首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of leukotriene formation is one of the approaches to the treatment of asthma and other inflammatory diseases. We have investigated knipholone, isolated from the roots of Kniphofia foliosa, Hochst (Asphodelaceae), for inhibition of leukotriene biosynthesis in an ex vivo bioassay using activated human neutrophile granulocytes. Moreover, activities on 12-lipoxygenase from human platelets and cycloxygenase (COX)-1 and -2 from sheep cotyledons and seminal vesicles, respectively, have been evaluated. Knipholone was found to be a selective inhibitor of leukotriene metabolism in a human blood assay with an IC(50) value of 4.2microM. However, at a concentration of 10microg/ml, the compound showed weak inhibition of 12(S)-HETE production in human platelets and at a concentration of 50microM it produced no inhibition of COX-1 and -2. In our attempt to explain the mechanism of inhibition, we examined the antioxidant activity of knipholone using various in vitro assay systems including free radical scavenging, non-enzymatic lipid peroxidation, and metal chelation. Knipholone was found to be a weak dose-independent free radical scavenger and lipid peroxidation inhibitor, but not a metal chelator. Therefore, the leukotriene biosynthesis inhibitory effect of knipholone was evident by its ability either to inhibit the 5-lipoxygenase activating protein (FLAP) or as a competitive (non-redox) inhibitor of the enzyme. Cytotoxicity results also provided evidence that knipholone exhibits less toxicity for a mammalian host cell.  相似文献   

2.
5-Lipoxygenase and leukotriene (LT) A4 synthase, the first two enzymes in the pathway converting arachidonic acid to leukotrienes, can be co-purified. The Ca2+-activated conversion of arachidonic acid and of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) to LTB4 have been compared, using cytosol from human leucocytes. The two activities showed identical responses to a number of inhibitors, suggesting that the two catalytic activities may involve the same active centre. The effects of Ca2+ ions were further investigated. With 5-HPETE as substrate, substantial synthesis of LTB4 was given in the absence of Ca2+, and the inhibitor sensitivity of this component was quite different from that of the Ca2+-activated component. This Ca2+-independent synthase activity was, however, very low in saponin-permeabilised washed leucocytes and it may therefore be not significant physiologically. With arachidonic acid as substrate at pH 7, the activity was highly Ca2+-dependent at a low substrate concentration (6.6 microM), but at a high concentration (132 microM) substantial activity was observed without Ca2+. This was also found when 5-lipoxygenase was assayed in cytosol from RBL cells. At pH 8-8.5, however, Ca2+ was required at both high and low concentrations of arachidonic acid. This suggests that Ca2+ is required for 5-lipoxygenase activity on arachidonate ions in solution but possibly not on protonated arachidonic acid or micelles.  相似文献   

3.
The effect of disulfiram on the 5-lipoxygenase activity from rat polymorphonuclear leukocyte cell-free lysates was determined and compared with that of other thiocarbamoyl and aryl disulfides. Disulfiram was a potent inhibitor of the soluble 5-lipoxygenase causing 50% inhibition at submicromolar concentrations (0.4-0.7 microM). The inhibition by disulfiram was similar to that of bis(diisopropylthiocarbamoyl) disulfide with both compounds being about 100-fold more potent as inhibitors than the structurally related bis(4-methyl-1-homopiperazinylthiocarbonyl) disulfide analog. The potency of 5-lipoxygenase inhibition by disulfiram was comparable to that of diphenyldisulfide (IC50 = 0.2-0.4 microM), in the same range or better than most typically used inhibitors. However, the degree of inhibition by disulfiram was more sensitive to thiols than that of diphenyldisulfide, as shown by the selective protection against disulfiram inhibition by low concentrations of thiols. Diethyldithiocarbamate, the reduction product of disulfiram, was a less potent inhibitor of the 5-lipoxygenase activity, causing only a partial inhibition (40-60%) over a wide range of concentrations (2-30 microM). The results demonstrate that disulfiram is a potent inhibitor of 5-lipoxygenase in vitro and provide the basis for further investigations on the effect of the drug on leukotriene biosynthesis inhibition and its contribution to the ethanol-disulfiram reaction. They also indicate that disulfiram represents a sensitive reagent to characterize the thiol requirement of the 5-lipoxygenase reaction.  相似文献   

