首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was designed to monitor changes in the levels of adenosine 5'-triphosphate (ATP) and deoxyribonucleic acid (DNA) per unit of microbial mass during the autotrophic biodegradation of thiocyanate (SCN(-)). An artificial medium containing trace minerals and 500 mg SCN(-)/L was used as a substrate for bacterial growth. An SCN(-)-degrading bioreactor with a working volume of 6 L, equipped with temperature, pH, and dissolved oxygen controls, was operated in batch mode. During the exponential phase of SCN(-) biodegradation, the ratios of ATP and DNA to microbial dry weight varied from 0.6 to 1.1 mug ATP/mg of volatile suspended solid (VSS), and from 3.5 to 8.8 mug DNA/mg of VSS, respectively. The ATP and DNA concentrations correlated linearly with microbial mass (r (2) > 0.9) within the exponential phase. The linear regression equations were as follows: (1) microbial mass concentration (mg/L) = 0.663 x ATP concentration (mug/L) + 11.1 and (2) microbial concentration (mg/L) = 0.081 x DNA concentration (mug/L) + 10.9. The applicable ranges were 6.8 to 47.4 mug/L for ATP concentration and 41.5 to 395 mug/L for DNA concentration, respectively.  相似文献   

2.
Lee C  Kim J  Hwang S 《Biodegradation》2006,17(4):347-355
A set of experiments was carried out to maximize adenosine 5′-triphosphate (ATP) extraction efficiency from acidogenic culture using whey wastewater. ATP concentrations at different microbial concentrations increased linearly as microbial concentration decreased. More than 50% of ATP was extracted from the sample of 39 mg volatile suspended solids (VSS)/l compared to the sample of 2.8 g VSS/l. The ATP concentrations of the corresponding samples were 0.74±0.06 and 0.49±0.05 mg/l, respectively. For low VSS concentrations ranging from 39 to 92 mg/l, the extracted ATP concentration did not vary significantly at 0.73±0.01 mg ATP/l. Response surface methodology with a central composite in cube design for the experiments was used to locate the optimum for maximal ATP extraction with respect to boiling and bead beating treatments. The overall designed intervals were from 0 to 15 min and from 0 to 3 min for boiling and bead beating, respectively. The extracted ATP concentration ranged from 0.01 to 0.74 mg/l within the design boundary. The following is a partial cubic model where η is the concentration of ATP and x k is the corresponding variable term (k=boiling time and bead beating time in order): η=0.629+0.035x 1–0.818x 2–0.002x 1 x 2–0.003x 1 2 +0.254x 2 2 +0.002x 1 2 x 2. This model successfully approximates the response of ATP concentration with respect to the boiling- and bead beating-time. The condition for maximal ATP extraction was 5.6 min boiling without bead beating. The maximal ATP concentration using the model was 0.74 mg/l, which was identical to the experimental value at optimum condition for ATP extraction.  相似文献   

3.
The pH, temperature and inoculum ratio for the production of β‐galactosidase by Kluyveromyces marxianus CDB 002 were optimized using sugar‐cane molasses (100 g/l) in a lactose‐free medium. The temperature optimum was evaluated in the range from 28–37 °C. Lactase production was initiated after substrate consumption indicating a reversible enzyme inhibition or catabolic repression. The specific enzyme activity after 45 h was between 456.3 U/g cell mass (37 °C) and 733.3 U/g (34 °C), whereas the highest volumetric activity was obtained at 30 °C: 21.8 U/ml. This is generally consistent with results from other authors that used whey as a carbon source. Ethanol as a by‐product reached its maximum concentration after 10–14 h (31.1–40.5 g/l), but was completely consumed afterwards. A pH of 5.5 without further control gave the best production rate for lactase (484.4 U/l × h). In this process, the pH was stable during cell growth at 5.5 and then went up to pH 7.2 after 45 h. At a fixed pH of 5.5 or 6.5, the production rates achieved 313.3 U/l × h and 233.3 U/ l × h, respectively. These results differed from those of other authors, who suggested a fixed pH at 7.0 using whey as a carbon source. There were no significant differences between inoculum ratios of 1% [v/v] and 10% [v/v] so that 1% is the preferable ratio as it is cheaper. Yeast extract (10 g/l) and peptone (20 g/l) were used as the vitamin and nitrogen source, respectively, for the studies of temperature and pH. These were substituted by corn steep liquor (100 g/l) for inoculum ratio experiments. Production of lactase using sugar cane molasses in a lactose‐free medium gave better enzyme productivity rates than obtained by other authors using whey. The optimum conditions for β‐galactosidase synthesis were a temperature of 30–34 °C and an inoculum ratio of 1% [v/v], an initial pH of 5.5 without any further control or a control of 5.5 during cell growth. Then the pH was raised up to 7.  相似文献   

