首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aminocyclitols structurally related to streptamine, a 1,3-diaminocyclitol, are common components of the RNA-binding aminoglycoside antibiotics. The respective aminocyclitol cores of hygromycin B and spectinomycin are N(3)-methyl-2-deoxy-D-streptamine and N(1),N(3)-dimethyl-2-epi-streptamine. Adenosyl[methyl-(14)C]methionine:2-deoxystreptamine N-methyltransferase activities were detected in extracts of early-stationary-phase mycelia of the hygromycin B producer Streptomyces hygroscopicus subsp. hygroscopicus ATCC 27438 and the spectinomycin producer Streptomyces flavopersicus ATCC 19756. Extracts of both strains methylated the N(1)- and N(3)-amino groups of 2-deoxystreptamine, streptamine, and 2-epi-streptamine; the N(1)-amino group of N(3)-methyl-2-deoxy-D-streptamine, and the N(3)-amino group of N(1)-ethyl-2-deoxy-D-streptamine, the semisynthetic aminocyclitol of netilmicin. The mono[(14)C]methyl derivatives of 2-deoxystreptamine, streptamine, and 2-epi-streptamine were excellent substrates for L-glutamine:aminocyclitol aminotransferase and thereby provided a sensitive assay for derepression of this key enzyme, a generic biosynthetic marker that we have shown to be the only enzyme common to the biosyntheses of all major aminoglycoside antibiotics. Other prospective uses for these methyl-labeled 2-deoxystreptamine analogs are also described.  相似文献   

2.
A five-step procedure is described for preparing highly purified aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC.2.6.1.1) from cell-freee enzyme extracts of Pediococcus cerevisiae. An overall purification of 130-fold was achieved. Some of P. cerevisiae aspartate aminotransferase properties were studied, i.s. pH optimum (7.8--8.0), optimum of temperature (37 degrees), Michaelis constans for 4 enzyme substrates and substrate specificity of enzyme. The enzyme is very thermolabile. During purification the enzyme was stabilizated by 2-oxoglutarate. The highly purified preparation was stored in the solution containing ammonium sulphate. The obtained aspartate aminotransferase preparation was free of alanine and aromatic amino acids aminotransferase activites and did not reveal malate dehydrogenase activity.  相似文献   

3.
Rat liver tyrosine aminotransferase was purified by chromatography on CM-Sephadex C-50 and DEAE-cellulose, (NH4)2SO4 fractionation and gel filtration on Sephadex G-200. Livers from 400 rats can be easily worked up by this procedure. Furthermore, this purification method has the advantage that hepatic tryptophan 2,3-dioxygenase, which, like tyrosine aminotransferase, is induced by glucocorticosteroids, can be purified from the same homogenate. Tyrosine aminotransferase purified by this method was shown to be specific for 2-oxoglutarate. Its subunits have a molecular weight of 45 000. The following "apparent" Michaelis constants were determined: L-tyrosine, 1.7 X 10(-3) M; 2-oxoglutarate, 5.9 X 10(-4) M; and pyridoxal 5'-phosphate, 2.1 X 10(-6) M. Tyrosine aminotransferase, depleted of its cofactors, binds 4 molecules of pyridoxal 5'-phosphate per 90 000 daltons with a KA of 2.2 X 10(5) M-1.  相似文献   

4.
1. A subcellular fractionation procedure for frog liver is reported and validated by the distribution pattern of several marker enzymes, also in comparison with rat liver. 2. The subcellular distribution of tyrosine aminotransferase was investigated in frog liver as compared to rat liver: a different distribution of the enzyme was observed, being the activity mostly recovered in mitochondrial and cytosolic compartments. 3. Results indicate that mitochondrial tyrosine aminotransferase of both frog and rat liver is a matrix enzyme, even if differences are observed concerning its release from the organelles upon detergent treatment.  相似文献   

5.
Rat liver soluble fraction contained 3 forms of alanine: glyoxylate aminotransferase. One with a pI of 5.2 and an Mr of approx. 110,000 was found to be identical with cytosolic alanine:2-oxoglutarate aminotransferase. The pI 6.0 enzyme with an Mr of approx. 220,000 was suggested to be from broken mitochondrial alanine:glyoxylate aminotransferase 2 and the pI 8.0 enzyme with an Mr of approx. 80,000 enzyme from broken peroxisomal and mitochondrial alanine:glyoxylate aminotransferase 1. These results suggest that the cytosolic alanine: glyoxylate aminotransferase activity is due to cytosolic alanine: 2-oxoglutarate aminotransferase.  相似文献   

