首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Pretreatment of discs excised from developing tubers of potato (Solanum tuberosum L.) with 10 millimolar sodium fluoride induced a transient increase in 3-phosphoglycerate content. This was followed by increases in triose-phosphate, fructose 1,6-bisphosphate and hexose-phosphate (glucose 6-phosphate + fructose 6-phosphate + glucose 1-phosphate). The effect of fluoride is attributed to an inhibition of glycolysis and a stimulation of triose-phosphate recycling (the latter confirmed by the pattern of 13C-labeling [NMR] in sucrose when tissue was supplied with [2-13C]glucose). Fluoride inhibited the incorporation of [U-14C] glucose, [U-14C]sucrose, [U-14C]glucose 1-phosphate, and [U-14C] glycerol into starch. The incorporation of [U-14C]ADPglucose was unaffected. Inhibition of starch biosynthesis was accompanied by an almost proportional increase in the incorporation of 14C into sucrose. The inhibition of starch synthesis was accompanied by a 10-fold increase in tissue pyrophosphate (PPi) content. Although the subcellular localization of PPi was not determined, a hypothesis is presented that argues that the PPi accumulates in the amyloplast due to inhibition of alkaline inorganic pyrophosphatase by fluoride ions.  相似文献   

2.
Pathway of Phloem unloading of sucrose in corn roots   总被引:12,自引:8,他引:12       下载免费PDF全文
The pathway of phloem unloading and the metabolism of translocated sucrose were determined in corn (Zea mays) seedling roots. Several lines of evidence show that exogenous sucrose, unlike translocated sucrose, is hydrolyzed in the apoplast prior to uptake into the root cortical cells. These include (a) presence of cell wall invertase activity which represents 20% of the total tissue activity; (b) similarity in uptake and metabolism of [14C]sucrose and [14C]hexoses; and (c) randomization of 14C within the hexose moieties of intracellular sucrose following accumulation of [14C] (fructosyl)sucrose. Conversely, translocated sucrose does not undergo apoplastic hydrolysis during unloading. Asymmetrically labeled sucrose ([14C](fructose)sucrose), translocated from the germinating kernels to the root, remained intact indicating a symplastic pathway for unloading. In addition, isolated root protoplasts and vacuoles were used to demonstrate that soluble invertase activity (Vmax = 29 micromoles per milligram protein per hour, Km = 4 millimolar) was located mainly in the vacuole, suggesting that translocated sucrose entered via the symplasm and was hydrolyzed at the vacuole prior to metabolism.  相似文献   

3.
A 10-fold purification of sucrose sucrose fructosyl transferase from Cichorium intybus roots was achieved by ammonium sulphate fractionation and DEAE-cellulose column chromatography. The energy of activation for this enzyme was ca 48 kJ/mol sucrose. Sucrose sucrose fructosyl transferase and invertase were prominent during early months of growth. Evidence obtained from: (1) the changes in carbohydrate composition at monthly intervals; (2) comparative studies on fructosyl transferase and invertase at different stages of root growth; and (3) incubation studies with [14C]glucose, [14C]fructose and [14C]sucrose revealed that, during the later stages of root growth, fructosan hydrolase is responsible for fructosan hydrolysis. No evidence for the direct transfer of fructose from sucrose to high Mr glucofructosans was obtained.  相似文献   

4.
1′-Fluorosucrose (FS), a sucrose analog resistant to hydrolysis by invertase, was transported from husk leaves into maize (Zea mays L., Pioneer Hybrid 3320) kernels with the same magnitude and kinetics as sucrose. 14C-Label from [14C]FS and [14C]sucrose in separate experiments was distributed similarly between the pedicel, endosperm, and embryo with time. FS passed through maternal tissue and was absorbed intact into the endosperm where it was metabolized and used in synthesis of sucrose and methanol-chloroform-water insolubles. Accumulation of [14C] sucrose from supplied [14C]glucosyl-FS indicated that the glucose moiety from the breakdown of sucrose (here FS), which normally occurs in the process of starch synthesis in maize endosperm, was available to the pool of substrates for resynthesis of sucrose. Uptake of FS into maize endosperm without hydrolysis suggests that despite the presence of invertase in maternal tissues and the hydrolysis of a large percentage of sucrose unloaded from the phloem, hexoses are not specifically needed for uptake into maize endosperm.  相似文献   

