首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By substituting iso-osmotic Ficoll-sucrose for hyperosmotic sucrose between the densities of 1.043 and 1.088 in sucrose density gradients in the B-XV rotor of an Anderson-NIH-AEC zonal centrifuge system, it was possible to stabilize the zonal centrifuge absorbancy profiles of adult rat brain homogenates. The reason for the instability in ordinary sucrose gradients was found to be the interaction of myelin with other brain structures in hyperosmotic sucrose. No such interaction occurred in isoosmotic sucrose (0.32 M) with or without Ficoll. In Ficoll-sucrose, myelin was separated at three reproducible densities of 1.054, 1.060, and 1.066 gm/ml. No myelin appeared at a density if 1.094 gm/ml, which represented the main collection point in ordinary sucrose. Synaptosomes were separated at peak densities of 1.072 and 1.152 gm/ml. Mitochondria were obtained at a density of 1.176 gm/ml. Areas under zonal centrifuge absorbancy profiles of rat brain homogenates were found to be constant regardless of the values of ω2t that were reached.  相似文献   

2.
Fractionation of liver plasma membranes prepared by zonal centrifugation   总被引:37,自引:23,他引:14       下载免费PDF全文
1. Plasma membranes were isolated from crude nuclear sediments from mouse and rat liver by a rate-dependent centrifugation through a sucrose density gradient contained in the ;A' type zonal rotor. 2. The membranes were further purified by isopycnic centrifugation, and characterized enzymically, chemically and morphologically. 3. When the plasma-membrane fraction of sucrose density 1.17g/cm(3) was dispersed in a tight-fitting homogenizer, two subfractions of densities 1.12 and 1.18 were obtained by isopycnic centrifugation. 4. The light subfraction contained 5'-nucleotidase, nucleoside diphosphatase, leucine naphthylamidase and Mg(2+)-stimulated adenosine triphosphatase activities at higher specific activities than unfractionated membranes. The heavy subfraction was deficient in the above enzymes but contained higher Na(+)+K(+)-stimulated adenosine triphosphatase activity. 5. The light subfraction contained twice as much phospholipid and cholesterol, and three times as much N-acetylneuraminic acid relative to unit protein weight as the heavy subfraction. Polyacrylamide-gel electrophoresis indicated differences in protein composition. 6. Electron microscopy showed the light subfraction to be vesicular. The heavy subfraction contained membrane strips with junctional complexes in addition to vesicles.  相似文献   

3.
Lactoperoxidase-catalysed iodination was used to label intestinal epithelial cell sheets with 125I. The iodination was carried out under conditions that allowed little penetration of lactoperoxidase into the cells and membrane-bound 125I therefore provided an effective marker for following plasma-membrane fragments through subcellular-fractionation procedures. 2. After homogenization and isopycnic zonal centrifugation through sucrose gradients two peaks of membrane-bound 125I were detected. One coincided with brush border enzymes such as alkaline phosphatase, disaccharidases and L-leucine B-naphthylamidase, whereas the other was coincident with the major peak of (Na++K+)-stimulated ATPase (adenosine triphosphatase), which has been thought to be concentrated in the basolateral plasma membranes of these cells. Neither peak of 125I reflected the distribution of any marker for an intracellular organelle. 3. A larger proportion of the (Na++K+)-stimulated ATPase, and thus of the basolateral plasma-membrane material, was found in a crude 'mitochondrial' fraction. It was not readiily separated from mitochondria by conventional techniques of subcellular fractionation. 4. Treatment of the 'mitochondrial' fraction with digitonin increased the density of basolateral plasma membrane but had little effect on mitochondrial density. A purified preparation of digitonin-loaded basolateral plasma membranes was isolated at a density of 1.20-1.22 by isopycnic centrifugation. 5. The enzymic composition of this preparation of basolateral plasma membranes is compared with previous preparations isolated from intestinal mucosal 'scrape' materials and from isolated cells.  相似文献   

