共查询到20条相似文献,搜索用时 12 毫秒
1.
Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. 总被引:11,自引:1,他引:11 下载免费PDF全文
Previous analysis of the bipolar budding pattern of Saccharomyces cerevisiae has suggested that it depends on persistent positional signals that mark the region of the division site and the tip of the distal pole on a newborn daughter cell, as well as each previous division site on a mother cell. In an attempt to identify genes encoding components of these signals or proteins involved in positioning or responding to them, we identified 11 mutants with defects in bipolar but not in axial budding. Five mutants displaying a bipolar budding-specific randomization of budding pattern had mutations in four previously known genes (BUD2, BUD5, SPA2, and BNI1) and one novel gene (BUD6), respectively. As Bud2p and Bud5p are known to be required for both the axial and bipolar budding patterns, the alleles identified here probably encode proteins that have lost their ability to interact with the bipolar positional signals but have retained their ability to interact with the distinct positional signal used in axial budding. The function of Spa2p is not known, but previous work has shown that its intracellular localization is similar to that postulated for the bipolar positional signals. BNI1 was originally identified on the basis of genetic interaction with CDC12, which encodes one of the neck-filament-associated septin proteins, suggesting that these proteins may be involved in positioning the bipolar signals. One mutant with a heterogeneous budding pattern defines a second novel gene (BUD7). Two mutants budding almost exclusively from the proximal pole carry mutations in a fourth novel gene (BUD9). A bud8 bud9 double mutant also buds almost exclusively from the proximal pole, suggesting that Bud9p is involved in positioning the proximal pole signal rather than being itself a component of this signal. 相似文献
2.
酿酒酵母单倍体细胞能够与相反交配型的单倍体细胞发生交配。交配时酿酒酵母放弃原有出芽位点,根据信息素的浓度梯度,重新选择生长位点,向相反交配型细胞伸出突起进行极性生长。交配因子受体指导选择交配突起的位点,通过G蛋白激活Ste20p,将信号经由Ste11p、Ste7p和Fus3p组成的MAPK模块传递到Far1p和Ste12p等因子,调控相关基因的转录,抑制原有的出芽位点,选择新的生长位点,并使细胞周期停止在G1期,G蛋白与Cdc24p、Cdc42p和Bem1p等蛋白作用,聚集在细胞,使得肌协蛋白细胞骨架在交配突起处聚集,呈极性化分布,使细胞发生极性生长。 相似文献
3.
4.
Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis. 总被引:15,自引:10,他引:15 下载免费PDF全文
We have cloned three genes for protein phosphatases in the yeast Saccharomyces cerevisiae. Two of the genes, PPH21 and PPH22, encode highly similar proteins that are homologs of the mammalian protein phosphatase 2A (PP2A), while the third gene, PPH3, encodes a new PP2A-related protein. Disruptions of either PPH21 or PPH22 had no effects, but spores disrupted for both genes produced very small colonies with few surviving cells. We conclude that PP2A performs an important function in yeast cells. A disruption of the third gene, PPH3, did not in itself affect growth, but it completely prevented growth of spores disrupted for both PPH21 and PPH22. Thus, PPH3 provides some PP2A-complementing activity which allows for a limited growth of PP2A-deficient cells. Strains were constructed in which we could study the phenotypes caused by either excess PP2A or total PP2A depletion. We found that the level of PP2A activity has dramatic effects on cell shape. PP2A-depleted cells develop an abnormal pear-shaped morphology which is particularly pronounced in the growing bud. In contrast, overexpression of PP2A produces more elongated cells, and high-level overexpression causes a balloonlike phenotype with huge swollen cells filled by large vacuoles. 相似文献
5.