4.
In this paper, we pointed out the problems of using conventional volatile suspended solids (VSS) and chemical oxygen demand (COD) to evaluate biokinetic coefficients, especially for the treatment of highly suspended organic wastewater. We also introduced a novel approach to evaluate biokinetic coefficients by measurement of adenosine 5'-triphosphate (ATP) of microorganisms. The concept of using ATP analysis in biokinetic evaluations with highly suspended wastewater was shown to be effective. This study also showed that the conventional VSS and COD methods were strongly affected by incoming suspended organics in the wastewater and by biokinetics of microorganisms. A cheese-processing wastewater was used in evaluating the biokinetics of mesophilic acidogens. The concentration of COD and total suspended solids in the wastewater was 63.3 g/L and 12.4 g/L, respectively. The TSS was 23.6% of total solids concentration. A high ratio of VSS to total suspended solids of 96.7% indicated that most of the suspended particles were organic materials. Lactose and protein were the major organic components contributing COD in the wastewater, and a total of 94.2% of the COD in the wastewater was due to the presence of lactose and protein. Two different physiological conditions where the maximum rates of acetate and butyrate production occurred were tested. These were pH 7 (condition A for acetate production) and pH 7.3 (condition B for butyrate production) at 36.2C, respectively. Based on the molecular structures of the major organic substances and microbial ATP analysis, the residual substrate and microbial concentrations were stoichiometrically converted to substrate COD (SuCOD) and microbial VSS (MVSS), respectively, using correlation coefficients reported previously. These SuCOD and MVSS were simultaneously used to evaluate the biokinetic coefficients using Monod-based mathematical equations. The nonlinear least squares method with 95% confidence interval was used to evaluate biokinetic coefficients. The maximum microbial growth rate, mu(max) and half saturation coefficient, K(s), for conditions A and B were determined to be 9.9 +/- 0.3 and 9.3 +/- 1.0 day(-1) and 134.0 +/- 58.3 and 482.5 +/- 156.5 mg SuCOD/L, respectively. The microbial yield coefficient, Y, and microbial decay rate coefficient, k(d) for conditions A and B were determined to be 0.29 +/- 0.03 and 0.20 +/- 0.05 mg MVSS/mg SuCOD, and 0.14 +/- 0.05 and 0.25 +/- 0.05 day(-1), respectively. Specific substrate utilization rate at condition B was 43.8 +/- 20.6 mg SuCOD/mg MVSS/day, which was 31% higher than that at condition A.  相似文献   

5.
A transformation procedure that yielded high efficiencies was developed forAcinetobacter calcoaceticus. Strain BD413 Ura trpE was transformed to tryptophan prototrophy using highly purified DNA. Experimental parameters studied were: (i) recipient cell concentration, (ii) DNA concentration, (iii) growth phase of the recipient cell population, (iv) composition of the growth and transforming medium, and (v) time of incubation of recipient cells with donor DNA. Strain BD413 was competent for transformation throught the growth cycle, with highest competence occurring early in the exponential phase of growth. Maximal transformation efficiencies of 0.5% to 0.7% were obtained in media supporting rapid growth. Recipient cell concentrations of 1×106 to 6×106 cells/ml yielded the highest transformation frequencies, regardless of DNA concentration.  相似文献   

