首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arginine is a versatile additive to prevent protein aggregation. This paper shows that arginine ethylester (ArgEE) prevents heat-induced inactivation and aggregation of hen egg lysozyme more effectively than arginine or guanidine. The addition of ArgEE decreased the melting temperature of lysozyme. This data could be interpreted in terms of ArgEE binding to unfolded lysozyme, possibly through the ethylated carboxyl group, which leads to effective prevention of intermolecular interaction among aggregation-prone molecules. The data suggest that ArgEE could be used as an additive to prevent inactivation and aggregation of heat-labile proteins.  相似文献   

2.
Small potent inhibitors of aggregation are eagerly demanded for preventing the inactivation of proteins. This paper shows that amino acid esters (AAEs) prevent heat-induced aggregation and inactivation of hen egg lysozyme. Lysozyme was completely inactivated (<1% original activity) during heat treatment at 98 degrees C for 30 min in a solution containing 0.2 mg/mL lysozyme in 50 mM Na-phosphate buffer (pH 6.5). The residual activities only slightly increased (<5%) in the presence of 100 mM commonly used additives such as arginine, guanidine, urea, and sugars. However, in the presence of 100 mM AAEs, the residual activities were >60% and no aggregates were observed during the heat treatment at 98 degrees C for 30 min. This fact provides new information on the scaffold for designing additives to prevent heat-induced aggregation.  相似文献   

3.
Proteins tend to form inactive aggregates at high temperatures. We show that polyamines, which have a relatively simple structure as oligoamids, effectively prevent thermal inactivation and aggregation of hen egg lysozyme. In the presence of additives, including arginine and guanidine (100 microM), more than 30% of 0.2 mg x mL(-1) lysozyme in sodium phosphate buffer (pH 6.5) formed insoluble aggregates by heat treatment (98 degrees C for 30 min). However, in the presence of 50 mm spermine or spermidine, no aggregates were observed after the same heat treatment. The residual activity of lysozyme after this heat treatment was very low (< 5%), even in the presence of 100 microM arginine and guanidine, while it was maintained at approximately 50% in the presence of 100 microM spermine and spermidine. These results imply that polyamines are new candidates as molecular additives for preventing the thermal aggregation and inactivation of heat-labile proteins.  相似文献   

4.
Over the range 20-52 degrees C thermal inactivation of malate dehydrogenase (MDH) was studied with the aim of well grounded choice of its stabilization ways. The process was described by the pseudofirst order rate constants, kin, dependent on enzyme concentration. The rate constant of enzyme inactivation at the "infinite" dilution in general form equals 1.40 X 10(27) X exp (-43 000/RT) s-1, whereas at high enzyme concentration it is 1.26 X 10(8) X exp (-17 700/RT) s-1. The limiting step of the MDH inactivation is the enzyme dissociation into its subunits. In the concentrated enzyme solution a protein association is accompanied by its stabilization. The methods of characterization of oligomeric proteins dissociative inactivation are discussed.  相似文献   

5.
The role of cysteine oxidation in the thermal inactivation of T4 lysozyme   总被引:5,自引:0,他引:5  
Wild-type T4 lysozyme contains unpaired cysteine residues at positions 54 and 97. To investigate the role these residues play in the thermal inactivation of the wild-type, we constructed a double mutant with these cysteines replaced with valine and serine. This molecule, T4 lysozyme (C54V/C97S), is more stable than the wild-type to inactivation at 70 degrees C at pH 6.5 and 8.0. Guanidine hydrochloride reactivation experiments and SDS-PAGE on the inactivated products show that the wild-type is susceptible to varying degrees of oxidative damage, depending on buffer conditions, while the cysteine-minus mutant inactivates only by other pathways. The products of thermal, oxidative inactivation of the wild-type are disulfide-linked oligomers. The dependence of inactivation rate on temperature suggests that the formation of these aggregates depends on prior thermal unfolding of the T4 lysozyme molecule.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Kinetics of thermal unfolding of lysozyme   总被引:2,自引:0,他引:2  
S Segawa  Y Husimi  A Wada 《Biopolymers》1973,12(11):2521-2537
  相似文献   