BACKGROUND: Polarity establishment and maintenance are crucial for morphogenesis and development. In budding yeast, these two intricate processes involve the superposition of regulatory loops between polarity landmarks, RHO GTPases, actin-mediated vesicles transport and endocytosis. Deciphering the chronology and the significance of each molecular step of polarized growth is therefore very challenging. PRINCIPAL FINDINGS: We have taken advantage of the fact that yeast quiescent cells display actin bodies, a non polarized actin structure, to evaluate the role of F-actin in bud emergence. Here we show that upon exit from quiescence, actin cables are not required for the first steps of polarized growth. We further show that polarized growth can occur in the absence of actin patch-mediated endocytosis. We finally establish, using latrunculin-A, that the first steps of polarized growth do not require any F-actin containing structures. Yet, these structures are required for the formation of a bona fide daughter cell and cell cycle completion. We propose that upon exit from quiescence in the absence of F-actin, secretory vesicles randomly reach the plasma membrane but preferentially dock and fuse where polarity cues are localized, this being sufficient to trigger polarized growth. 相似文献
6.
Control of cell growth and division in Saccharomyces cerevisiae 总被引:4,自引:0,他引:4
7.
Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae 总被引:93,自引:67,他引:93 下载免费PDF全文
The distribution of actin in wild-type cells and in morphogenetic mutants of the budding yeast Saccharomyces cerevisiae was explored by staining cells with fluorochrome-labeled phallotoxins after fixing and permeabilizing the cells by several methods. The actin appeared to be localized in a set of cortical spots or patches, as well as in a network of cytoplasmic fibers. Bundles of filaments that may possibly correspond to the fibers visualized by fluorescence were observed with the electron microscope. The putative actin spots were concentrated in small and medium-sized buds and at what were apparently the sites of incipient bud formation on unbudded cells, whereas the putative actin fibers were generally oriented along the long axes of the mother-bud pairs. In several morphogenetic mutants that form multiple, abnormally elongated buds, the actin patches were conspicuously clustered at the tips of most buds, and actin fibers were clearly oriented along the long axes of the buds. There was a strong correlation between the occurrence of active growth at particular bud tips and clustering of actin spots at those same tips. Near the end of the cell cycle in wild- type cells, actin appeared to concentrate (as a cluster of spots or a band) in the neck region connecting the mother cell to its bud. Observations made using indirect immunofluorescence with a monoclonal anti-yeast-tubulin antibody on the morphogenetic mutant cdc4 (which forms multiple, abnormally elongated buds while the nuclear cycle is arrested) revealed the surprising occurrence of multiple bundles of cytoplasmic microtubules emanating from the one duplicated spindle-pole body per cell. It seems that most or all of the buds contain one or more of these bundles of microtubules, which often can be seen to extend to the very tips of the buds. These observations are consistent with the hypotheses that actin, tubulin, or both may be involved in the polarization of growth and localization of cell-wall deposition that occurs during the yeast cell cycle. 相似文献
8.
Specification of sites for polarized growth in Saccharomyces cerevisiae and the influence of external factors on site selection. 总被引:19,自引:1,他引:18 下载免费PDF全文
Many eucaryotic cell types exhibit polarized cell growth and polarized cell division at nonrandom sites. The sites of polarized growth were investigated in G1 arrested haploid Saccharomyces cerevisiae cells. When yeast cells are arrested during G1 either by treatment with alpha-factor or by shifting temperature-sensitive cdc28-1 cells to the restrictive temperature, the cells form a projection. Staining with Calcofluor reveals that in both cases the projection usually forms at axial sites (i.e., next to the previous bud scar); these are the same sites where bud formation is expected to occur. These results indicate that sites of polarized growth are specified before the end of G1. Sites of polarized growth can be influenced by external conditions. Cells grown to stationary phase and diluted into fresh medium preferentially select sites for polarized growth opposite the previous bud scar (i.e., distal sites). Incubation of cells in a mating mixture results in projection formation at nonaxial sites: presumably cells form projections toward their mating partner. These observations have important implications in understanding three aspects of cell polarity in yeast: 1) how yeast cell shape is influenced by growth conditions 2) how sites of polarized growth are chosen, and 3) the pathway by which polarity is affected and redirected during the mating process. 相似文献
9.
Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae 总被引:15,自引:5,他引:15 下载免费PDF全文
《The Journal of cell biology》1994,125(5):1077-1093
The Rho small GTP-binding protein family regulates various actomyosin- dependent cell functions, such as cell morphology, locomotion, cytokinesis, membrane ruffling, and smooth muscle contraction. In the yeast Saccharomyces cerevisiae, there is a homologue of mammalian RhoA, RHO1, which is essential for vegetative growth of yeast cells. To explore the function of the RHO1 gene, we isolated a recessive temperature-sensitive mutation of RHO1, rho1-104. The rho1-104 mutation caused amino acid substitutions of Asp 72 to Asn and Cys 164 to Tyr of Rho1p. Strains bearing the rho1-104 mutation accumulated tiny- or small- budded cells in which cortical actin patches were clustered to buds at the restrictive temperature. Cell lysis and cell death were also seen with the rho1-104 mutant. Indirect immunofluorescence microscopic study demonstrated that Rho1p was concentrated to the periphery of the cells where cortical actin patches were clustered, including the site of bud emergence, the tip of the growing buds, and the mother-bud neck region of cells prior to cytokinesis. Indirect immunofluorescence study with cells overexpressing RHO1 suggested that the Rho1p-binding site was saturable. A mutant Rho1p with an amino acid substitution at the lipid modification site remained in the cytoplasm. These results suggest that Rho1 small GTP-binding protein binds to a specific site at the growth region of cells, where Rho1p exerts its function in controlling cell growth. 相似文献
10.
Pie1, a protein interacting with Mec1, controls cell growth and checkpoint responses in Saccharomyces cerevisiae 下载免费PDF全文
In eukaryotes, the ATM and ATR family proteins play a critical role in the DNA damage and replication checkpoint controls. These proteins are characterized by a kinase domain related to the phosphatidylinositol 3-kinase, but they have the ability to phosphorylate proteins. In budding yeast, the ATR family protein Mec1/Esr1 is essential for checkpoint responses and cell growth. We have isolated the PIE1 gene in a two-hybrid screen for proteins that interact with Mec1, and we show that Pie1 interacts physically with Mec1 in vivo. Like MEC1, PIE1 is essential for cell growth, and deletion of the PIE1 gene causes defects in the DNA damage and replication block checkpoints similar to those observed in mec1Delta mutants. Rad53 hyperphosphorylation following DNA damage and replication block is also decreased in pie1Delta cells, as in mec1Delta cells. Pie1 has a limited homology to fission yeast Rad26, which forms a complex with the ATR family protein Rad3. Mutation of the region in Pie1 homologous to Rad26 results in a phenotype similar to that of the pie1Delta mutation. Mec1 protein kinase activity appears to be essential for checkpoint responses and cell growth. However, Mec1 kinase activity is unaffected by the pie1Delta mutation, suggesting that Pie1 regulates some essential function other than Mec1 kinase activity. Thus, Pie1 is structurally and functionally related to Rad26 and interacts with Mec1 to control checkpoints and cell proliferation. 相似文献
11.
Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae 总被引:13,自引:2,他引:13 下载免费PDF全文
Calmodulin was localized in Saccharomyces cerevisiae by indirect immunofluorescence using affinity-purified polyclonal antibodies. Calmodulin displays an asymmetric distribution that changes during the cell cycle. In unbudded cells, calmodulin concentrates at the presumptive site of bud formation approximately 10 min before bud emergence. In small budded cells, calmodulin accumulates throughout the bud. As the bud grows, calmodulin concentrates at the tip, then disperses, and finally concentrates in the neck region before cytokinesis. An identical staining pattern is observed when wild-type calmodulin is replaced with mutant forms of calmodulin impaired in binding Ca2+. Thus, the localization of calmodulin does not depend on its ability to bind Ca2+ with a high affinity. Double labeling of yeast cells with affinity-purified anti-calmodulin antibody and rhodamine-conjugated phalloidin indicates that calmodulin and actin concentrate in overlapping regions during the cell cycle. Furthermore, disrupting calmodulin function using a temperature-sensitive calmodulin mutant delocalizes actin, and act1-4 mutants contain a random calmodulin distribution. Thus, calmodulin and actin distributions are interdependent. Finally, calmodulin localizes to the shmoo tip in cells treated with alpha-factor. This distribution, at sites of cell growth, implicates calmodulin in polarized cell growth in yeast. 相似文献
12.