6.
In this study, the inhibitory effects and anaerobic biotransformation of acrylic acid in computer-controlled pH-stat completely stirred tank reactors (CSTRs) with two different cultures, namely unacclimated and acrylate-acclimated acetate-enriched Methanosarcina and homogenized (crushed) granular cultures, were investigated. The microbial acclimation, influent concentration, and loading rate of acrylic acid were studied in the experiments. The experimental results revealed that methanogenic cultures at a concentration of 3200 +/- 80 mg/L as volatile suspended solids (VSS) could be acclimated to acrylic acid up to a loading rate of 220 mg/L per day (0.068 g acrylic acid/g VSS per day) in the presence of a constant acetate concentration of 2000 +/- 200 mg/L as the primary substrate after 300 days of acclimation. The same cultures (680 +/- 80 mg/L as VSS), after 80 days of acclimation to acrylic acid as the sole carbon source, transformed acrylic acid up to the loading rate of about 200 mg/L per day (0.29 g acrylic acid/g VSS per day) almost completely (>99%) to acetic and propionic acid, but could not effectively metabolize these intermediate products. Acrylate-acclimated homogenized granular cultures (6900 +/- 80 mg/L as VSS) effectively metabolized 2200 mg/L per day (0.32 g acrylic acid/g VSS per day) of acrylic acid, as the sole carbon source, after 50 days of severe inhibition.  相似文献   

7.
The biological degradation of nitrate and sulfate was investigated using a mixed microbial culture and lactate as the carbon source, with or without limited-oxygen fed. It was found that sulfate reduction was slightly inhibited by nitrate, since after nitrate depletion the sulfate reduction rate increased from 0.37 mg SO4 2?/mg VSS d to 0.71 mg SO4 2?/mg VSS d, and the maximum rate of sulfate reduction in the presence of nitrate corresponded to 56 % of the non-inhibited sulfate reduction rate determined after nitrate depleted. However, simultaneous but not sequential reduction of both oxy-anions was observed in this study, unlike some literature reports in which sulfate reduction starts only after depletion of nitrate, and this case might be due to the fact that lactate was always kept above the limiting conditions. At limited oxygen, the inhibited effect on sulfate reduction by nitrate was relieved, and the sulfate reduction rate seemed relatively higher than that obtained without limited-oxygen fed, whereas kept almost constant (0.86–0.89 mg SO4 2?/mg VSS d) cross the six ROS states. In contrast, nitrate reduction rates decreased substantially with the increase in the initial limited-oxygen fed, showing an inhibited effect on nitrate reduction by oxygen. Kinetic parameters determined for the mixed microbial culture showed that the maximum specific sulfate utilization rate obtained (0.098?±?0.022 mg SO4 2?/(mg VSS h)) was similar to the reported typical value (0.1 mg SO4 2?/(mg VSS h)), also indicating a moderate inhibited effect by nitrate.  相似文献   

8.
Hydroxyurea (10 mM) arrests the exponential growth of Tetrahymena by blocking DNA replication during S-phase. After removal of the hydroxyurea (HU), they have a long recovery period during which they are active in DNA synthesis. 3H-TdR uptake showed that on completion of the recovery period, the cells divide (recovery division) and enter a cell cycle which lacks G1. The frequency, size and DNA content of the extranuclear chromatin bodies (ECB) formed at this division are all markedly increased (2–4) over the corresponding values obtained from exponential growth phase controls. Microspectrophotometric analysis of macronuclear DNA content (N) coupled with the cytoplasmic dry mass (C) values suggest that specific N to C ratios (N/C) are required for the initiation of DNA replication and fission: during a normal (exponential growth) cell cycle, both N and C double, but asynchronously, so that the N/C of both post-fission-daughter cells and pre-fission cells is identical (standardized to N/C = 1) but late G1 cells have a low N/C. During a 10 hr exposure to HU, the N remains essentially the same whereas the C increases. When the HU is removed, the N increases by 4× and the C continues to increase until just prior to recovery division when it also reaches a value 4× that of the original daughter cells. Thus, the N/C = 1 is re-established. The enlarged ECB formed during recovery division may function to lower the N/C in the daughter cells, which in turn may in some way stimulate immediate DNA replication, thus eliminating G1. The elimination of G1 (and shortening in a few subsequent cell cycles) allows less time for cytoplasmic growth and results in the return of the cells to the generation time and the N and C values observed prior to the HU treatment.  相似文献   

