipid droplets. However, the mechanism by which perilipin 2 binds to and remains anchored on the lipid droplet surface is unknown. Here we identify features of the lipid droplet surface that influence perilipin 2 localization. We show that perilipin 2 binding to the lipid droplet surface requires both hydrophobic and electrostatic interactions. Reagents that disrupt these interactions also decrease binding. Moreover, perilipin 2 binding does not depend on other lipid droplet-associated proteins but is influenced by the lipid composition of the surface. Perilipin 2 binds to synthetic vesicles composed of dioleoylphosphatidylcholine, a phospholipid with unsaturated acyl chains. Decreasing the temperature of the binding reaction, or introducing phospholipids with saturated acyl chains, decreases binding. We therefore demonstrate a role for surface lipids and acyl chain packing in perilipin 2 binding to lipid droplets. The ability of the lipid droplet phospholipid composition to impact protein binding may link changes in nutrient availability to lipid droplet homeostasis.  相似文献   

6.
The PAT family proteins, named after perilipin, adipophilin, and the tail-interacting protein of 47 kDa (TIP47), are implicated in intracellular lipid metabolism. They associate with lipid droplets, but how is completely unclear. From immunofluorescence studies, they are reported to be restricted to the outer membrane monolayer enveloping the lipid droplet and not to enter the core. Recently, we found another kind of lipid droplet-associated protein, caveolin-1, inside lipid droplets. Using freeze-fracture immunocytochemistry and electron microscopy, we now describe the distributions of perilipin and caveolin-1 and of adipophilin and TIP47 in lipid droplets of adipocytes and macrophages. All of these lipid droplet-associated proteins pervade the lipid droplet core and hence are not restricted to the droplet surface. Moreover, lipid droplets are surprisingly heterogeneous with respect to their complements and their distribution of lipid droplet-associated proteins. Whereas caveolin-1 is synthesized in the endoplasmic reticulum and is transferred to the lipid droplet core by inundating lipids during droplet budding, the PAT proteins, which are synthesized on free ribosomes in the cytoplasm, evidently target to the lipid droplet after it has formed. How the polar lipid droplet-associated proteins are accommodated among the essentially hydrophobic neutral lipids of the lipid droplet core remains to be determined.  相似文献   

7.
Intracellular lipid translocation is mediated by lipid transfer proteins and their functional impairments cause severe disorder in lipid metabolism. However, molecular mechanisms of protein-mediated lipid transfer remain unclear since conventional assay methods could not observe elementary processes in the lipid transfer reaction, such as lipid bilayer binding and lipid uptake. In this study, we found that ceramide extraction mediated by a ceramide trafficking protein (CERT) could be detected as decreasing the response of surface plasmon resonance (SPR). Based on this finding, we developed a novel real-time assay method that enables quantitative evaluation of the ceramide extraction activity of CERT, using the SPR technique. Performing this SPR-based assay using ceramide-embedded and ceramide-free lipid bilayers as ligands allows for the exclusive investigation of ceramide uptake processes, differentiating them from other CERT-membrane binding events. Furthermore, mutagenesis experiments of CERT using this SPR-based assay clearly elucidated whether an amino acid residue plays a role in the ceramide uptake process or the lipid bilayer binding process. This SPR-based assay method can separately evaluate the lipid extraction activity and lipid bilayer binding activity of the lipid transfer proteins, and provide more detailed information about lipid transfer phenomena.  相似文献   

8.
From November to May, the lipid mass in the viscera and carcass of juvenile Atlantic salmon Salmo salar that were undergoing smolt transformation prior to seaward migration ('early migrants') were significantly greater than those of their siblings that would delay migration for at least a further year. During winter (November-February), the depletion of lipid associated with the viscera was significantly greater in early migrants, whilst lipid depletion in the remaining carcass was greater in delayed migrants. Early migrants continued to deplete both lipid compartments in spring (February-May), whereas delayed migrants depleted visceral lipid but replenished carcass lipid over the same period. Fatty acid accumulation rates (a measure of storage lipid synthesis rates) were two to six times greater in visceral than in carcass lipid throughout the study, suggesting that lipid turnover is much more rapid in the viscera. There were no differences in fatty acid accumulation rates between migrant groups in November, despite the much lower food consumption rate of delayed migrants at that time, suggesting that these fish allocated a larger proportion of their nutritional resources to lipid synthesis. In the carcass lipid of early migrants, and in both the visceral and carcass lipid of delayed migrants, the fatty acid accumulation rate was negatively correlated with lipid mass. Fatty acid accumulation rates increased from November to February in both visceral and carcass lipid in the two migrant groups. The fatty acid accumulation rate in carcass lipid was significantly higher in delayed migrants than in early migrants in February, but not in May. These results support the hypothesis that life history strategies involving rapid growth will result in a relatively low allocation of resources to lipid reserves.  相似文献   

