首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria isolated from the livers of sheep and rats were shown to oxidize palmitate, oleate and linoleate in a tightly coupled manner, by monitoring the oxygen consumption associated with the degradation of these acids in the presence of 2mM-L-malate. Rat liver mitochondria oxidized linoleate and oleate at a rate 1.2-1.8 times that of palmitate. Sheep liver mitochondria had a specific activity for the oxidation of palmitate that was 50-80% of that of rats and a specific activity for the oxidation of oleate and linoleate that was 30-40% that of rats. This would indicate that sheep conserved linoleate by limiting its oxidation. Carnitine acyltransferase I (CAT I) actively esterified palmitoyl-CoA and linoleate to carnitine in both rat and sheep liver mitochondria, and in both cases the rate for linoleate was faster than for palmitate. The CAT I reaction in both rat and sheep liver was inhibited by micromolar amounts of malonyl-CoA. With 90 microM-palmitoyl-CoA as substrate, CAT I was inhibited by 50% with 2.5 microM-malonyl-CoA in rats, and in sheep, 50% inhibition was found with all malonyl-CoA concentrations tested (1-5 microM). With 90 microM-linoleate as substrate for CAT I, a much larger difference in response to malonyl-CoA was seen, the rat enzyme being 50% inhibited at 22 microM-malonyl-CoA, whereas sheep liver CAT I was 91% and 98% inhibited at 1 microM- and 5 microM-malonyl-CoA respectively. We propose that malonyl-CoA may act as an important regulator of beta-oxidation in sheep, discriminating against the use of linoleate as an energy-yielding substrate.  相似文献   

2.
In this paper, human low-density lipoprotein (LDL), rat chylomicron remnants and very-low-density lipoproteins of beta-mobility from cholesterol-fed rabbits (beta VLDL) have been shown to bind strongly to a protein present in solubilised liver membranes of rats, rabbits and dogs by ligand blotting with biotin-modified lipoproteins. This binding protein was identified as the LDL-receptor on several criteria. First, binding of the lipoproteins to the receptor was saturable and Ca2+-dependent; secondly, the apparent relative molecular mass of the binding protein (ranging from 128,000 in the rabbit, 145,000 in the rat to 147,000 in the dog) was similar to that of the purified bovine LDL receptor. Finally, binding activity was greatly increased in the livers of rats treated with oestrogen in pharmacological doses and absent from the liver of Watanabe heritable hyperlipidaemic (WHHL) rabbits that have a genetic defect in the LDL receptor. Some binding was also observed to a high-molecular-mass protein present in solubilised liver membranes of rats and rabbits, which, in rabbits at least, shared antigenic determinants with rabbit apoB and was not likely to be related to the LDL receptor as it was present in equal amounts in normal and WHHL rabbits. No evidence was obtained for a specific chylomicron remnant binding protein, distinct from the LDL receptor, whose activity could be detected in solubilised liver membranes by ligand blotting although a variety of solubilisation and fractionation conditions were employed.  相似文献   

3.
Akagi S  Sato K  Ohmori S 《Amino acids》2004,26(3):235-242
Summary. In general, threonine is metabolized by reaction catalyzed by threonine-3-dehydrogenase (TDH), threonine dehydratase (TH) or threonine aldolase (TA). The activities of these three enzymes were compared in the liver of Japanese quails and rats. The animals were fed a standard or threonine rich-diet, or fasted for 3 days. The specific activity of TDH in the liver from quail fed a standard diet was 11 times higher than that in the liver from rats fed a standard diet. The TDH activities in the livers of the fasting and 5% threonine-rich diet groups of quail were 3 and 2 times higher than those in the livers from quail fed the standard diet, respectively. The TH activity in the liver of rats fed a standard diet was 14 times higher than that in the liver of quail fed a standard diet. The TH activity in the rat liver after fasting was 2.3 times higher than that of the standard diet control. The activity of TA in the livers of rat and quail were so low that its role in threonine metabolism in both animals seemed to be negligible. These results suggest that threonine is a ketogenic amino acid in the quail liver, while it is a glucogenic in the rat liver.  相似文献   