9.
This paper describes rapid techniques to evaluate the methane potential and biomass yield of solid wastes. A number of solid wastes were mixed to provide a range of C:N ratios. Empirical formulae were calculated for each waste based on the results of chemical analysis and these formulae were used to estimate the COD equivalent and stoichiometric methane potential (SMP). The actual COD and biochemical methane potential (BMP) were determined experimentally for each waste and for both parameters there was a good agreement between the empirical and experimental values. The potential of adenosine triphosphate (ATP) to act as an indicator of biomass yield (mg VSS mg(-1) COD removed) was determined during the anaerobic digestion process. The biomass yield determined from ATP analysis was in the range 0.01-0.25mg VSS mg(-1) COD removed which corroborated well with previously reported studies. Empirical formula based SMP together with ATP measurement were shown to provide rapid methods to replace or augment the traditional BMP and VSS measurements and are useful for evaluating the bioenergy and biomass potential of solid wastes for anaerobic digestion.  相似文献   

10.
Hu ZH  Yu HQ  Zheng JC 《Bioresource technology》2006,97(16):2103-2109
Acidogenesis of cattail using rumen cultures was carried out to produce volatile fatty acids (VFA) in this study. The influences of pH and substrate concentration on cattail degradation, VFA yield and microbial growth were investigated by using response surface methodology (RSM). Experimental results showed that a low substrate concentration and pH of 6.9 were optimal for acidogenesis of cattail. The highest cattail degradation efficiency, VFA yield and microbial yield were 75.9%, 0.41 g/g VS and 0.110 g/g VS, respectively. Further experiments confirmed that the main VFA in the acidogenesis of cattail were acetate, propionate and butyrate, while i-butyrate, valerate and i-valerate were also produced at low levels. The results suggested that acidogenesis using rumen cultures is a promising method for cattail disposal.  相似文献   

11.
Yue ZB  Yu HQ  Hu ZH  Harada H  Li YY 《Bioresource technology》2008,99(9):3418-3423
Polyoxyethylene sorbitan monoolate (Tween 80) was used to enhance the anaerobic acidogenesis of Canna indica L. (canna) by rumen culture in this study. Dose of Tween 80 at 1 ml/l enhanced the volatile fatty acids (VFA) production from the acidogenesis of canna compared to the control. However, Tween 80 at higher dosages than 5 ml/l inhibited the rumen microbial activity and reduced the VFA yield. Response surface methodology was successfully used to optimize the VFA yield. A maximum of VFA yield of 0.147 g/g total solids (TS) added was obtained at canna and Tween 80 concentrations of 6.3g TS/l and 2.0 ml/l, respectively. Dosage of Tween 80 at 1-3.75 ml/l reduced the unproductive adsorption of microbes or enzymes on the lignin part in canna and increased microbial activity. A high VFA production was achieved from canna presoaked with Tween 80, suggesting that the structure of canna was disrupted by Tween 80.  相似文献   

12.
The kinetics of anaerobic digestion of cane molasses distillery slops was investigated using a continuous-flow bioreactor which contained waste tyre rubber as support, to which the microorganisms became immobilized. Hydraulic retention times (HRT) ranging from 1 to 10 days were investigated at an average influent chemical oxygen demand (COD) concentration of 47.7?g/l. The maximum substrate utilization rate, k, and half saturation coefficient, K L, were determined to be 1.82?kg CODremoved/kg VSS day and 0.33?kg COD/kg VSS day. The yield coefficient, Y, and sludge decay rate coefficient, K d, were also determined to be 0.06?kg VSS/kg CODremoved and 0.05?day-1, respectively. Methane production was maximum (6.75?l/l day) at a 2 day HRT corresponding to a biomass loading rate of 2.578?kg COD/kg VSS day. Biogas yield ranged between 0.51?l/g COD (HRT=2 days) and 0.25?l/g COD (HRT=1?day). In addition, the methane percentage in the biogas varied between 70.5% (HRT=10?days) and 47.5% (HRT=1?day). The close relationship between biomass loading rate and specific substrate utilization rate supported the use of Monod equations. Finally, the experimental values of effluent substrate concentration were reproduced with deviations equal to or less than 10% in every case.  相似文献   