6.
Aminoglycoside has been known as a clinically important antibiotic for a long time, but genetic information for the biosynthesis of aminoglycoside is still insufficient. In this study, we tried to clone aminoglycoside-biosynthetic genes from soil DNA for accumulation of genetic information. We chose the genes encoding L-glutamine:(2-deoxy-)scyllo-inosose aminotransferase as the target, because it is specific for all types of aminoglycoside biosynthesis. By degenerate PCR, we obtained 33 individual clones that were homologous with aminotransferase genes in aminoglycoside biosynthesis. Phylogenetic analysis and alignment of these genes showed that horizontal gene transfer has occurred in the soil. Among these, several quite interesting genes were obtained. Some genes probably originated from non-actinomycetes, and some were far from the known homologs. These genes can be useful markers for the isolation of entire gene clusters and originating organisms.  相似文献   

7.
Aspartate: 2-oxoglutarate aminotransferase from the anaerobic protozoon Trichomonas vaginalis was purified to homogeneity and characterized. It is a dimeric protein of overall Mr approx. 100000. Only a single isoenzyme was found in T. vaginalis. The overall molecular and catalytic properties have features in common with both the vertebrate cytoplasmic and mitochondrial isoenzymes. The purified aspartate aminotransferase from T. vaginalis showed very high rates of activity with aromatic amino acids as donors and 2-oxoglutarate as acceptor. This broad-spectrum activity was restricted to aromatic amino acids and aromatic 2-oxo acids, and no significant activity was seen with other common amino acids, other than with the substrates and products of the aspartate: 2-oxoglutarate aminotransferase reaction. Co-purification and co-inhibition, by the irreversible inhibitor gostatin, of the aromatic amino acid aminotransferase and aspartate aminotransferase activities, in conjunction with competitive substrate experiments, strongly suggest that a single enzyme is responsible for both activities. Such high rates of aromatic amino acid aminotransferase activity have not been reported before in eukaryotic aspartate aminotransferase.  相似文献   

8.
9.
A rat-tissue aminotransferase acting on L-tyrosine O-sulphate   总被引:2,自引:2,他引:0       下载免费PDF全文
1. Rat tissues have been shown to possess an aminotransferase that is active towards l-tyrosine O-sulphate and dependent on 2-oxoglutarate and pyridoxal phosphate. 2. Kidney, liver and pancreas have the greatest activity and the enzyme is localized mainly in the mitochondrial fraction in the liver and kidney cell. 3. The enzyme was shown to be distinct from l-tyrosine-2-oxoglutarate aminotransferase but its true identity was not established. 4. A procedure for the assay of the enzyme in crude tissue preparations was developed.  相似文献   

10.
Transamination of 3-phenylpyruvate in pancreatic B-cell mitochondria   总被引:1,自引:0,他引:1  
High aminotransferase activities catalyzing the reaction between L-glutamate and the aromatic ketomonocarboxylic acid, 3-phenylpyruvate, were observed in the mitochondria from pancreatic B-cells. At very low concentrations of 3-phenylpyruvate, L-glutamine was an effective amino group donor. The aminotransferase activities for the aliphatic ketomonocarboxylic acids, pyruvate and 2-ketoisovalerate, were lower in B-cell mitochondria. High rates of transamination of 2-ketoisocaproate with L-glutamine were observed and may be an important prerequisite for the insulin secretory potency of this 2-keto acid. Since B-cell mitochondria are well supplied with L-glutamine and L-glutamate, 3-phenylpyruvate-induced 2-ketoglutarate production may explain the insulin secretory potency of 3-phenylpyruvate which is not a fuel for pancreatic islet cells.  相似文献   

11.
Aromatic: 2-oxoglutarate aminotransferase has been purified about 680-fold from the extracts of rat small intestine. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis. On the basis of substrate specificity, substrate inhibition, polyacrylamide gel electrophoresis and other some properties of this enzyme, it has been suggested that tyrosine: 2-oxoglutarate aminotransferase is identical with phenylalanine and kynurenine: 2-oxoglutarate amino-transferases, and also with aspartate: 2-oxoglutarate aminotransferase.  相似文献   