4.
The objective of this study was to compare the effect of cholesterol feeding of rats and rabbits. The levels of lipid peroxidation products and oxysterols in the plasma of the two species plus the antioxidant enzyme activities in the liver and erythrocytes were measured to explain their different susceptibilities to atherosclerosis. Our study showed that rats are less susceptible than are rabbits to the atherogenic effect of a cholesterol-rich diet because of differences in lipid peroxidation products as well as antioxidant enzymes activities in their livers. In rabbits, cholesterol feeding produced severe hypercholesterolemia (43-fold increase) and increased plasma and liver lipid peroxidation. Total as well as the individual oxysterol contents of 7alpha-, 7beta-hydroxycholesterol, alpha-epoxy, beta-epoxycholesterol, cholestanetriol, 7-keto, and 27-hydroxycholesterol significantly increased in the plasma of hypercholesterolemic (HC) rabbits. Erythrocyte glutathione peroxidase (GSH-Px) activity significantly decreased whereas catalase activity significantly increased in HC rabbits. In rats cholesterol feeding increased the plasma cholesterol only twofold and had no effect on plasma or liver lipid peroxidation. Only 7alpha- and 7beta-hydroxycholesterol increased and no change was observed in any of the antioxidant enzymes activity in the erythrocytes. Although cholesterol feeding caused a 10-fold increase of liver cholesterol as ester in both rats and rabbits, the antioxidant enzyme GSH-Px and catalase activities in the liver significantly increased in rats but significantly decreased in rabbits. The increase of GSH-Px and catalase activities in the liver of cholesterol fed rats could have a protective role against oxidation, thus preventing the formation of lipid peroxidation and oxysterols.  相似文献   

5.
1. Isoelectric focusing (IEF) and zymogram methods were used to examine the tissue distribution, multiplicity and substrate specificities of alcohol dehydrogenases (ADHs), aldehyde dehydrogenases (ALDHs) and ocular oxidases (EOXs) from mammalian anterior eye tissues. 2. Baboon, cattle, pig and sheep corneal extracts exhibited high ALDH activities; the corneal ALDHs were distinct from the major liver ALDHs and distinguished by their preference for medium-chain aldehydes. 3. Baboon and pig corneal extracts also showed high ADH activities, by comparison with ovine and bovine samples. Moreover, the ADHs were distinct from the major liver isozymes in pI value and substrate specificity. 4. Mammalian lens extracts exhibited significant ALDH activity of a form corresponding to the major liver cytosolic isozyme. Minor activity of the corneal enzyme was also observed in some species. 5. Lens ADH phenotypes were species-specific, and consisted of either Class II activity (baboon and sheep), Class III ADH activity (pig), or activities of both ADH classes (cattle). 6. Lens extracts also exhibited a complex pattern of ocular oxidase (EOX) activities following IEF. 7. A role in peroxidatic aldehyde detoxification is proposed for these enzymes in anterior eye tissues.  相似文献   

6.
The regulation of acid cholesterol ester hydrolase activity by thyroid hormones was studied in subcellular fractions from rat liver, heart, and epididymal fat pads; hydrolase activity was determined at pH 5 with a glycerol-dispersed cholesterol oleate substrate preparation. Acid cholesterol ester hydrolase activity was decreased in liver preparations from thyroidectomized rats relative to activity in livers from euthyroid control rats. Administration of triidothyronine to either euthyroid or hypothyroid (thyroidectomized) rats resulted in an increase in acid cholesterol ester hydrolase activity in liver preparations. Similar effects of thyroidectomy and the administration of triiodothyronine on acid cholesterol ester hydrolase activity were observed with fat pad preparations. In contrast, no effect of thyroid hormones was observed on acid cholesterol ester hydrolase activity in heart. These results suggest that thyroid hormones may regulate the catabolism of serum lipoproteins, in part, by alterations in lysosomal acid cholesterol ester hydrolase activity in liver and epididymal fat pads.  相似文献   