13.
Salmonella typhimurium LB5000 andEscherichia coli JM109 were transformed by electroporation. In accordance with the chemical transformation methods, the growth phase of these electrocompetent bacteria had a strong impact on transformation efficiency. Survival of bacteria, after the high-voltage electrical pulse was also influenced by the growth phase. Both bacterial species were most successfully electrotransformed when microbial cells were harvested at the late lag phase. The second optimum for transformation reachedE. coli cells in the mid-exponential andS. typhimurium cells in the late exponential phase. Transformation efficiencies ranged from 3.4×104 to 2.7×105 transformants per μg DNA in the case ofS. typhimurium and from 2.8 × 102 to 8.8×105 transformants per μg DNA in the case ofE. coli. Survival of cells after the electrical pulse in late lag and late exponential phases was about 20% higher than during other phases of growth. Preparing electrocompetent cells from later phases of their growth is more useful for practice, because it provides more biomass with good yield of transformants.  相似文献   

14.
A number of techniques were tested for their efficiency in extracting adenosine 5'-triphosphate (ATP) from strained rumen fluid (SRF). Extraction with 0.6 N H(2)SO(4), using a modification of the procedure described by Lee et al. (1971), was the most efficient and was better suited for extracting particulate samples. Neutralized extracts could not be stored frozen before assaying for ATP because large losses were incurred. The inclusion of internal standards was necessary to correct for incomplete recovery of ATP. The ATP concentration in rumen contents from a cow receiving a ration of dried roughage (mainly alfalfa hay) ranged from 31 to 56 mug of ATP per g of contents. Approximately 75% of the ATP was associated with the particulate material. The ATP was primarily of microbial origin, since only traces of ATP were present in the feed and none was found in "cell-free" rumen fluid. Fractionation of the bacterial and protozoal populations in SRF resulted in the isolation of an enriched protozoal fraction with a 10-fold higher ATP concentration than that of the separated rumen bacteria. The ATP pool sizes of nine functionally important rumen bacteria during the exponential phase of growth ranged from 1.1 to 17.6 mug of ATP per mg of dry weight. This information indicates that using ATP as a measure of microbial biomass in rumen contents must be done with caution because of possible variations in the efficiency of extraction of ATP from rumen contents and differences in the concentration of ATP in rumen microbes.  相似文献   

15.
A number of techniques were tested for their efficiency in extracting adenosine 5′-triphosphate (ATP) from strained rumen fluid (SRF). Extraction with 0.6 N H2SO4, using a modification of the procedure described by Lee et al. (1971), was the most efficient and was better suited for extracting particulate samples. Neutralized extracts could not be stored frozen before assaying for ATP because large losses were incurred. The inclusion of internal standards was necessary to correct for incomplete recovery of ATP. The ATP concentration in rumen contents from a cow receiving a ration of dried roughage (mainly alfalfa hay) ranged from 31 to 56 μg of ATP per g of contents. Approximately 75% of the ATP was associated with the particulate material. The ATP was primarily of microbial origin, since only traces of ATP were present in the feed and none was found in “cell-free” rumen fluid. Fractionation of the bacterial and protozoal populations in SRF resulted in the isolation of an enriched protozoal fraction with a 10-fold higher ATP concentration than that of the separated rumen bacteria. The ATP pool sizes of nine functionally important rumen bacteria during the exponential phase of growth ranged from 1.1 to 17.6 μg of ATP per mg of dry weight. This information indicates that using ATP as a measure of microbial biomass in rumen contents must be done with caution because of possible variations in the efficiency of extraction of ATP from rumen contents and differences in the concentration of ATP in rumen microbes.  相似文献   