4.
The effect of 6,7,4'-trihydroxyisoflavan on human platelet 12-lipoxygenase and human and porcine PMNL 5-lipoxygenase activities has been studied. 6,7,4'-Trihydroxyisoflavan was found to inhibit 5-lipoxygenase more strongly than 12-lipoxygenase; its concentration for 50% inhibition (IC50) was 1.6 microM for human and porcine 5-lipoxygenase and 22 microM for human platelet 12-lipoxygenase. Inhibition of microsomal cyclooxygenase from ram seminal vesicles is exhibited at much higher concentrations of 6,7,4'-trihydroxyisoflavan (IC50 = 200 microM).  相似文献   

5.
The arachidonate lipoxygenase from rat basophilic leukemia cells (RBL-1) is widely utilized as a model to dissect the primary enzymatic reactions leading to leukotriene formation. The purpose of the present study was to optimize the specific activity of 5-lipoxygenase prepared from a high speed supernatant of RBL-1 cell homogenates. Activation of 5-lipoxygenase was observed in the presence of micromolar levels of calcium. A synergistic enhancement of 5-lipoxygenase was observed upon addition of equally low levels of ATP; maximal activation was induced by 5 microM CaCl2 plus 5 microM ATP. Addition of a microsomal-membrane preparation and NADPH further augmented 5-HETE biosynthesis. High concentrations (330 microM) of NADPH reversed the microsomal-induced stimulation of RBL-1 5-lipoxygenase, resulting in enzyme inhibition.  相似文献   

6.
The natural polyphenolic compound resveratrol (trans-3,4', 5-trihydroxystilbene) is shown to prevent apoptosis (programmed cell death) induced in human erythroleukemia K562 cells by hydrogen peroxide and other unrelated stimuli. Resveratrol reversed the elevation of leukotriene B4 (from 6.40 +/- 0.65 to 2.92 +/- 0.30 pmol.mg protein-1) and prostaglandin E2 (from 11.46 +/- 1.15 to 8.02 +/- 0.80 nmol.mg protein-1), induced by H2O2 challenge in K562 cells. The reduction of leukotriene B4 and prostaglandin E2 correlated with the inhibition of the 5-lipoxygenase activity, and the cyclooxygenase and peroxidase activity of prostaglandin H synthase, respectively. Resveratrol also blocked lipoperoxidation induced by hydrogen peroxide in K562 cell membranes. Resveratrol was found to act as a competitive inhibitor of purified 5-lipoxygenase and 15-lipoxygenase and prostaglandin H synthase, with inhibition constants of 4.5 +/- 0.5 microM (5-lipoxygenase), 40 +/- 5.0 microM (15-lipoxygenase), 35 +/- 4.0 microM (cyclooxygenase activity of prostaglandin H synthase) and 30 +/- 3.0 microM (peroxidase activity of prostaglandin H synthase). Altogether, the results reported here suggest that the anti-apoptotic activity of resveratrol depends on the direct inhibition of the main arachidonate-metabolizing enzymes.  相似文献   

7.
L-663,536 (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2, 2-dimethylpropanoic acid) is a potent inhibitor of leukotriene (LT) biosynthesis in intact human polymorphonuclear leukocytes (PMN) (IC50, 2.5 nM). Similarly, L-663,536 inhibited A23187-induced LTB4 formation by rat peripheral blood and elicited PMN. At concentrations where inhibition of leukotriene biosynthesis occurred in human whole blood (1.1 microM), no effect was seen on cyclooxygenase or 12-lipoxygenase, an effect also observed in washed human platelets. The compound had no effect on rat or porcine 5-lipoxygenase indicating that L-663,536 is not a direct 5-lipoxygenase inhibitor. When administered in vivo L-663,536 was a potent inhibitor of antigen-induced dyspnea in inbred rats pretreated with methysergide (ED50, 0.036 mg/kg p.o.) and of Ascaris-induced bronchoconstriction in squirrel monkeys (1 mg/kg p.o.). The compound inhibited leukotriene biosynthesis in vivo in a rat pleurisy model (ED50, 0.2 mg/kg p.o.), an inflamed rat paw model (ED50, 0.8 mg/kg), a model of leukotriene excretion in rat bile following antigen provocation, and a model in the guinea-pig ear where leukotriene synthesis was induced by topical challenge with ionophore A23187 (ED50, 2.5 mg/kg p.o. and 0.6 micrograms topically). The results indicate that L-663,536 is a potent inhibitor of leukotriene biosynthesis both in vitro and in vivo indicating that the compound is suitable for studying the role of leukotrienes in a variety of pathological situations.  相似文献   