7.
1. 3-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) activities in sheep kidney cortex, rumen epithelium, skeletal muscle, brain, heart and liver were 177, 41, 38, 33, 27 and 17μmol/h per g of tissue respectively, and in rat liver and kidney cortex the values were 1150 and 170 respectively. 2. In sheep liver and kidney cortex the 3-hydroxybutyrate dehydrogenase was located predominantly in the cytosol fractions. In contrast, the enzyme was found in the mitochondria in rat liver and kidney cortex. 3. Laurate, myristate, palmitate and stearate were not oxidized by sheep liver mitochondria, whereas the l-carnitine esters were oxidized at appreciable rates. The free acids were readily oxidized by rat liver mitochondria. 4. During oxidation of palmitoyl-l-carnitine by sheep liver mitochondria, acetoacetate production accounted for 63% of the oxygen uptake. No 3-hydroxybutyrate was formed, even after 10min anaerobic incubation, except when sheep liver cytosol was added. With rat liver mitochondria, half of the preformed acetoacetate was converted into 3-hydroxybutyrate after anaerobic incubation. 5. Measurement of ketone bodies by using specific enzymic methods (Williamson, Mellanby & Krebs, 1962) showed that blood of normal sheep and cattle has a high [3-hydroxybutyrate]/[acetoacetate] ratio, in contrast with that of non-ruminants (rats and pigeons). This ratio in the blood of lambs was similar to that of non-ruminants. The ratio in sheep blood decreased on starvation and rose again on re-feeding. 6. The physiological implications of the low activity of 3-hydroxybutyrate dehydrogenase in sheep liver and the fact that it is found in the cytoplasm in sheep liver and kidney cortex are discussed.  相似文献   

8.
The comparative development of Fascioloides magna in white-tailed deer, cattle and sheep has been studied. Flukes were recovered from 72% of 32 deer administered 40 to 500 metacercariae, from 82% of 11 cattle administered 10 to 500 metacercariae, and from 53% of 15 sheep administered 8 to 200 metacercariae. The percentage recovery of the flukes administered as metacercariae was 4.1% of 6,130 in deer, 5.7% of 2,510 in cattle, and 4.7% of 1,213 in sheep. Flukes were recovered only from livers of infected deer, while in cattle, 1 fluke was also found in the lungs of each of 2 animals. In sheep, all but 10 flukes were recovered from the livers; 6 were found in the lungs and 4 in the abdominal cavities. The black iron porphyrin pigment associated with F. magna infection was found to be most widespread in cattle and sheep, but was also a pathognomonic feature in deer. Growth of the fluke was similar in all 3 host species tested, but eggs were passed only from deer, the normal definitive host. In cattle, the eggs were retained in the liver, and F. magna was lethal to sheep before its own maturity was attained. In cattle and deer, flukes matured approximately 7 months after exposure, but immature migrating flukes were found 12 months after infection and apparently can remain in this retarded state for an undetermined period of time.  相似文献   

9.
Lysosomes prepared from the livers of untreated rats and from the livers of rats injected with either Triton WR-1339 or dextran yielded membranes that were similar in both polypeptide composition and activities of ATPase and acid 5'-nucleotidase. The administration of Triton WR-1339 (and dextran) resulted in an increase in ATPase activity of liver homogenates that was associated with a parallel increase in the ATPase activity of the lysosomal membrane. On the other hand, plasma membranes appear to be different from lysosomal membranes with respect to polypeptide composition and enzyme activities. The ATPase activity of lysosomal membranes is not affected by ouabain and suramin, inhibitors of the plasma-membrane ATPase. The plasma-membrane alkaline 5'-nucleotidase has little activity at acid pH. Pulse-labelling of lysosomal membranes with [3H]fucose and with [3H]- and [14C]-leucine occurred rapidly, faster than labelling of plasma membranes. The labelling kinetics indicate that lysosomal membranes may be assembled independently of plasma membranes. These data suggest that, in liver, little bulk transport of plasma membrane to lysosomes takes place, and lysosomal-membrane proteins may not be derived from those of plasma membranes.  相似文献   

10.
A 6-year (2004-2010) retrospective study was carried out to determine the prevalence of hydatidosis in livestock slaughtered in Mashhad abattoir, Mashhad, in north-eastern Iran and the capital of Khorasan province. Between 20 March 2004 and 19 March 2010, 5,131,485 animals (411,163 cattle; 4,547,618 sheep; 172,704 goats) were slaughtered in the study area and 388,399 (7.5%) livers and 1,139,529 (22.2%) lungs were discarded. Hydatidosis was responsible for 4% and 6.5% of total livers and lungs inspected, respectively. Of the cattle livers and lungs inspected over the survey period, 5.5% and 7.9% were condemned, respectively, because they held hydatid cysts. The corresponding values for livers and lungs of sheep (2%, 4%) and of goats (4.5%, 7.8%), respectively, were also condemned due to hydatidosis. Data showed a prominent seasonal pattern for hydatidosis. Liver condemnations due to hydatidosis were higher in winter and autumn for cattle and sheep, respectively, whereas lung condemnations were higher in summer for sheep and cattle. In goats, liver and lung condemnations were higher in winter. This could be attributed to various factors, such as sources of slaughtered animals, changes in management practice and ecological factors. The present survey provides baseline data for the future monitoring of this potentially important parasitic disease in the region.  相似文献   