5.
The relative contributions of invertase and sucrose synthase to initial cleavage of phloem-imported sucrose was calculated for sink leaves of soybean (Glycine max L. Merr cv Wye) and sugar beet (Beta vulgaris L. monohybrid). Invertase from yeast hydrolyzed sucrose 4200 times faster than 1′-deoxy-1′-fluorosucrose (FS) while sucrose cleavage by sucrose synthase from developing soybean leaves proceeded only 3.6 times faster than cleavage of FS. [14C]Sucrose and [14C]FS, used as tracers of sucrose, were transported at identical rates to developing leaves through the phloem. The rate of label incorporation into insoluble products varied with leaf age from 3.4 to 8.0 times faster when [14C]sucrose was supplied than when [14C]FS was supplied. The discrimination in metabolism was related to enzymatic discriminations against FS to calculate the relative contributions of invertase and sucrose synthase to sucrose cleavage. In the youngest soybean leaves measured, 4% of final laminar length (FLL), all cleavage was by sucrose synthase. Invertase contribution to sucrose metabolism was 47% by 7.6% FLL, increased to 54% by 11% FLL, then declined to 42% for the remainder of the import phase. In sugar beet sink leaves at 30% FLL invertase contribution to sucrose metabolism was 58%.  相似文献   

6.
Flag leaves of wheat plants (Triticum aestivum L. em. Thell. cv `Duke') were supplied with 14C(glucosyl)sucrose. Translocated [14C]sucrose was isolated, then hydrolyzed. Label appeared in both the hexose moieties indicating that some randomization of label had occurred. However, near the radioactive front essentially all of the 14C was in the glucose moiety, suggesting that randomization occurred after unloading, supporting the conclusion that sucrose was taken up intact by phloem and translocated unaltered.  相似文献   

7.
In crude particulate fractions isolated from pea (Pisum sativum) cotyledons, the transfer of radioactivity from GDP-[14C]mannose to glycolipid appears to be preferentially stimulated by Mn2+ while the transfer to lipid-free residue is enhanced by Mg2+. In contrast, the transfer of radioactivity from UDP-N-acetyl-[14C]glucosamine to glycolipid shows preferential stimulation by Mg2+ while the transfer to lipid-free residue prefers Mn2+. These results are accounted for by the differential stimulation by Mg2+ and Mn2+ of glycosyl transferases associated with subcellular membranes which were separated by isopycnic sucrose density centrifugation.  相似文献   

8.
Kinetic analysis of [14C]sucrose loading into sugar beet leaf discs revealed the presence of two transport components. At low exogenous sucrose concentrations, a saturable component, which exhibited Michaelis-Menten characteristics, was the main mode of transport. At concentrations greater than 50 millimolar, phloem loading was dominated by a linear component which appeared to operate as a first order kinetic transport process. Over the exogenous sucrose concentrations employed, influx could be described by the equation v = VmaxS/(S + Km) + kS. Influx via both processes was strongly pH-dependent. Evidence is presented that the linear component was not explicable in terms of simple diffusion, or exchange diffusion, into either mesophyll or minor vein phloem tissue. Extensive metabolic conversion of sucrose was not a factor contributing to influx at high external sucrose concentrations. At present, it is believed that both components operate in parallel at the membrane bounding the sieve element-companion cell complex. The saturable component is identified with sucrose-H+ cotransport. While the significance of the linear component has been established, its nature remains to be elucidated.  相似文献   

9.
Galactose, sucrose, and glucose (50 millimolar) applied to tobacco leaf discs (Nicotiana tabacum L. cv `Xanthi') during a prolonged incubation (5-6 d) markedly stimulated ethylene production which, in turn, could be inhibited by aminoethoxyvinylglycine (2-amino-4-(2′-aminoethoxy)-trans-3-butenoic acid) (AVG) or Co2+ ions. These three tested sugars also stimulated the conversion of l-[3,4-14C]methionine to [14C]1-amino-cyclopropane-1-carboxylic acid (ACC) and to [14C]ethylene, thus indicating that the carbohydrates-stimulated ethylene production proceeds from methionine via the ACC pathway. Sucrose concentrations above 25 mm considerably enhanced ACC-dependent ethylene production, and this enhancement was related to the increased respiratory carbon dioxide. However, sucrose by itself could directly promote the step of ACC conversion to ethylene, since low sucrose concentrations (1-25 mm) enhanced ACC-dependent ethylene production also in the presence of 15% CO2.  相似文献   