8.
5-Lipoxygenase is the key enzyme in the formation of leukotrienes, which are potent lipid mediators of asthma pathophysiology. This enzyme translocates to the nuclear envelope in a calcium-dependent manner for leukotriene biosynthesis. Eight green fluorescent protein (GFP)-lipoxygenase constructs, representing the major human and mouse enzymes within this family, were constructed and their cDNAs transfected into human embryonic kidney 293 cells. Of these eight lipoxygenases, only the 5-lipoxygenase was clearly nuclear localized and translocated to the nuclear envelope upon stimulation with the calcium ionophore. The N-terminal "beta -barrel" domain of 5-lipoxygenase, but not the catalytic domain, was necessary and sufficient for nuclear envelope translocation. The GFP-N-terminal 5-lipoxygenase domain translocated faster than GFP-5-lipoxygenase. beta-Barrel/catalytic domain chimeras with 12- and 15-lipoxygenase indicated that only the N-terminal domain of 5-lipoxygenase could carry out this translocation function. Mutations of iron atom binding ligands (His550 or deletion of C-terminal isoleucine) that disrupt nuclear localization do not alter translocation capacity indicating distinct determinants of nuclear localization and translocation. Moreover, data show that GFP-5-lipoxygenase beta-barrel containing constructs can translocate to the nuclear membrane whether cytoplasmic or nuclear localized. Thus, the predicted beta-barrel domain of 5-lipoxygenase may function like the C2 domain within protein kinase C and cytosolic phospholipase A(2) with unique determinants that direct its localization to the nuclear envelope.  相似文献   

9.
5-Lipoxygenase (ALOX5) plays a key role in the biosynthesis of pro-inflammatory leukotrienes whereas 15-lipoxygenases (ALOX15) have been implicated in the formation of pro-resolving eicosanoids (lipoxins, resolvins). Recently, it has been suggested that a phosphorylation mimicking mutant (Ser663Asp) of a stabilized variant of human ALOX5 exhibits dominant arachidonic acid 15-lipoxygenase activity (> 95%). To test whether similar alterations in the reaction specificity can also be observed for ALOX5 orthologs of other species we expressed wildtype and phosphorylation mimicking mutants (Ser271Asp, Ser523Asp, Ser663Asp, Ser663Glu) of human, mouse and zebrafish ALOX5 in pro- and eukaryotic overexpression systems and characterized their reaction specificities. We found that neither of the phosphorylation mimicking mutants produced significant amounts of 15-hydroperoxyeicosatetraenoic acid and the 5-lipoxygenation/15-lipoxygenation ratio for all wildtype and mutant enzyme species was lower than 100:2. Taken together, this data suggest that phosphorylation of native ALOX5 orthologs of different vertebrates may not induce major alterations in the reaction specificity and thus may not inverse their biological activity.  相似文献   

10.
Black cumin seed, Nigella sativa L., and its oils have traditionally been used for the treatment of asthma and other inflammatory diseases. Thymoquinone (TQ) has been proposed to be one of the major active components of the drug. Since leukotrienes (LTs) are important mediators in asthma and inflammatory processes, the effects of TQ on leukotriene formation were studied in human blood cells. TQ provoked a significant concentration-dependent inhibition of both LTC4 and LTB4 formation from endogenous substrate in human granulocyte suspensions with IC50 values of 1.8 and 2.3 microM, respectively, at 15 min. Major inhibitory effect was on the 5-lipoxygenase activity (IC50 3 microM) as evidenced by suppressed conversion of exogenous arachidonic acid into 5-hydroxy eicosatetraenoic acid (5HETE) in sonicated polymorphonuclear cell suspensions. In addition, TQ induced a significant inhibition of LTC4 synthase activity, with an IC50 of 10 microM, as judged by suppressed transformation of exogenous LTA4 into LTC4. In contrast, the drug was without any inhibitory effect on LTA4 hydrolase activity. When exogenous LTA4 was added to intact or sonicated platelet suspensions preincubated with TQ, a similar inhibition of LTC4 synthase activity was observed as in human granulocyte suspensions. The unselective protein kinase inhibitor, staurosporine failed to prevent inhibition of LTC4 synthase activity induced by TQ. The findings demonstrate that TQ potently inhibits the formation of leukotrienes in human blood cells. The inhibitory effect was dose- and time-dependent and was exerted on both 5-lipoxygenase and LTC4 synthase activity.  相似文献   