9.
为探讨吉富罗非鱼对脂肪的适宜需求量,将630尾(2.63±0.16)g吉富罗非鱼随机分成6个脂肪组的饲料组(1.73%、3.71%、5.69%、7.67%、9.64%和16.55%),每组设置3个重复,每个重复35尾,第1组为对照组,投喂基础日粮(含脂肪1.73%),另外5组为试验组,在基础日粮中分别添加2%、4%、6%、8%、15%的鱼油,饲养90d后测定生长、饵料系数、营养物质表观消化率及血液常规生化指标。结果显示,随着饲料脂肪水平提高,增重率和特定生长率呈现一个先上升后下降的趋势(P<0.05),蛋白质效率极显著地提高(P<0.01),饵料系数极显著地下降(P<0.01)。增重率与饲料脂肪水平的二次多项式回归分析显示,吉富罗非鱼获得最高增长所需饲料的最佳脂肪水平为9.34%。饲料脂肪水平对粗蛋白表观消化率和饲料干物质表观消化率无显著影响(P>0.05),饲料脂肪水平增加显著提高了粗脂肪和磷的表观消化率(P<0.05)。未添加鱼油的1.73%组血液中白蛋白和白球比均显著高于其他组(P<0.05),随着饲料脂肪水平的提高,胆固醇的浓度及碱性磷酸酶的活性极显著地上升(P<0.01)。饲料脂肪水平对血糖浓度有显著影响(P<0.05),对甘油三酯浓度、谷丙和谷草转氨酶的活性无显著影响(P>0.05)。结果表明,饲料中的脂肪水平可以促进吉富罗非鱼对脂肪和磷的表观消化率,但是脂肪水平过高会对鱼体增重及血液生化参数产生负作用,从生产上来说吉富罗非鱼鱼种对脂肪的适宜需求量为7.67%-9.34%。    相似文献   

10.
Wang W  Yang L  Huang HW 《Biophysical journal》2007,92(8):2819-2830
Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy for lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.  相似文献   

11.
The monosaccharide lipid A precursor, N2,O3-diacylglucosamine 1-phosphate (Escherichia coli lipid X), has been shown previously to be a potent B-lymphocyte mitogen. We now report that lipid X interacts with macrophages, stimulating turnover of phosphatidylinositol, deacylation of phospholipids, and release of arachidonic acid. In addition, the monosaccharide lipid X, the incomplete lipid A disaccharides found in KDO-deficient mutants, and crude free lipid A by itself activate protein kinase C isolated from RAW 264.7 macrophages. This activation is augmented by diglyceride, a product of phosphatidylinositol turnover. Like the lipid X-induced mitogenesis of B-lymphocytes, lipid X activation of macrophages and the cell-free activation of protein kinase by lipid X require the presence of the O-linked hydroxymyristoyl residue at position 3. We suggest, therefore, that some of the biological effects of lipid A may be mediated by its interaction with protein kinase C.  相似文献   

12.
恒化培养稀释率和碳氮比对圆红冬孢酵母油脂积累的影响   总被引:1,自引:0,他引:1  
采用恒化培养的方法,考察了稀释率(D)和碳氮比(mol/mol)对圆红冬孢酵母Rhodosporidiumtoruloides AS 2.138 9积累油脂的影响。结果表明:稀释率增大,油脂含量和油脂得率降低。在D=0.02 h 1时油脂得率最大,为0.18 g油/g糖;D=0.14 h 1时油脂生成速率最大,为0.09 g/(L.h)。碳氮比增大,油脂含量略有增加。在C/N=92时油脂得率最大,为0.12 g油/g糖;C/N=32时油脂生成速率最大,为0.13 g/(L.h)。碳氮比对油脂的脂肪酸组成影响不明显,油脂的棕榈酸、硬脂酸和油酸总含量超过85%。  相似文献   