10.
Tonoplast vesicles and vacuoles isolated from red beet (Beta vulgaris L.) hypocotyl accumulated externally supplied [14C]sucrose but not [14C]sucrose phosphate despite the occurrence of sucrose phosphate phosphohydrolytic activity in the vacuole. The activities of sucrose synthase and sucrose phosphate synthase in whole cell extracts were 960 and 30 nanomoles per milligram protein per minute, respectively; whereas, no sucrose synthesizing activity was measured in tonoplast preparations. The results obtained in this investigation are incompatible with the involvement of sucrose phosphate synthase in the process of sucrose synthesis and accumulation in the storage cells of red beet.  相似文献   

11.
Evidence for the uptake of sucrose intact into sugarcane internodes   总被引:3,自引:2,他引:1       下载免费PDF全文
Application of [14C]fructosyl sucrose was used to determine whether sucrose cleavage was necessary for sucrose uptake by sugarcane (Saccharum spp.) internode tissue. Although approximately 25% of 14C in the apoplast was present as fructose, indicating some sucrose cleavage, less than 15% of the label was randomized in the sucrose that remained in the tissue after a 30 minute osmoticum rinse. This is insufficient to support cleavage and resynthesis as the sole sucrose transport scheme. The lack of randomization of label between the glucose and fructose moieties of the sucrose molecule was taken as presumptive evidence that sucrose does not have to be cleaved prior to uptake by parenchyma cells in sugarcane internode tissue.  相似文献   

12.
Sucrose in the free space of translocating maize leaf bundles   总被引:1,自引:1,他引:0       下载免费PDF全文
Following exposure of portions of mature maize (Zea mays L.) leaf strips to 14CO2, xylem exudate from the leaf strips contained [14C]sucrose. Sucrose was the only sugar in the xylem exudate which was obtained from the cut surface of the leaf strips by reducing the external pressure. The sucrose found in the xylem exudate apparently was obtained from the free space of the vascular bundles, its concentration amounting up to 0.25%. When [14C]glucose or [14C]fructose was supplied in the dark to one end of a maize leaf strip, each was taken up by the xylem, and transported to the opposite end. Xylem exudate from such leaf strips contained 14C-labeled sucrose in addition to the 14C-labeled hexose. The results of this study support the view that sucrose is loaded into the companion cell-sieve tube complexes from the apoplast of the vascular bundles in the maize leaf.  相似文献   

13.
Lemoine R  Daie J  Wyse R 《Plant physiology》1988,86(2):575-580
The objectives of this work were to determine the path of phloem unloading and if a sucrose carrier was present in young sugar beet (Beta vulgaris L.) taproots. The approach was to exploit the characteristics of the sucrose analog, 1'-fluorosucrose (F-sucrose) which is a poor substrate for acid invertase but is a substrate for sucrose synthase. Ten millimolar each of [3H]sucrose and [14C]F-sucrose were applied in a 1:1 ratio to an abraded region of an attached leaf for 6 hours. [14C]F-sucrose was translocated and accumulated in the roots at a higher rate than [3H]sucrose. This was due to [3H]sucrose hydrolysis along the translocation path. Presence of [3H]hexose and [14C]F-sucrose in the root apoplast suggested apoplastic sucrose unloading with its subsequent hydrolysis. Labeled F-sucrose uptake by root tissue discs exhibited biphasic kinetics and was inhibited by unlabeled sucrose, indicating that immature roots have the ability for carrier-mediated sucrose transport from the apoplast. Collectively, in vivo and in vitro data indicate that despite sucrose hydrolysis by the wall-bound invertase, sucrose hydrolysis is not entirely essential for sugar accumulation in this tissue.  相似文献   

14.
Vein loading of exogenous [14C]sucrose was studied using short uptake and wash periods to distinguish between direct loading into veins and loading via mesophyll tissue. Mature leaf tissue of Pisum sativum L. cv Little Marvel, or Coleus blumei Benth. cv Candidum, was abraded and leaf discs were floated on [14C]sucrose solution for 1 or 2 minutes. Discs were then washed for 1 to 30 min either at room temperature or in the cold and were frozen, lyophilized, and autoradiographed. In P. sativum, veins were clearly labeled after 1 minute uptake and 1 minute wash periods. Autoradiographic images did not change appreciably with longer times of uptake or wash. Vein loading was inhibited by p-chloromercuribenzenesulfonic acid. These results indicate that uptake of exogenous sucrose occurs directly into the veins in this species. When C. blumei leaf discs were floated on [14C]sucrose for 2 minutes and washed in the cold, the mesophyll was labeled but little, if any, minor vein loading occurred. When discs were labeled for 2 minutes and washed at room temperature, label was transferred from the mesophyll to the veins within minutes. These results indicate that there may be different patterns of phloem loading of photosynthetically derived sucrose in these two species.  相似文献   