13.
Saccharomyces cerevisiae cell cycle 总被引:101,自引:0,他引:101
L H Hartwell 《Bacteriological reviews》1974,38(2):164-198
14.
Nam SC Sung H Chung YB Lee CK Lee DH Song S 《Journal of microbiology (Seoul, Korea)》2007,45(1):34-40
In budding yeast, G2/M transition is tightly correlated with bud morphogenesis regulated by Swe1 and septin that plays as a scaffold to recruits protein components. BNI5 isolated as a suppressor for septin defect is implicated in septin organization and cytokinesis. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we show that Bni5 phosphorylation is required for mitotic entry regulated by Swe1 pathway. Bni5 modification was evident from late mitosis to G1 phase, and CIP treatment in vitro of affinity-purified Bni5 removed the modification, indicative of phosphorylation on Bni5. The phosphorylation-deficient mutant of BNI5 (bni5-4A) was defective in both growth at semi-restrictive temperature and suppression of septin defect. Loss of Bni5 phosphorylation resulted in abnormal bud morphology and cell cycle delay at G2 phase, as evidenced by the formation of elongated cells with multinuclei. However, deletion of Swe1 completely eliminated the elongated-bud phenotypes of both bni5 deletion and bni5-4A mutants. These results suggest that the bud morphogenesis and mitotic entry are positively regulated by phosphorylation-dependent function of Bni5 which is under the control of Swe1 morphogenesis pathway. 相似文献
15.
16.
Cytokine-dependent regulation of tissue inhibitors of metalloproteinases (TIMPs) expression provides an important mechanism for controlling the activity of matrix metalloproteinases. We present data indicating that during inflammatory processes TIMP-1 and TIMP-3 may be involved in the proteolytic remodeling of subendothelial basement membrane of the brain microvascular system, a key step during leukocyte migration into the brain perivascular tissue. In brain endothelial cells the expression of TIMP-1 is dramatically up-regulated by major proinflammatory cytokines, with the combination of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF alpha) exhibiting the strongest synergistic stimulation. Simultaneously, IL-1beta/TNF alpha almost completely blocks TIMP-3 expression. Both synergistic effects are dose-dependent within the concentration range 0.05-5 ng/ml of both cytokines and correlate with the expression of inducible nitric oxide synthase, an endothelial cell activation marker. Down-regulation of TIMP-3 expression is also detected in astrocytes treated with TNF alpha or IFN-gamma whereas oncostatin M as well as TNF alpha up-regulate TIMP-1 mRNA level. We propose that the cytokine-modified balance between TIMP-1 and TIMP-3 expression provides a potential mechanism involved in the regulation of microvascular basement membrane proteolysis. 相似文献
17.
18.
Summary Examination of sectioned cells fixed in KMnO4 has shown that the wall of the first bud of a cell of Saccharomycodes ludwigii arises as an extension of the main wall of the parent, while in subsequent buds it develops by extension of the half-septum remaining at a previous detachment scar. Septa are formed by the deposition of wall material on each side of an electron transparent plate which develops centripetally. Structural changes occur in the marginal region of the septum prior to rupture of the main wall and the separation of cells at the surface of the septum-plate. The broken walls remain as annular rings around the scars following the successive development of buds at both apices of the cell.In Saccharomyces cerevisiae the bud wall arises as a direct extension of the parent wall or as an extension of an additional inner layer developed locally.The two types of bud origin are compared in the two yeasts and a comparison is also made with the development of buds, fission cells, conidia and germ tubes in other organisms. 相似文献
19.
20.