13.
14.
Carbon-13 NMR spectroscopy has been used to further document the interaction, at low and high temperatures, of N-acetylglucosamine and its short polymers with hen egg-white lysozyme. The results have been compared with the corresponding X-ray crystallographic data. Two domains, the active site and the hydrophobic box, have been found by NMR to undergo conformational rearrangement while X-ray crystallography only detected changes located in the active site. The extent of the modifications induced by inhibitor binding was proportional to the inhibitor size. The two techniques concurred to show that even in the presence of monosaccharide (N-acetylglucosamine), more than one subsite of the enzyme was occupied at high temperature, the binding at the C-site being the best defined. The thermal transition of lysozyme still occurred in solution when inhibitors were bound. However, in the solid state, crystallographic data showed that the transition was hindered.  相似文献   

15.
We have applied rheological methods for the analysis of ethanol-lysozyme interaction during the process of denaturation and aggregation of the protein. At low concentration of ethanol a destruction of the hydration shell of lysozyme is observed. With the increase in the ethanol concentration a structural transformation takes place. It leads to the formation of a protein aggregate with an elongated structure. The rheological characteristics of lysozyme-water-ethanol solution changes from Newtonian to pseudoplastic.  相似文献   

16.
The site-specific lysozyme damage by iron and by iron-catalysed oxygen radicals was investigated. A solution of purified lysozyme was inactivated by Fe(II) at pH 7.4 in phosphate buffer, as tested on cleavage of Micrococcus lysodeikticus cells; this inactivation was time- and iron concentration-dependent and was associated with a loss of tryptophan fluorescence. In addition, it was reversible at pH 4, as demonstrated by lysozyme reactivation and by the intensity of the 14.4-kD-band on SDS-PAGE. Desferal (1 mM) and Detapac (1 mM) added before iron, prevented lysozyme inactivation, while catalase (100 micrograms/ml), superoxide dismutase (100 micrograms/ml) and bovine serum albumin (100 micrograms/ml) gave about 30 to 40% protection by competing with lysozyme for iron binding. The denaturing effect of iron on lysozyme was studied in the presence of H2O2 (1 mM) and ascorbate (1 mM); under these conditions the enzyme underwent partly irreversible inactivation and degradation different to that produced by gamma radiolysis-generated .OH. Catalase almost fully protected lysozyme; in contrast, mannitol (10 mM), benzoate (10 mM), and formate (10 mM) provided no protection because of their inability to access the site at which damaging species are generated. In this system, radical species were formed in a site-specific manner, and they reacted essentially with lysozyme at the site of their formation, causing inactivation and degradation differently than the hydroxyl radical.  相似文献   

17.
To understand the role of ATP underlying the enhanced amyloidosis of hen egg white lysozyme (HEWL), the synchrotron radiation circular dichroism, combined with tryptophan fluorescence, dynamic light-scattering, and differential scanning calorimetry, is used to examine the alterations of the conformation and thermal unfolding pathway of the HEWL in the presence of ATP, Mg2+-ATP, ADP, AMP, etc. It is revealed that the binding of ATP to HEWL through strong electrostatic interaction changes the secondary structures of HEWL and makes the exposed residue W62 move into hydrophobic environments. This alteration of W62 decreases the β-domain stability of HEWL, induces a noncooperative unfolding of the secondary structures, and produces a partially unfolded intermediate. This intermediate containing relatively rich α-helix and less β-sheet structures has a great tendency to aggregate. The results imply that the ease of aggregating of HEWL is related to the extent of denaturation of the amyloidogenic region, rather than the electrostatic neutralizing effect or monomeric β-sheet enriched intermediate.  相似文献   

18.
Heat inactivation of the acetonic powder of Micrococcus lysodeicticus cells suspended in phosphate buffer pH 6.2 was quantitatively characterized in the temperature range from 34 to 52 degrees. The total value of the rate constant for heat inactivation of the cells equals 2.88 X 10(8) exp(-18360/RT) sec-1. The activation parameters of the process at 34 degrees are the following: delta H* = 17.7 kcal/mole; delta S* = 21.8 E. U.; delta F* = 24.4 kcal/mole. The effect of ethylene glycol, mannitol, dextran, polyvinyl alcohol (PVA) and polyethylene glycols with different molecular weights on the lysis rate and cell stability was studied. Polyvinyl alcohol was found to be the most effective stabilizer. At concentrations of about 10(-5) it enhances the thermostability of the cells threefold.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号