4.
In this work we report on the isolation of two plasma membrane fractions of a glycogen-free substrain of Ehrlich-Lettré ascites cells, a light fraction sedimenting in a sucrose gradient at 1.10 g/ml, and a heavy fraction sedimenting at nuclei by a combination of short-term swelling and mild Dounce homogenization. A 12 000 X g postnuclear pellet (PII) containing major portions of the plasma membrane marker enymes, 5'-nucleotidase, ouabain-sensitive (Na+ + K+)-ATPase and the alkaline phosphatase, was prepared by differential centrifugation. The two plasma membrane fractions were obtained by centrifugation on a discontinuous sucrose gradient, from which they were further purified on a linear sucrose gradient applying sedimentation velocity conditions only. Enrichment factors for the three marker enzymes were between 5- and 14-fold for the light fraction and between 3- and 7-fold for the heavy fraction with an overall yield of 1--4% and 0.5--1.7%, respectively, of cellular protein. Contamination of both fractions with nuclear material was minor. Mitochondrial contamination was about 8% for the light material and somewhat higher for the heavy material. In the light fraction, co-sedimentation of lysosomal and Golgi marker enzymes was detected. The presence of membrane structures of these organelles could not be confirmed definitely by electron microscopy. Differences in sialic acid content and phospholipid composition within the two fractions, especially in the relative proportion of lecithin to sphingomyelin, suggests differences in membrane fluidity. The light material showed mostly unit membrane vesicles in thin-section and freeze-etch electron microscopy, whereas the heavy fraction mainly consisted of sheet-like membrane fragments.  相似文献   

5.
Plasma membranes from normal, full-term human placental trophoblast have been isolated by a new procedure. The method depends upon isopycnic zonal centrifugation using linear sucrose/Ficoll density gradients. Enrichment of plasma membrane marker enzymes with respect to trophoblast homogenate is found in two distinct peaks (designated B and D) of the fractionated effluent recovered from the rotor. Fraction B is enriched with membrane-bound alkaline phosphatase and 5'-nucleotidase, but not with (Na+, K+)-ATPase of F(-)-stimulated adenylate cyclase. It is suggested that this material is derived from the maternal-facing microvillous plasma membrane. Fraction D, enriched with (Na+, K+)-ATPase, F(-)-stimulated adenylate cyclase and, to a smaller extent, with 5'-nucleotidase and alkaline phosphatase is, by exclusion, proposed to be derived from the fetal-facing basal plasma membrane. Both plasma membrane fractions are shown to be free of appreciable contamination, using specific markers for endoplasmic reticulum, mitochondria, nuclei and lysosomes. The separation of the two membrane fractions is shown to depend both upon these membranes forming closed vesicles during homogenization and upon the buoyant densities of such vesicles differing in such a way that microvillous plasma membranes band at a lower density than basal plasma membranes. No separation of the membranes is achieved in gradients in which the vesicles are collapsed.  相似文献   

6.
Comparative chemical analyses were conducted with plasma membrane-enriched fractions of Taphrina deformans cells grown in a medium with or without the C-14 demethylation inhibitor propiconazole at a concentration that gives 50% growth inhibition. The membrane fractions were prepared using differential and discontinuous sucrose density gradient centrifugation, and characterized by cytochemical, enzymatic and chemical analyses. Membranes of nontreated cells were similar to those from other fungi with a protein/lipid ratio of 1.2, 13% phospholipid content in the membrane lipid (122 μg/mg protein), and a relatively high sterol/phospholipid molar ratio of 0.69. The corresponding membrane fraction from propiconazole-treated cells had 24% less lipid, 27% less phospholipid, 5-times more triacylglycerol relative to other neutral acyl lipids, and over a 2-fold higher sterol/phospholipid ratio. The greater sterol/phospholipid ratio was due to a higher C-14 methyl sterol content rather than less functional sterol (brassicasterol). Membranes from treated cells contained slightly less protein than those from nontreated cells, but there was little difference in the electrophoretic separation patterns of solubilized membrane polypeptides.  相似文献   

7.
The composition and patterns of metabolism of phospholipids isolated as part of a lipid-depleted membrane fragment (LDM fragment) and associated with the membrane adenosine triphosphatase complex have been compared with those of the bulk membrane phospholipid. The bulk lipid was extracted from washed membranes with sodium cholate. The LDM fragments, which contained a portion of the electron transport system and the membrane adenosine triphosphatase complex, were purified by chromatography with Sepharose 6B. The LDM fragment preparations contained 0.10 +/- 0.02 mumol of lipid phosphorus per mg of protein, compared with 0.54 +/- 0.05 mumol of lipid phosphorus per mg of protein for washed membranes. The phospholipid associated with the LDM fragments consisted of 78 +/- 4% cardiolipin, 7 +/- 1% phosphatidylglycerol, and 15 +/- 3% phosphatidylethanolamine. Changes in the total membrane lipid composition (produced by culture conditions) did not alter the phospholipid composition of the LDM fragments. The adenosine triphosphate complex was separated from the other components of the LDM fragments by suspension of the fragments in 1% Triton X-100 and precipitation with antibody specific for the F(1) component of the adenosine triphosphatase complex. The phospholipid isolated with the adenosine triphosphatase complex consisted of 86% cardiolipin, 8% phosphatidylglycerol, and 6% phosphatidylethanolamine. In pulse-chase experiments with (32)P and [2-(3)H]glycerol, the labeling patterns of the phosphatididylglycerol and phosphatidylethanolamine associated with the LDM fragments were different from those of the bulk membrane phosphatidylglycerol and phosphatidylethanolamine. It was concluded that at least a portion of the phospholipid isolated with the LDM fragments was part of a native lipid-protein complex.  相似文献   