11.
1. The activities of hydroxymethylglutaryl-CoA synthase and lyase in rat liver were found to be two- to 15-fold greater than those reported by other authors under similar conditions. 2. When expressed on the basis of body weight, no appreciable differences were found between the activities of hydroxymethylglutaryl-CoA synthase in whole homogenates of livers from normal and starved rats. The synthase activity increased by 70% and 140% in livers of alloxan-diabetic rats and rats fed on a high-fat diet respectively. 3. Hydroxymethylglutaryl-CoA lyase activity showed no significant increases in starvation or alloxan-diabetes, but a 40% increase was found in fat-fed rats. 4. Less than 12% of the activities of both enzymes were found in the cytoplasmic fraction of normal liver. The cytoplasmic activity doubled in alloxan-diabetes and starvation; on feeding with a high-fat diet the increase, though significant, was less marked. 6. The intracellular distribution of glutamate dehydrogenase indicated that the changes in the cytoplasmic activities observed were not due to leakage from the mitochondria. 7. Feeding with a normal or high-fat diet after 48hr. starvation caused within 24hr. a decrease in the cytoplasmic activity of hydroxymethylglutaryl-CoA synthase to values lower than those found in rats fed on a corresponding diet for a longer period of time. 8. Acetoacetyl-CoA deacylase activity in liver was about 20% of that of hydroxymethylglutaryl-CoA synthase and was primarily located in the cytoplasm. Starvation or alloxan-diabetes did not alter the acetoacetyl-CoA deacylase activity. 9. It is concluded that variations in the concentrations of enzymes involved in acetoacetate synthesis play no major role in the regulation of ketone-body formation in starvation and alloxan-diabetes. The changes in the cytoplasmic activities of hydroxymethylglutaryl-CoA synthase and lyase suggest that acetoacetate synthesis can occur in the cytoplasm. This may play a role in the disposal of surplus acetyl-CoA arising in the cytoplasm when lipogenesis is inhibited.  相似文献   

12.
Purified liver lysosomes, prepared from rats previously injected with Triton WR-1339, exhibited sialidase activity towards sialyllactose, fetuin, submaxillary mucin (bovine) and gangliosides, and could be disrupted hypotonically with little loss in these activities. After centrifugation, the activities with sialyllactose and fetuin were largely recovered in the supernatant, demonstrating that they were originally in the intralysosomal space. The activities towards submaxillary mucin and gangliosides, on the other hand, remained in the pellet. In the supernatant, activity with fetuin or orosomucoid was markedly reduced by protease inhibitors, suggesting that proteolysis of these glycoproteins may be prerequisite to sialidase activity. The intralysosomal sialidase was solubilized from the mitochondrial-lysosomal fraction of rat liver and partially purified by Sephadex G-200, or Sephadex G-200 followed by CM-cellulose. The enzyme was maximally active at pH 4.7 with sialyllactose as substrate and had a minimum relative molecular mass of 60 000 +/- 5000 by gel filtration; it hydrolyzed a variety of sialooligosaccharides , those containing (alpha 2----3)sialyl linkages being better substrates than those with (alpha 2----6)sialyl linkages. The enzyme failed to attack submaxillary mucin and gangliosides. It was also inactive towards fetuin, orosomucoid and transferrin but capable of hydrolyzing glycopeptides from pronase digest of fetuin. In contrast to the intralysosomal sialidase, the sialidase partially purified from rat liver cytosol by (NH4)2SO4 fractionation followed by chromatography on DEAE-cellulose and CM-cellulose hydrolyzed fetuin and orosomucoid to the extent about half that for sialyllactose. The enzyme was maximally active at pH 5.8 and had a relative molecular mass of approximately 60 000. It also hydrolyzed gangliosides but not submaxillary mucin.  相似文献   