11.
12-Hydroxyeicosatetraenoic acid (12-HETE) is formed from arachidonic acid either by 12-lipoxygenase or by a cytochrome P450 monooxygenase. 12-Lipoxygenase is generally localized in the soluble cytosolic fraction, and the cytochrome P450 monooxygenase is a microsomal enzyme. In this study, 12-HETE biosynthesis and the regulation of 12-HETE biosynthesis by epidermal growth factor (EGF) in A431 cells were investigated. 12-HETE was biosynthesized from arachidonic acid by the microsomal fraction of A431 cells, but not by the cytosolic fraction. The formation of 12-HETE was inhibited by 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and caffeic acid. Nordihydroguaiaretic acid at 10(-4) M and 5,8,11,14-eicosatetraynoic acid at 10(-5) M almost completely inhibited its formation. However, the formation of 12-HETE was not affected by the presence of an NADPH-generating system, carbon monoxide, or SKF 525A. The biosynthetic 12-HETE was analyzed by chiral stationary phase high performance liquid chromatography and was highly enriched in (12S)-HETE. We therefore concluded that the enzyme responsible for the formation of (12S)-HETE in the microsomes of A431 cells is a 12-lipoxygenase. The microsomal 12-lipoxygenase of A431 cells belongs to the "leukocyte-type" enzyme as determined by substrate specificity and enzyme kinetics studies. The microsomal 12-lipoxygenase oxygenated linoleic acid much faster than the cytosolic platelet 12-lipoxygenase and is a "self-catalyzed inactivation" enzyme. Treatment of cells with 50 ng/ml EGF significantly induced microsomal 12-lipoxygenase activity. The lag period for the expression of the stimulatory effect of EGF on 12-lipoxygenase activity was approximately 10 h. The stimulatory effect of EGF on 12-lipoxygenase activity was completely blocked by treatment with 35 microM cycloheximide, indicating a requirement for de novo protein biosynthesis. Furthermore, the presence of the endogenous inhibitor of 12-lipoxygenase (which masked (12S)-HETE biosynthesis in intact cells) was identified in the cytosolic fraction of A431 cells. The putative inhibitor was enzyme-selective. It inhibited the leukocyte-type 12-lipoxygenase, but not the "platelet-type" enzyme.  相似文献   

12.
Treatment of rat basophilic leukemia cells (RBL-1) with the calcium ionophore A23187 resulted in activation of 5-lipoxygenase, as indicated by an induction of leukotriene release [Orning, L., Hammarstr?m, S., & Samuelsson, B. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2017]. The enzyme activation was accompanied by a time-dependent association of 5-lipoxygenase to the particular fraction. When cells were lysed in the presence of 0.05-10 microM CaCl2, the soluble 5-lipoxygenase became associated with the particulate fraction. This was demonstrated by a decrease in immunoreactivities and enzymatic activities in the soluble fraction and a parallel increase in particulate-associated immunoreactivities. The particulate-bound enzyme was not active. Ca2+ induced the membrane association of 5-lipoxygenase when added into the incubation mixtures containing the membrane fraction with either the cytosolic fraction or the purified enzyme. 5-Lipoxygenase also bound to the microsomal-enriched fraction in the presence of Ca2+. Maximal membrane binding was obtained after a 1-min incubation at 4 degrees C. When a fixed amount of isolated membranes (0.2 mg of protein) and increasing cytosolic protein (0.5-4 mg) were used, a linear increase in enzyme binding was observed. The binding became saturated at 3 mg of cytosolic protein/mg of membrane protein. 5-Lipoxygenase binding to the membrane fraction was unaffected by pretreatment of the membranes with trypsin but was inhibited by treating with phospholipase A2, suggesting that phospholipids are involved.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Recently, we have shown that ionophore activation of human leukocytes results in leukotriene synthesis and a translocation of 5-lipoxygenase from the cytosol to cellular membrane. This membrane translocation was postulated to be an important early activation step for the enzyme. 3-[1-(p-Chlorobenzyl)-5-(isopropyl)-3-tert-butylthioindol-2-yl]-2, 2- dimethylpropanoic acid (MK886) is a potent and specific inhibitor of leukotriene biosynthesis in vivo and in intact cells, but has no direct effect on 5-lipoxygenase activity in cell-free systems. In this report, we show that MK886 can both prevent and reverse the membrane translocation of 5-lipoxygenase, in conjunction with the inhibition of leukotriene synthesis. Similar compounds of the indole class could also inhibit the membrane translocation of 5-lipoxygenase in a rank order of potency that correlated with their potencies for leukotriene synthesis inhibition. In contrast L-656,224, a direct 5-lipoxygenase inhibitor, had no effect on the translocation of the enzyme. Attempts to demonstrate the effects of MK886 on the association of 5-lipoxygenase with membrane in cell-free preparations failed due to a nonspecific Ca2+-dependent sedimentation of the enzyme. The mechanism of action of MK-886 is therefore to block translocation, prevent subsequent activation of 5-lipoxygenase, and hence block cellular leukotriene biosynthesis.  相似文献   