8.
The association between the brush border enzyme alkaline phosphatase and gamma-glutamyltransferase was determined by sucrose density gradient analysis of crude kidney homogenates, isolated glomeruli, and isolated microvessels. As previously established there is an overlap of these enzyme activities in the crude homogenate corresponding to a density of 1.17 g.cm-3. In contrast, isolated glomeruli sedimented with a peak of 1.25 g. cm-3 and exhibited gamma-glutamyltransferase activity but little alkaline phosphatase activity; homogenizing isolated glomeruli shifted the fragments to a density coincident with that observed for the crude homogenate gamma-glutamyltransferase peak. A second population of capillaries, isolated microvessels, were homogenized and analysed on the sucrose density gradient. These fragments sedimented over the same range as crude homogenate gamma-glutamyltransferase peak but were devoid of alkaline phosphatase activity and yet exhibited remarkable gamma-glutamyltransferase activity. The results indicate homogenization of renal cortex results in a heterogeneous collection of particles from both tubular and microvascular locations exhibiting gamma-glutamyltransferase activity which overlap with the brush border alkaline phosphatase containing membranes. However, isolation of microvessels and glomeruli prior to homogenization allows separation of gamma-glutamyltransferase from alkaline phosphatase activity; between 10 and 20% of the total homogenate gamma-glutamyltransferase activity is estimated to be associated with the microvascular compartment.  相似文献   

9.
Abstract— Catecholamine storing particles mainly from rat brain hypothalamus and corpus striatum have been isolated by isopycnic centrifugation in density gradients made of colloidal silica. As markers, tritium-labelled noradrenaline, endogenous noradrenaline and dopamine were measured. Cytochrome oxidase was determined as an indicator of mitochondria.
Two distinct populations of amine containing particles were recognized with densities of 1 , 03–1.04 g/ml and 1 , 045–1.065 g/ml in continuous isotonic gradients made of silica sol and a polymer. The light fraction was assumed to contain myelin fragments, light synaptosomes and possibly also catecholamine storage vesicles, while the other one was probably a heavy population of synaptosomes containing more mitochondria. Free mitochondria were found in a band at a density of 1 , 09–1.11.
The distribution pattern in isotonic gradients was compared with that in density gradients made of silica sol and sucrose or sucrose alone. The heavy population of the catecholamine particles was found to have a higher density in hypertonic gradients. Furthermore these synaptosomes seemed to lose more mitochondria and catecholamines than those in isotonic gradients probably due to the hypertonicity.
The present results confirm similar findings by other workers separating brain sub- cellular particles in isotonic gradients of Ficoll and sucrose.
Colloidal silica solutions might be of value for analytical centrifugation of brain sub-cellular particles, since it has a lower tonicity than sucrose, lower viscosity than Ficoll and furthermore it is very easy to handle. The silica sol is inexpensive and allows large scale work.  相似文献   

10.
Cytoplasmic/intracytoplasmic and outer membrane preparations of Methylococcus capsulatus (Bath) were isolated by sucrose density gradient centrifugation of a total membrane fraction prepared by disruption using a French pressure cell. The cytoplasmic and/or intracytoplasmic membrane fraction consisted of two distinct bands, Ia and Ib (buoyant densities 1.16 and 1.8 g ml-1, respectively) that together contained 57% of the protein, 68% of the phospholipid, 73% of the ubiquinone and 89% of the CN-sensitive NADH oxidase activity. The only apparent difference between these two cytoplasmic bands was a much higher phospholipid content for Ia. The outer membrane fraction (buoyant density 1.23 - 1.24 g ml-1) contained 60% of the lipopolysaccharide-associated, beta-hydroxypalmitic acid, 74% of the methylsterol, and 66% of the bacteriohopanepolyol (BHP); phospholipid to methyl sterol or BHP ratios were 6:1. Methanol dehydrogenase activity and a c-type cytochrome were also present in this outer membrane fraction. Phospholipase A activity was present in both the cytoplasmic membrane and outer membrane fractions. The unique distribution of cyclic triterpenes may reflect a specific role in conferring outer membrane stability in this methanotrophic bacterium.  相似文献   