12.
2-Deoxystreptamine (DOS)-containing aminoglycoside-aminocyclitol (AmAc) antibiotics represent the majority of clinically important AmAcs. Biosynthetic investigations of formation of DOS in actinomycetes are limited to the characterization of 2-deoxy-scyllo-inosose synthase, the first step enzyme of the DOS biosynthetic pathway. A gene encoding L-glutamine:2-deoxy-scyllo-inosose aminotransferase (tbmB) from the tobramycin producer Streptomyces tenebrarius was expressed heterologously in Escherichia coli. The conversions of 2-deoxy-scyllo-inosose to 2-deoxy-scyllo-inosamine and scyllo-inosose to scyllo-inosamine with the activity of TbmB were determined in vitro. The results indicate that tbmB catalyzes the second step of the DOS biosynthetic pathway during the biosynthesis of 2-deoxystreptamine, a subunit of tobramycin, in S. tenebrarius.  相似文献   

13.
The complete amino acid sequence of bacterial omega-amino acid:pyruvate aminotransferase (omega-APT) was determined from its primary structure. The enzyme protein was fragmented by CNBr cleavage, trypsin, and Staphylococcus aureus V8 digestions. The peptides were purified and sequenced by Edman degradation. omega-ATP is composed of four identical subunits of 449 amino acids each. The calculated molecular weight of the enzyme subunit is 48,738 and that of the enzyme tetramer is 194,952. No disulfide bonds or bound sugar molecules were found in the enzyme structure, although 6 cysteine residues were determined per enzyme subunit. Sequence homologies were found between an omega-aminotransferase, i.e. mammalian and yeast ornithine delta-aminotransferases, fungal gamma-aminobutyrate aminotransferase and 7,8-diaminoperalgonate aminotransferase, and 2,2-dialkylglycine decarboxylase. The enzyme structure is not homologous to those of aspartate aminotransferases (AspATs) including the enzymes of Escherichia coli and Sufolobus salfactaricus, though significant homology in the three-dimensional structures around the cofactor binding site has been found between omega-APT and AspATs (Watanabe, N., Sakabe, K., Sakabe, N., Higashi, T., Sasaki, K., Aibara, S., Morita, Y., Yonaha, K., Toyama, S., and Fukutani, H. (1989) J. Biochem. 105, 1-3).  相似文献   

14.
1. Inactivation of tyrosine aminotransferase was studied in rat liver homogenates. Under an O2 atmosphere with cysteine added, inactivation was rapid after a lag period of approx. 1h, whereas a N2 atmosphere extended the lag period to approx. 3h. 2. Replacement of cysteine with cystine resulted in rapid inactivation both aerobically and anaerobically. 3. Removal of the particulate fraction by centrifuging rat liver homogenates at 13,000g for 9min resulted in an aerobic lag period of 0.5h in the presence of cystine and approx. 3h in the presence of cysteine. 4. It is proposed that the stimulatory effect of cysteine on tyrosine aminotransferase inactivation occurs largely as a result of oxidation to cystine, which appears to be a more directly effective agent.  相似文献   

15.
16.
The role of coenzyme in determining intracellular contnet of pyridoxal enzymes was assessed by analyzing effects of pyridoxine deficiency on the rapidly degraded, readily dissociable tyrosine aminotransferase (EC 2.6.1.5) and the slowly degraded, nondissociable alanine aminotransferase (EC 2.6.1.2) of rat liver. Synthesis of the tyrosine enzyme was reduced, leading to a decreased amount of this enzyme, much of which was present as active apoenzyme. Synthesis of alanine aminotransferase was unchanged but much of this enzyme was present as an inactive apoenzyme which retained immunological reactivity. Degradation rates of both enzymes (t1/2 about 1.5 h, tyrosine aminotransferase; about 3 days, alanine aminotransferase) were not changed in pyridoxine deficiency. Hence, interaction with coenzyme is not a significant determinant in intracellular degradation of these aminotransferases. Coenzymes dissociation and intracellular stability probably reflect structural features of the proteins which determine both properties.  相似文献   