14.
Hinokitiol (4-isopropyltropolone), a constituent of Japanese cypress, reversibly inhibited platelet-type 12-lipoxygenase with an IC(50) of 0.1 microM, and the enzyme activity was almost lost at 1 microM. The compound was much less active with other lipoxygenase enzymes with higher IC(50) values (leukocyte-type 12-lipoxygenase, 50 microM; soybean lipoxygenase, 17 microM; 15-lipoxygenase-1, >100 microM; 5-lipoxygenase, 17 microM). Hinokitiol up to 100 microM had almost no effect on cyclooxygenases-1 and -2. Their structure-activity relationship examined with various tropolone derivatives indicated the requirements of the 2-hydroxyl group and 4-alkyl group for the potent and selective inhibition of platelet-type 12-lipoxygenase.  相似文献   

15.
Hydroperoxides, the products of lipoxygenase mediated pathways, play a major role in the manifestation of chronic inflammatory diseases. Soy isoflavones act as antioxidants due to their ability to scavenge free radicals. Isoflavones inhibit the activity of soy lipoxygenase-1 and 5-lipoxygenase, from human polymorph nuclear lymphocyte in a concentration dependent manner. Spectroscopic and enzyme kinetic measurements have helped to understand the nature and mechanism of inhibition. Genistein is the most effective inhibitor of soy lipoxygenase 1 and 5-lipoxygenase with IC(50) values of 107 and 125 microM, respectively. Genistein and daidzein are noncompetitive inhibitors of soy lipoxygenase 1 with inhibition constants, K(i), of 60 and 80 microM, respectively. Electron paramagnetic resonance and spectroscopic studies confirm that isoflavones reduce active state iron to ferrous state and prevent the activation of the resting enzyme. A model for the inhibition of lipoxygenase by isoflavones is suggested.  相似文献   

16.
Inhibition of mammalian 5-lipoxygenase by aromatic disulfides   总被引:1,自引:0,他引:1  
As a primary step in leukotriene biosynthesis, arachidonic acid is converted into 5-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid by 5-lipoxygenase. This enzyme is studied in the supernatant fraction from sonified RBL-1 cells, a preparation that converts [1-14C]arachidonic acid to 5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid and several 5,12-dihydroxyeicosatetraenoic acids including LTB4. In order to examine the reversibility of inhibitors, the supernatant fraction can be depleted of low molecular weight constituents by vacuum filtration. The 5-lipoxygenase is irreversibly inhibited by 500 microM N-ethyl-maleimide or 300 microM methyl methanethiolsulfonate, reagents that react covalently with protein sulfhydryl groups. In contrast, diphenyl disulfide reversibly inhibits this enzyme at 1-5 microM, irrespective of the GSH concentration in the supernatant. KCN also inhibits 5-lipoxygenase at 4 mM, suggesting the presence of a metal-containing prosthetic group. These observations imply that diphenyl disulfide and similar molecules with electron-releasing substituents on the aromatic rings could inhibit by binding to an electrophilic metallic center, the binding being stabilized by hydrophobic interactions between the enzyme and the aromatic groups on the flexible disulfide. Even though diphenyl disulfide does not inhibit soybean 15-lipoxygenase or endoperoxide synthase in cell-free systems, this compound does suppress prostaglandin as well as leukotriene synthesis in intact murine peritoneal macrophages and CXBG cells. Since lipoxygenases are susceptible to peroxide activation and peroxidase deactivation, changes in the redox state of the cell may alter arachidonic acid metabolism as effectively as actual enzyme inhibition.  相似文献   