11.
Five molecular dynamics computer simulations were performed on different phospholipid:sterol membrane systems in order to study the influence of sterol structure on membrane properties. Three of these simulated bilayer systems were composed of a 1:8 sterol:phospholipid ratio, each of which employed one of the sterol molecules: cholesterol, ergosterol, and lanosterol. The two other simulations were of a bilayer with a 1:1 sterol:phospholipid ratio. These simulations employed cholesterol and lanosterol, respectively, as their sterol components. The observed differences in simulations with cholesterol and lanosterol may have their implication on the form of the phospholipid/sterol phase diagram.  相似文献   

12.
The cerium-based method was used to demonstrate cytochemically the ultrastructural localization of alkaline phosphatase (ALPase), 5'-nucleotidase (5'-Nase) and magnesium-dependent adenosine triphosphatase (Mg-ATPase) on the transitional epithelium of the rat urinary bladder. The reaction product for ALPase was found on the plasma membrane of all epithelial cells, except the luminal surface of superficial cells. The activity of 5'-Nase appeared on the plasma membrane of all bladder transitional epithelial cells, including the free surface of superficial cells. The Mg-ATPase reaction product was seen on the plasma membrane of superficial, intermediate and basal cells, but never on the luminal surface of superficial cells and it was only occasionally seen on the basal surface. The possible functions of these phosphatases have been discussed, and it was emphasized that the 5'-Nase activity present on the luminal surface of superficial cells may play a special role in the membrane movement of these cells in the transitional epithelium.  相似文献   

13.
The properties and subcellular localization of adenosine diphosphatase (ADPase) activity in smooth muscle cells cultured from pig aortas have been investigated. The pH optimum of ADPase activity was 7.3 and the apparent Km for ADP was 10.3 μM. ADPase activity was inhibited completely by EDTA and was restored by the addition of divalent cations. The enzyme activity was not inhibited by 2-glycerophosphate, a substrate for non-specific phosphatases, nor by levamisole, a specific inhibitor of alkaline phosphatase. Smooth muscle cells were homogenized and a post-nuclear supernatant was applied to a sucrose density gradient in a Beaufay automatic zonal rotor. The distribution of ADPase activity in the density gradient was similar to that of 5′-nucleotidase activity, a marker enzyme for the plasma membrane, and distinct from the distributions of the marker enzymes for the other organelles. When the cells were homogenized in the presence of digitonin, an agent which binds to cholesterol and increases the equilibrium density of the plasma membrane, the modal equilibrium densities of ADPase activity and of 5′-nucleotidase activity were increased to similar extents, thus confirming the plasma membrane localization of ADPase activity.  相似文献   

14.
Abstract— Two membrane fractions were obtained from electric organ tissue of the electric eel by sucrose gradient centrifugation of tissue homogenates. Electron microscopic examination showed that both fractions contained mainly vesicular structures (microsacs). Both the light and heavy fractions had a-bungarotoxin-binding capacity and Na+-K+ ATPase activity, while only the light fraction had AChE activity. The polypeptide patterns of vesicles derived from both the light and heavy fractions were examined by SDS-polyacrylamide gel electrophoresis and found to be very similar. The ratio of protein to phospholipid in the light vesicles was much lower than in the heavy vesicles, but the relative amounts of individual phospholipids in the two fractions were similar. A marked difference in the permeability of the light and heavy vesicles was observed by measuring efflux of both [14C]sucrose and 22Na+, and also by monitoring volume changes induced by changing the osmotic strength of the medium. All three methods showed the heavy vesicles to be much more permeable than the light ones. Only the light vesicles displayed increased sodium efflux in the presence of carbamylcholine. The AChE in the light fraction does not appear to be membrane-bound, but is rather a soluble enzyme, detached from the membrane during homogenization, which migrates on the gradient similarly to that of the light vesicles. This is supported by the fact that the bulk of the AChE is readily removed by washing the vesicles. Moreover, under the conditions employed in our sucrose gradient separations,‘native’14 S + 18 S AChE exists in the form of aggregates which migrate very similarly to the major peak of AChE activity of tissue homogenates. Separated innervated and non-innervated surfaces of isolated electroplax were obtained by microdissection. α-Bungarotoxin-binding capacity was observed only in the innervated membrane. About 80% of the AChE was in the innervated membrane, and about 70% of the Na+-K+ ATPase in the non-innervated membrane. The data presented indicate that the light and heavy vesicle fractions separated by sucrose gradient centrifugation are not derived exclusively from the innervated and non-innervated membranes respectively, as previously suggested by others, but contain membrane fragments from both sides of the electroplax. The separation of two populations on sucrose gradients may be explained both by the differences in permeability and in protein to phospholipid ratios.  相似文献   