17.
X-ray study of chicken cytosolic aspartate aminotransferase revealed conformational changes in the protein of two kinds: (1) a shift of the small domain adjacent to substrate-binding area due to interaction of the protein with two carboxyl groups of substrate and (2) a change in inclination of the coenzyme plane due to replacement of C = N bond of the coenzyme with Lys-258 by C = N bond with a substrate. An asymmetry in subunit behaviour is observed in both cases: the domain is shifted in one subunit and the coenzyme is rotated in other. Substrate-binding properties of each subunit are strictly dependent on the protein conformation in substrate-binding area.  相似文献   

18.
The organ distribution of rat histidine-pyruvate aminotransferase isoenzymes 1 and 2 was examined by using an isoelectric-focusing technique. Isoenzyme 1 (pI8.0) is present only in the liver and its activity is increased by the injection of glucagon, whereas isoenzyme 2 (pI5.2) is distributed in all tissues (liver, kidney, brain and heart) tested, and is not affected by glucagon injection. Isoenzyme 2 of the liver, kidney, brain and heart was purified by the same procedure and characterized. Isoenzyme 2 preparations from these four tissues were nearly identical in physical and enzymic properties. These properties differed from those previously found for the highly purified isoenzyme 1 preparation of rat liver. Isoenzyme 2 was active with pyruvate but not with 2-oxoglutarate as amino acceptor. Amino donors were effective in the following order of activity: tyrosine greater than histidine greater than phenylalanine greater than kynurenine greater than tryptophan. Very little activity was found with 5-hydroxytryptophan. The apparent Km for histidine was about 0.45 mM. The Km for pyruvate was about 4.5 mM with histidine as amino donor. The amino-transferase activities of isoenzyme 2 towards phenylalanine and tyrosine were inhibited by histidine. The ratio of aminotransferase activities towards these three amino acids was constant through gel filtration, electrophoresis, isoelectric focusing and sucrose-density-gradient centrifugation of the purified isoenzyme 2 preparations. These results suggest that these three activities are properties of the same enzyme protein. Sephadex G-150 gel filtration and sucrose-density-gradient centrifugation yielded mol.wts. of approx. 95000 and 92000 respectively. The pH optimum was between 9.0 and 9.3.  相似文献   

19.
The activity of glutamine hexosephosphate aminotransferase (L-glutamine: D-fructose 6-phosphate aminotransferase, EC 2.6.1.16) was determined with an improved assay method in some three dozen rat tissues: adult, developing and neoplastic. The highest activities (20–200 units/g) were seen in colon, mammary (during late lactation), submaxillary, sublingual and parotid glands, placenta and liver. The activity increased strikingly along the length of the intestine; glucose feeding inhibited it in ileum and colon. In liver and intestine the activity increased with age but in brain, muscle, heart and kidney the activity was considerably higher during fetal (7.1–12.8 units/g) than in adult life (0.8–3.5 units/g). Renal, mammary and muscle tumors (but not hepatomas) had much higher activities (4–20.5 units/g) than the cognate normal adult tissue.The distribution pattern among tissues indicates that glutamine hexosephosphate aminotransferase is of general importance to all growing, undifferentiated tissues and of special importance to the differentiated function of particular adult organs. The latter are organs which engage in glycoprotein secretion. The results support the assumption that glutamine hexosephosphate aminotransferase activity is essential for glycoprotein synthesis.  相似文献   

20.
The distribution of alanine:2-oxoglutarate aminotransferase (EC 2.6.1.2) in spinach (Spinacia oleracea) leaf homogenates was examined by centrifugation in a sucrose density gradient. About 55% of the total homogenate activity was localized in the peroxisomes and the remainder in the soluble fraction. The peroxisomes contained a single form of alanine:2-oxoglutarate aminotransferase, and the soluble fraction contained two forms of the enzyme. Both the peroxisomal enzyme and the soluble predominant form (about 90% of the total soluble activity) were co-purified with glutamate:glyoxylate aminotransferase to homogeneity; it had been reported to be present exclusively in the peroxisomes of plant leaves and to participate in the glycollate pathway in leaf photorespiration [Tolbert (1971) Annu. Rev. Plant Physiol. 22, 45-74]. The evidence indicates that alanine:2-oxoglutarate aminotransferase and glutamate:glyoxylate aminotransferase activities are associated with the same protein. The peroxisomal and soluble enzyme preparations had nearly identical properties, suggesting that the soluble predominant alanine aminotransferase activity is from broken peroxisomes and about 96% of the total homogenate activity is located in peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号