17.
Neural stem and progenitor cells serve as a reservoir for new neurons in the adult brain throughout lifetime. One of the critical steps determining the net production of new neurons is neural progenitor proliferation, which needs to be tightly controlled. Since inflammation has detrimental effects on neurogenesis and the 5-lipoxygenase/leukotriene pathway is involved in inflammatory processes, we investigated the effects of leukotrienes and montelukast, a small molecule inhibitor of the leukotriene receptors CysLT(1)R and GPR17, on neural stem and progenitor cell proliferation. We demonstrate expression of the leukotriene receptor GPR17 by neural progenitors and by neural stem cells. Stimulation with excess amounts of leukotrienes did not affect progenitor proliferation, whereas blockade of GPR17 with montelukast strongly elevated neural stem and progenitor proliferation, while maintaining their differentiation fate and potential. This effect was associated with increased ERK1/2 phosphorylation suggesting an involvement of the EGF signaling cascade. Based on our results, montelukast and the inhibition of the 5-LOX pathway might be potent candidates for future therapies employing neurogenesis to promote structural and functional improvement in neurodegeneration, neuropsychiatric disease and ageing.  相似文献   

18.
The orcinol derivatives tenuiorin (1) and methyl orsellinate (2) were identified as active components of an extract from the lichen Peltigera leucophlebia (Nyl.) Gyeln. showing in vitro inhibitory activity against 15-lipoxygenase from soybeans. The compounds were subsequently tested for in vitro activity against 5-lipoxygenase from porcine leucocytes and proved to be moderately active, with IC50 values of 41.6 microM and 59.6 microM respectively. Tenuiorin is a known constituent of several Peltigera species but has not previously been isolated from P. leucophlebia. As correlation between 5-lipoxygenase inhibition and antiproliferative effects has earlier been witnessed for related lichen metabolites, tenuiorin and methyl orsellinate were further tested for antiproliferative activity on cultured human breast (T-47D)-, pancreatic (PANC-1)- and colon (WIDR) cancer cell lines. The monomeric methyl orsellinate exhibited no detectable antiproliferative activity whereas the trimeric tenuiorin caused moderate/weak reduction in [3H]-thymidine uptake of the pancreatic- and colon cancer cells, with ED50 values of 87.9 and 98.3 microM respectively.  相似文献   

19.
5-Lipoxygenase upregulation by dexamethasone in human mast cells   总被引:1,自引:0,他引:1  
In spite of intensive research, our understanding of the regulation of expression of 5-LO (the key enzyme in the leukotriene metabolism) remains fragmentary. We investigated the effects of dexamethasone on the expression of this gene in a binary model consisting of two clones of the human mast cell line HMC-1, one with a 5-LO-negative and the other with a 5-LO-positive phenotype, respectively. When dexamethasone was included in the culture medium at a physiologically relevant concentration, biosynthesis of 5-LO derivatives increased considerably not only in the 5-LO-negative HMC-1 cells (approx 10-fold) but also in the 5-LO-positive cells, characterized by an already substantial enzyme activity. Consistently, Northern blot analysis revealed that a dramatic increase in the abundance of 5-LO mRNA occurred when the cells were exposed to dexamethasone. Likewise, a significant increase in the immunoreactive 5-LO protein was detected by Western blotting. In contrast, dexamethasone seemed to have no effect on the expression of two other genes of pivotal importance in leukotriene biosynthesis, viz. FLAP and LTC(4) synthase. We conclude that in human mast cells glucocorticoids effectively and selectively upregulate the expression of 5-LO.  相似文献   

20.
12-Lipoxygenase activity in platelets of spontaneously hypertensive rats was investigated. Enzyme activity was measured in the absence and the presence of reduced glutathione. In both assay conditions, 12-lipoxygenase activity in platelets of spontaneously hypertensive rats was significantly higher than that in platelets of normotensive rats. Since 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE), a 12-lipoxygenase product of arachidonic acid in platelets, has been reported to be a potent chemoattractant for aortic smooth muscle cells, increase in biosynthesis of 12-HETE in platelets of spontaneously hypertensive rats might contribute to the explanation of pathogenesis of vascular disorder commonly found in hypertension patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号