15.
Madore MA 《Plant physiology》1990,93(2):617-622
Mature, variegated leaves of Coleus blumei Benth. contained stachyose and other raffinose series sugars in both green, photosynthetic and white, nonphotosynthetic tissues. However, unlike the green tissues, white tissues had no detectable level of galactinol synthase activity and a low level of sucrose phosphate synthase indicating that stachyose and possibly sucrose present in white tissues may have originated in green tissues. Uptake of exogenously supplied [14C]stachyose or [14C]sucrose into either tissue type showed conventional kinetic profiles indicating combined operation of linear first-order and saturable systems. Autoradiographs of white discs showed no detectable minor vein labelling with [14C]stachyose, but some degree of vein labeling with [14C]sucrose. Autoradiographs of green discs showed substantial vein loading with either sugar. In both tissues, p-chloromercuribenzenesulfonic acid had no effect on the linear component of sucrose or stachyose uptake but inhibited the saturable component. Both tissues contained high levels of invertase, sucrose synthase and α-galactosidase and extensively metabolized exogenously supplied 14C-sugars. In green tissues, label from exogenous sugars was recovered as raffinose-series sugars. In white tissues, exogenous sugars were hydrolysed and converted to amino acids and organic acids. The results indicate that variegated Coleus leaves may be useful for studies on both phloem loading and phloem unloading processes in stachyose-transporting species.  相似文献   

16.
Analysis of [3H]-(fructosyl)-sucrose translocation in tomato (Lycopersicon esculentum Mill.) indicates that phloem unloading in the fruit occurs, at least in part, to the apoplast followed by extracellular hydrolysis. Apoplastic sucrose, glucose, and fructose concentrations were estimated as 1 to 7, 12 to 49, and 8 to 63 millimolar, respectively in the tomato fruit pericarp tissue. Hexose concentrations were at least four-fold greater than sucrose at all developmental stages. Short-term uptake of [14C]sucrose, -glucose, and -fructose in tomato pericarp disks showed first order kinetics over the physiologically relevant concentration range. The uptake rate of [14C]-(glucosyl)-1′-fluorosucrose was identical to the rate of [14C]sucrose uptake, suggesting sucrose may be taken up directly without prior extracellular hydrolysis. Short-term uptake of all three sugars was insensitive to 10 micromolar carbonyl cyanide m-chlorophenylhydrazone and to 10 micromolar p-chloromercuribenzene sulfonic acid. However, long-term accumulation of glucose was sensitive to carbonyl cyanide m-chlorophenylhydrazone. Together these results suggest that although sucrose is at least partially hydrolyzed in the apoplast, sucrose may enter the metabolic carbohydrate pool directly. In addition, sugar uptake across the plasma membrane does not appear to be energy dependent, suggesting that sugar accumulation in the tomato fruit is driven by subsequent intracellular metabolism and/or active uptake at the tonoplast.  相似文献   

17.
The import-export transition in sugar beet leaves (Beta vulgaris) occurred at 40 to 50% leaf expansion and was characterized by loss in assimilate import and increase in photosynthesis. The metabolism and partitioning of assimilated and translocated C were determined during leaf development and related to the translocation status of the leaf. The import stage was characterized by C derived from either 14C-translocate or 14C-photosynthate being incorporated into protein and structural carbohydrates. Marked changes in the C partitioning were temporally correlated with the import-export conversion. Exporting leaves did not hydrolyze accumulated sucrose and the C derived from CO2 fixation was preferentially incorporated into sucrose. Both source and sink leaves contained similar levels of acid invertase and sucrose synthetase activities (sucrose hydrolysis) while sucrose phosphate synthetase (sucrose synthesis) was detected only in exporting leaves. The results are discussed in terms of intracellular compartmentation of sucrose and sucrose-metabolizing enzymes in source and sink leaves.  相似文献   