13.
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid hydroperoxide formation) catalyzed by rabbit liver microsomes is only about 40% of that catalyzed by rat liver microsomes. Microsomal lipid peroxidation was reconstituted with liposomes made from extracted microsomal lipid and purified protease-solubilized NADPH-cytochrome P-450 reductase from both rat and rabbit liver microsomes. The results demonstrated that the lower rates of lipid peroxidation catalyzed by rabbit liver microsomes could not be attributed to the specific activity of the reductase. Microsomal lipid from rabbit liver was found to be much less susceptible to lipid peroxidation. This was due to the lower polyunsaturated fatty acid content rather than the presence of antioxidants in rabbit liver microsomal lipid. Gas-liquid chromatographic analysis of fatty acids lost during microsomal lipid peroxidation revealed that the degree of fatty acid unsaturation correlated well with rates of lipid peroxidation.  相似文献   

14.
Despite the critical role lipid droplets play in maintaining energy reserves and lipid stores for the cell, little is known about the regulation of the lipid or protein components within the lipid droplet. Although immunofluorescence of intact cells as well as Western analysis of isolated lipid droplets revealed that sterol carrier protein-2 (SCP-2) was not associated with lipid droplets, SCP-2 expression significantly altered the structure of the lipid droplet. First, the targeting of fatty acid and cholesterol to the lipid droplets was significantly decreased. Second, the content of several proteins important for lipid droplet function was differentially increased (perilipin A), reduced severalfold (adipose differentiation-related protein (ADRP), vimentin), or almost completely eliminated (hormone-sensitive lipase and proteins >93 kDa) in the isolated lipid droplet. Third, the distribution of lipids within the lipid droplets was significantly altered. Double labeling of cells with 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-octadecanoic acid (NBD-stearic acid) and antisera to ADRP showed that 70, 24, and 13% of lipid droplets contained ADRP, NBD-stearic acid, or both, respectively. SCP-2 expression decreased the level of ADRP in the lipid droplet but increased the proportion wherein ADRP and NBD-stearic acid colocalized by 3-fold. SCP-2 expression also decreased the lipid droplet fatty acid and cholesterol mass (nmol/mg protein) by 5.2- and 6.6-fold, respectively. Finally, SCP-2 expression selectively altered the pattern of esterified fatty acids in favor of polyunsaturated fatty acids within the lipid droplet. Displacement studies showed differential binding affinity of ADRP for cholesterol and fatty acids. These data suggested that SCP-2 and ADRP play a significant role in regulating fatty acid and cholesterol targeting to lipid droplets as well as in determining their lipid and protein components.  相似文献   

15.
Two lipid transfer proteins, designated lipid transfer protein-I (Mr 69 000) and lipid transfer protein-II (Mr 55 000), each of which facilitates the transfer of radiolabelled cholesteryl ester, triacylglycerol and phosphatidylcholine between plasma lipoproteins, were purified from human plasma. Immunoglobulin G was prepared from goat antiserum to human lipid transfer protein-I (i.e., anti-human LTP-I IgG). The progressive addition of anti-human LTP-I IgG to buffered solutions containing either a highly purified mixture of human lipid transfer protein-I and lipid transfer protein-II, or highly purified rabbit lipid transfer protein (Abbey, M., Calvert, G.D. and Barter, P.J. (1984) Biochim. Biophys. Acta 793, 471-480) resulted in specific immunoprecipitation and the removal of increasing amounts, up to 100%, of cholesteryl ester, triacylglycerol and phosphatidylcholine transfer activities. However, similar precipitation studies on human and rabbit lipoprotein-free plasma resulted in the progressive removal of all cholesteryl ester and triacylglycerol transfer activities but only 30% (human) or 20% (rabbit) of phosphatidylcholine transfer activity. In all cases more anti-human LTP-I IgG was required to precipitate rabbit lipid transfer activity than human lipid transfer activity. These results suggest that lipid transfer protein-I and lipid transfer protein-II have antigenic sites in common, allowing precipitation of both proteins by specific antibody to lipid transfer protein-I. Most plasma phosphatidylcholine transfer activity is mediated by a protein (or proteins) other than lipid transfer protein-I and lipid transfer protein-II. In lipoprotein-free plasma all cholesteryl ester and triacylglycerol transfer activity, and some phosphatidylcholine transfer activity, is mediated by lipid transfer protein-I (or lipid transfer protein-I and an antigenically similar protein, lipid transfer protein-II.  相似文献   