15.
Mg-ATPase and Torpedo Cholinergic Synaptic Vesicles   总被引:8,自引:7,他引:1  
The reported presence of Mg-ATPase activity in cholinergic synaptic vesicles from the electric organ of Torpedo marmorata was reinvestigated in view of possible contamination of vesicles by other subcellular fractions. After dilution in concentrated sucrose, the vesicular fraction isolated on a sedimentation sucrose gradient was purified further on a flotation density gradient. It appears that this treatment allows separation of the vesicles according to their content. The two vesicular content markers, acetylcholine and ATP, are recovered as sharp coincident peaks at a density close to 0.48 M sucrose. Empty vesicles are identified in denser regions by the protein pattern on gel electrophoresis which is identical to the pattern obtained for filled vesicles. Refractionation of vesicles depleted of their acetylcholine content by valinomycin leads to an extreme picture, with a massive shift of the vesicles toward denser regions. We have then shown that a ouabain-insensitive Mg-ATPase is indeed associated with the vesicle membrane, but the activity is fully apparent only when vesicles are permeabilized either as the result of the fractionation procedure or after detergent treatment. The relative insensitivity of the Mg-ATPase associated with the synaptic vesicles to oligomycin, N,N'-dicyclohexylcarbodiimide, and azide indicates that this enzyme differs from the classic F1F0 mitochondrial enzyme. The most striking finding is the sensitivity to vanadate of the vesicular Mg-ATPase, which suggests the involvement of a phosphorylated intermediate. On the basis of both the difference in inhibitor sensitivity between untreated and detergent-treated vesicles and of the pronase experiments, the possibility that the enzyme has an inward orientation is discussed.  相似文献   

16.
A new procedure for the purification of plasma membranes of Dictyostelium discoideum is described. Cells are broken by vigorously stirring in the presence of glass beads, and plasma membranes are isolated by equilibrium sucrose density centrifugation. The purified membranes are considerably enriched in alkaline phosphatase and 5'-nucleotidase and contain very low levels of succinate dehydrogenase and NADPH-cytochrome c reductase. The purified membranes contain relatively high levels of phospholipid, sterol and carbohydrate. They appear as a relatively homogeneous population of membrane vesicles in the electron microscope. This new method of purification is compared to previously published procedures which have been found to be unsuitable for our purposes.  相似文献   

17.
A procedure is described for isolating plasma, smooth and other cellular membranes from hypotonically lysed protoplasts of the marine diatom, Nitzschia alba. From starting material of approximately 10 g wet weight (1010 cells), about 168 mg (organic weight) of a membrane-enriched fraction, exclusive of mitochondria, is obtained by differential centrifugation. From this, six membrane fractions are separated on a discontinuous sucrose gradient by isopycnic centrifugation.The plasma membranes, from the density region 1.23-1.29 g/cc, consist of small vesicles and sheets. They are purified approximately 20-fold, based on the increase in specific activity of a (Na+-K+-Mg2+)-ATPase, an enzyme found predominantly in these membranes. They also contain the highest specific and total activity of a (Mg2+)-ATPase and, in addition, are distinguished chemically by their high sterol specific content and high molar ratio of sterol/phospholipid (0.792-0.854). The carbohydrate/ protein ratio (0.070-0.072) is appreciably lower than that of the smooth membranes.The smooth membranes separate into two distinct fractions, a light and heavy component, which occur at the top of the sucrose gradient in densities of 1.13 and 1.18 g/cc, respectively. Both fractions are composed of relatively large membrane vesicles and membrane sheets and are distinguished from other membrane fractions by an exceptionally high carbohydrate/protein ratio (0.194-0.294).The light component shows the highest specific content of lipid, phospholipid, neutral lipid, carbohydrate, sialic acid, and RNA, and the highest specific activity of NADPH cytochrome c reductase, 5′-nucleotidase and phosphodiesterase compared to the other five fractions. It shows the lowest Na+ plus K+ stimulation of the (Mg2+)-ATPase. This fraction is probably enriched in endoplasmic reticulum.The heavy component contains some Golgi-like vesicles, sacs and tubules. It is characterized by the highest total content of chemical constituents analyzed, with the exception of RNA, and by the highest specific activity of thiamine pyrophosphatase, uridine diphosphatase, acid and alkaline phosphatase, and glucose-6-phosphatase, suggesting that this component is enriched in Golgi membranes approximately 13-fold.A most striking feature of these diatom membranes is the presence in all fractions of (Mg2+)-ATPase activity which is stimulated 5- to 10-fold by the presence of equimolar Na2+ plus K+. The data clearly differentiate these membrane fractions from each other as well as from membranes prepared from animal cells.  相似文献   