18.
Stems of Vicia faba plants were used to study phloem unloading because they are hollow and have a simple anatomical structure that facilitates access to the unloading site. After pulse labeling of a source leaf with 14CO2, stem sections were cut and the efflux characteristics of 14C-labeled sugars into various buffered solutions were determined. Radiolabeled sucrose was shown to remain localized in the phloem and adjacent phloem parenchyma tissues after a 2-hour chase. Therefore, sucrose leakage from stem segments prepared following a 75-minute chase period was assumed to be characteristic of phloem unloading. The efflux of 14C assimilates from the phloem was enhanced by 1 millimolar p-chloromercuribenzene sulfonic acid (PCMBS) and by 5 micromolar carbonyl cyanide m-chlorophenly hydrazone (CCCP). However, PCMBS inhibited and CCCP enhanced general leakage of nonradioactive sugars from the stem segments. Sucrose at concentrations of 50 millimolar in the free space increased efflux of [14C]sucrose, presumably through an exchange mechanism. This exchange was inhibited by PCMBS and abolished by 0.2 molar mannitol. Increasing the osmotic concentration of the efflux medium with mannitol reduced [14C]sucrose efflux. However, this inhibition seems not to be specific to sucrose unloading since leakage of total sugars, nonlabeled sucrose, glucose, and amino acids from the bulk of the tissue was reduced in a similar manner. The data suggest that phloem unloading in cut stem segments is consistent with passive efflux of sucrose from the phloem to the apoplast and that sucrose exchange via a membrane carrier may be involved. This is consistent with the known conductive function of the stem tissues, and contrasts with the apparent nature and function of unloading in developing seeds.  相似文献   

19.
The aim of this work was to relate [14C]-sucrose metabolism to the activities of sucrose synthetase and acid and alkaline invertases in roots of Pisum sativum. We fed [U-14C]-sucrose to 5-day-old plants and then excised the apical 6 mm of the roots and dissected the regions 6–24 mm from the root apices into stele and cortex. The detailed distribution of 14C in these parts of the roots was determined at the end of the feeding period and after a chase. The data indicate that sucrose arriving in the stele is divided between storage, conversion to polysaccharide, and consumption in respiration, whereas sucrose arriving in the rest of the root is used in respiration or converted to polysaccharide or hexose so rapidly that little is stored. Fractionation of carefully prepared extracts of pea roots, tubers of Solanum tuberosum, and spadices of Arum maculatum showed that sucrose synthetase was recovered in the soluble fraction. The results are discussed in relation to the roles of the aforementioned enzymes.  相似文献   

20.
Subfractionation of clarified cotyledon homogenates of cotton (Gossypium hirsutum L.) seedlings on sucrose gradients revealed a single coincident peak of cholinephosphotransferase (EC 2.7.8.2) (CPT) and ethanolaminephosphotransferase (EC 2.7.8.1) (EPT) activities, which equilibrated with the main peak of Antimycin A-insensitive NADH:cytochrome c reductase (CCR) activity. The small percentage of CPT and EPT activities (less than 5% of the total) in glyoxysome-enriched pellets equilibrated with cytochrome c oxidase activity, not with catalase activity. Preincubation of microsomes (containing 83% of total CPT and EPT activities) in 0.2 millimolar MgCl2 followed by subfractionation on sucrose gradients resulted in peak CPT and EPT activities equilibrating with peak CCR activity at 24% (w/w) sucrose. Preincubation of microsomes with 14C-CDPcholine (or 14C-CDPethanolamine) resulted in synthesis and incorporation of 14C-phosphatidylcholine (PC) (or 14C-phosphatidylethanolamine, PE) into membranes at the same density. Increasing the Mg2+ concentration to 2.0 millimolar facilitated binding of ribosomes and caused a concomitant shift in density (to 34% w/w sucrose) of peak CPT, EPT, and CCR activities. Under these conditions, newly synthesized and incorporated 14C-PC (or PE) was recovered in these membranes. Transmission electron microscopy of this fraction confirmed binding of ribosomes to membranes. Radiolabeling in vivo of cotyledons with [methyl-14C] choline chloride or [1,2 ethanolamine-14C] ethanolamine hydrochloride resulted in a linear incorporation of radiolabel into PC or PE in a time dependent manner. Subfractionation of homogenates of radiolabeled cotyledons on sucrose gradients showed that membranes sedimenting at 24% (w/w) sucrose (ER) contained the majority of radiolabeled PC and PE with a minor peak at 40% (w/w) sucrose (mitochondria), but no radioactive PC or PE was recovered in glyoxysomes. These results indicate that ER in cotyledons of germinated cotton seedlings is the primary subcellular site of PC and PE synthesis. This is similar to the situation in endosperm tissue but distinctly different from root and hypocotyl tissue where Golgi are a major subcellular site of PC and PE synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号