16.
Lipid body accumulation within leukocytes is a common feature in both clinical and experimental infectious, neoplasic and other inflammatory conditions. Here, we will review the contemporary evidence related to the biogenesis and structure of leukocyte lipid bodies (also known as lipid droplets) as inflammatory organelles. Studies of leukocyte lipid bodies are providing functional, ultrastructural and protein compositional evidences that lipid bodies are not solely storage depots of neutral lipid. Over the past years substantial progresses have been made to demonstrate that lipid body biogenesis is a highly regulated process, that culminate in the compartmentalization of a specific set of proteins and lipids, that place leukocyte lipid bodies as inducible cytoplasmic organelles with roles in cell signaling and activation, regulation of lipid metabolism, membrane trafficking and control of the synthesis and secretion of inflammatory mediators. Pertinent to the roles of lipid bodies in inflammation and cell signaling, enzymes involved in eicosanoid synthesis are localized at lipid bodies and lipid bodies are sites for eicosanoid generation. Collectively, lipid bodies in leukocytes are emerging as critical regulators of different inflammatory diseases, key markers of leukocyte activation and attractive targets for novel anti-inflammatory therapies.  相似文献   

17.
Intracellular lipid droplets have long been misconceived as evolutionarily conserved but functionally frugal components of cellular metabolism. An ever-growing repertoire of functions has elevated lipid droplets to fully-fledged cellular organelles. Insights into the multifariousness of these organelles have been obtained from a range of model systems now employed for lipid droplet research including the fruit fly, Drosophila melanogaster. This review summarizes the progress in fly lipid droplet research along four main avenues: the role of lipid droplets in fat storage homeostasis, the control of lipid droplet structure, the lipid droplet surface as a dynamic protein-association platform, and lipid droplets as mobile organelles. Moreover, the research potential of the fruit fly model is discussed with respect to the prevailing general questions in lipid droplet biology.  相似文献   

18.
Chlorella vulgaris accumulates lipid under nitrogen limitation, but at the expense of biomass productivity. Due to this tradeoff, improved lipid productivity may be compromised, despite higher lipid content. To determine the optimal degree of nitrogen limitation for lipid productivity, batch cultures of C. vulgaris were grown at different nitrate concentrations. The growth rate, lipid content, lipid productivity and biochemical and elemental composition of the cultures were monitored for 20 days. A starting nitrate concentration of 170 mg L?1 provided the optimal tradeoff between biomass and lipid production under the experimental conditions. Volumetric lipid yield (in milligram lipid per liter algal culture) was more than double that under nitrogen-replete conditions. Interpolation of the data indicated that the highest volumetric lipid concentration and lipid productivity would occur at nitrate concentrations of 305 and 241 mg L?1, respectively. There was a strong correlation between the nitrogen content of the cells and the pigment, protein and lipid content, as well as biomass and lipid productivity. Knowledge of the relationships between cell nitrogen content, growth, and cell composition assists in the prediction of the nitrogen regime required for optimal productivity in batch or continuous culture. In addition to enhancing lipid productivity, nitrogen limitation improves the lipid profile for biodiesel production and reduces the requirement for nitrogen fertilizers, resulting in cost and energy savings and a reduction in the environmental burden of the process.  相似文献   

19.
The objective of this paper was to review our recent investigations of silica xerogel and aerogel-supported lipid bilayers. These systems provide a format to observe relationships between substrate curvature and supported lipid bilayer formation, lipid dynamics, and lipid mixtures phase behavior and partitioning. Sensitive surface techniques such as quartz crystal microbalance and atomic force microscopy are readily applied to these systems. To inform current and future investigations, we review the experimental literature involving the impact of curvature on lipid dynamics, lipid and phase-separated lipid domain localization, and membrane-substrate conformations and we review our molecular dynamics simulations of supported lipid bilayers with the atomistic and molecular information they provide.  相似文献   

20.
This study aimed to investigate the relationship between newly formed lipid droplets and lipid droplet surface proteins, including perilipin, adipose differentiation related protein (ADRP), and p200 kDa protein (p200) in 3T3-L1 preadipocytes, during lipogenesis. Sterol ester was used to induce nascent lipid droplets in 3T3-L1 preadipocytes and the sequence of lipids and lipid droplet surface proteins was studied using a combination of immunohistochemistry and Nile red staining/Oil red O. We demonstrated that, although most growing lipid droplets appeared to have a lipid core surrounded by a fluorescent rim of ADRP, perilipin, and p200, tiny protein aggregates of ADRP, perilipin, or p200 could also be found to occur in the absence of lipid accumulation. In addition, ADRP associated with nascent lipid droplets prior to that of perilipin or p200. We provide evidence that lipid droplet surface proteins, especially ADRP and perilipin, are important in serving as a nucleation center for the assembly of lipid to form nascent lipid droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号