18.
Two methods for preparing membrane fractions from barley (Hordeum vulgare cv California Mariout 72) roots were compared in order to resolve reported differences between the characteristics of the plasma membrane ATPase of barley and that of other species. When microsomal membranes were prepared by a published procedure and applied to a continuous sucrose gradient, the membranes sedimented as a single broad band with a peak density of 1.16 grams per cubic centimeter (g/cm3). Activities of NADH cytochrome (Cyt) c reductase, Ca2+-ATPase, and Mg2+-ATPase were coincident and there was little ATP-dependent proton transport anywhere on the gradient. When the homogenization procedure was modified by increasing the pH of the buffer and the ratio of buffer to roots, the microsomal membranes separated as several components on a continuous sucrose gradient. A Ca2+-phosphatase was at the top of the gradient, NADH Cyt c reductase at 1.08 g/cm3, a peak of ATP-dependent proton transport at 1.09 to 1.12 g/cm3, a peak of nitrate-inhibited ATPase at 1.09 to 1.12 g/cm3, and of vanadate-inhibited ATPase at 1.16 g/cm3. The Ca2+-phosphatase had no preference for ATP over other nucleoside di- and tri-phosphates and was separated from the vanadate-inhibited ATPase on a sucrose gradient; approximately 70% of the Ca2+-phosphatase was removed from the microsomes by washing with 150 millimolar KCl. The vanadate-sensitive ATPase required Mg2+, was highly specific for ATP, and was not affected by the KCl wash. These results show that barley roots have a plasma membrane ATPase similar to that of other plant species.  相似文献   

19.
Homogenates of baby-hamster kidney cells and rat embryo fibroblasts prepared by nitrogen cavitation contain a small population of slowly sedimenting mitochondria or mitochondrial fragments, which contaminate the microsomal fraction. This appears to limit the resolution of surface membrane and endoplasmic reticulum on magnesium-containing dextran gradients. The microsomal material and mitochondria can, however, be completely separated on a 10-60% (w/w) sucrose zonal gradient containing a 30% sucrose plateau. On magnesium-containing dextran gradients this mitochondria-free microsomal material can be resolved into at least two surface membrane fractions and at least two endoplasmic reticulum fractions. Comparison of polyoma virus-transformed and normal baby-hamster kidney cells reveals some interesting differences in their microsomal fractionation patterns and the characteristics of the Na(+)/K(+)-Mg(2+) adenosine triphosphatase of their surface membranes, in particular a tenfold lower K(m) in the virus-transformed cells. The fractionation patterns of normal and spontaneously transformed rat embryo fibroblasts are also briefly discussed, particularly in relation to the significance of the observation that both the surface membrane and endoplasmic reticulum from these cells can be subfractionated.  相似文献   

20.
A cell-free system for the study of viral DNA replications was developed by the isolation of a nuclear membrane fraction "DNA replication complex" from adenovirus 2-infected human KB cells late after infection. This complex which possesses both DNA polymerase activity and a virus-specific endonuclease synthesizes exclusively virus-specific DNA sequences in vitro by a semiconservative mechanism. Analysis by rate zonal sedimentation in alkaline sucrose gradients showed that the products of the reaction are small DNA chains approximately 6 to 9 S, presumably "Okazaki intermediates," that are not sealed under our in vitro conditions. Analysis by rate zonal sedimentation in neutral sucrose gradients showed that labeled viral DNA fragments are hydrogen bonded to viral 18 S DNA segments, 0.25 the size of the linear, viral 31 S DNA genome. The 18 S DNA is probably a specific cleavage product of the viral endonuclease found in the replication complex and could represent intermediates in viral DNA replication or degradation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号