16.
Assessment of the potential risks posed by chlorinated solvents in groundwater is the key to establish the extent of the contamination and derive achievable remedial targets should remediation deems necessary. This article first presents the application of the American Society for Testing and Materials (ASTM) Risk Based Corrective Actions (RBCA) Guidance to quantitatively evaluate human health and environmental risk for a former chemical works in Shanghai, China. The observed maximum trichloroethylene (TCE) concentration in groundwater at the site reached 1220 mg/l that exceeded its solubility of 1070 mg/l at 10°C (Soil annual average temperature is 10°C in Shanghai). The maximum concentration for cis-1, 2-DCE (DCE) was also found to be elevated at 264 mg/l. A critical exposure pathway was considered to be indoor vapor intrusion of TCE into the buildings with excess lifetime cancer risk for children being 1.7 × 10?3. This cancer risk exceeded regulatory limits of 1 × 10?4 to 1 × 10?6 for The Netherlands, the United Kingdom, and the United States. The calculated groundwater remedial targets for TCE and DCE are 7 mg/l and 904 mg/l, respectively, in order to protect child residents from inhalation of indoor vapors within the close proximity of the source area.  相似文献   

17.
Sandy clay loam soil contaminated with 5000, 10,000 or 20,000 mg/kg of diesel fuel no. 2 was amended with 0 (ambient nitrogen only), 250, 500, or 1000 mg/kg nitrogen (NH4Cl) to evaluate the role of C:N ratios and soil water potential on diesel biodegradation efficacy. The soil was incubated at 25°C for 41 days and microbial O2 consumption measured respirometrically. Highest microbial respiration was observed in the 250 mg N/kg soil treatments regardless of diesel concentration. Higher levels of nitrogen fertilization decreased soil water potential and resulted in an extended lag phase and reduced respiration. Application of 1000 mg/kg nitrogen reduced maximum respiration by 20% to 52% depending on contaminant levels. Optimal C:N ratios among those tested were 17:1, 34:1, and 68:1 for the three diesel concentrations, respectively, and were dependent on contaminant concentration. Nitrogen fertilization on the basis of soil pore water nitrogen (mg N/kg soil H2O) is independent of hydrocarbon concentration but takes into account soil moisture content. This method accounts for both the nutritional and osmotic aspects of nitrogen fertilization. In the soil studied the best nitrogen augmentation corresponded to a soil pore water nitrogen level of 1950 mg N/kg H2O at all diesel concentrations.  相似文献   

18.
In suspensions of epididymal spermatozoa in vitro at +10°C and +37°C, all nuclei-containing and mitochondria-containing structures (normal spermatozoa, spermatozoa with the bent and coiled tails, complexes of head and neck) are with propidium iodide and rhodamine 123, respectively. Intracellular ATP concentration determined by a bioluminescent method in mitochondria-containing elements of suspension decreases (significantly faster at 37°C than at 10°C) up to a certain unchangeable level (2.5 × 10?8 M/l at 37°C and to 1.6 × 10?8 M/l at 10°C per 106 of mitochondria-containing elements). Mechanisms of spermatozoa destruction are discussed.  相似文献   

19.
The ability of probiotic Lactobacillus casei LA-1 for bacteriocin production using industrial by-products, such as whey, as supplement in growth medium has been demonstrated for the first time. Whey was investigated as a sole carbon source in cooperation with other components to substitute expensive nutrients as MRS for economical bacteriocin production. Industrial whey-supplemented MRS medium was then selected as to determine the effect of four variables (temperature, initial pH, incubation time, and whey concentration) by response surface methodology on bacteriocin production. Statistical analysis of results showed that two variables have a significant effect on bacteriocin production. Response surface data showed maximum bacteriocin production of 6,132.33?AU/mL at an initial pH of 7.12, temperature 34.29?°C, and whey concentration 13.74?g/L. The production of bacteriocin started during the exponential growth phase, reaching maximum values at stationary phase, and a biphasic growth and production pattern was observed. Our current work demonstrates that this approach of utilization of whey as substitution in costly medium as MRS has great promise for cost reduction in industry for the production of novel biological metabolic product that can be utilized as a food preservative.  相似文献   

20.
Summary The batch fermentation of whey permeate to lactic acid was improved markedly by the addition of enzymehydrolyzed whey protein. Acid concentrations greater than 90 g/l were achieved at a productivity of 4.3 g/l per h and a 98% substrate use. Cell mass concentration reached 6 g/l. The acid productivity achieved is somewhat higher than that typical for fermentation of whole whey. The process economics, based on in-house hydrolyzate preparation, look promising. Presented in this paper are the experimental results showing the effects of hydrolyzate concentration on acid and cell mass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号