13.
1. Several pathways of drug metabolizing enzyme activity were measured in hepatic fractions of cattle, sheep, goats, chickens, turkeys, ducks, rabbits and rats. The pathways examined included the O-demethylation of p-nitrophenol, microsomal ester hydrolysis of procaine and glucuronidation of p-nitrophenol, and the cytosolic acetylation of sulfamethazine and sulfation of 2-naphthol. 2. For most enzymatic pathways measured, goats were more similar to sheep (wether) than to cattle (steers). The exception was UDP-glucuronyltransferase activity, which was significantly higher for the goat than for any other species studied. 3. Within the avian subset, the chicken and turkey were usually the most similar species. 4. The activities of arylsulfotransferase isozymes III and IV were particularly low for the duck compared to the chicken and turkey. 5. N-acetyltransferase activity was very high for rabbits and very low for sheep and goats.  相似文献   

14.
Bradykinin (BK) is a potent hepato-portal hypertensive agent although it is efficiently inactivated by the liver. The organ converts angiotensin I to AII, but at a much slower rate than it inactivates BK. We had previously identified EC 3.4.24.15 as an hepatic bradykinin inactivating endopeptidase that hydrolyzes BK at the F5-F6 bond. The aim of this study was to determine the relative importance of BIE, as compared to other kininases, in normal, cirrhotic or inflamed rat livers, as well as in samples of human liver. Using specific substrates and inhibitors we showed that: 1) purified BIE preparation hydrolyzed BK and a BK analogue (BK-Q) with similar efficacy; BK-Q was functionally active since it caused an increase in hepato-portal pressure, as did BK itself. 2) BK degradation in rat serum was performed by ACE since BIE and prolylendopeptidase (PEP) activities were negligible. 3) normal rat liver homogenate contained a large amount of BIE activity which was eliminated by a specific EC 3.4.24.15 inhibitor; ACE and PEP activities were negligible. 4) There was no difference (p>0.05) in BIE activity in the liver homogenates from rats with normal, inflamed or cirrhotic livers. 5) BIE activity was efficiently removed from livers (normal, inflamed or cirrhotic) that were perfused with TritonX-100.6) Human liver had an similar enzymatic pattern although ACE activity was detected. We concluded that in normal, inflamed or cirrhotic rat livers, as well as in the human liver, the bradykinin inactivating endopeptidase (EC 3.4.24.15), and not ACE, is the major hepatic kininase.  相似文献   

15.
To assess whether the synthesis of haem can be studied in small amounts of human liver, we measured kinetics of the conversion of 5-aminolaevulinate into haem and haem precursors in homogenates of human livers. We used methods previously developed in our laboratory for studies of rat and chick-embryo livers [Healey, Bonkowsky, Sinclair & Sinclair (1981) Biochem. J. 198, 595-604]. The maximal rate at which homogenates of human livers converted 5-aminolaevulinate into protoporphyrin was only 26% of that for rat, and 58% of that for chick embryo. In the absence of added Fe2+, homogenates of fresh human liver resembled those of chick embryos in that protoporphyrin and haem accumulated in similar amounts, whereas fresh rat liver homogenate accumulated about twice as much haem as protoporphyrin. However, when Fe2+ (0.25 mM) was added to human liver homogenates, mainly haem accumulated, indicating that the supply of reduced iron limited the activity of haem synthase, the final enzyme in the haem-biosynthesis pathway. Addition of the potent iron chelator desferrioxamine after 30 min of incubation with 5-amino[14C]laevulinate stopped further haem synthesis without affecting synthesis of protoporphyrin. Thus the prelabelled haem was stable after addition of desferrioxamine. Since the conversion of 5-amino[14C]laevulinate into haem and protoporphyrin was carried out at pH 7.4, whereas the pH optimum for rat or bovine hepatic 5-aminolaevulinate dehydratase is about 6.3, we determined kinetic parameters of the human hepatic dehydrase at both pH values. The Vmax was the same at both pH values, whereas the Km was slightly higher at the lower pH. Our results indicate that the synthesis of porphyrins and haem from 5-aminolaevulinate can be studied with the small amounts of human liver obtainable by percutaneous needle biopsy. We discuss the implications of our results in relation to use of rat or chick-embryo livers as experimental models for the biochemical features of human acute porphyria.  相似文献   

16.
Synthesis of phosphoenolpyruvate from propionate in sheep liver   总被引:2,自引:2,他引:0       下载免费PDF全文
1. Utilization of propionate by sheep liver mitochondria was stimulated equally by pyruvate or alpha-oxoglutarate, with formation predominantly of malate. Pyruvate increased conversion of propionate carbon into citrate, whereas alpha-oxoglutarate increased formation of phosphoenolpyruvate. The fraction of metabolized propionate converted into phosphoenolpyruvate was about 17% in the presence or absence of alpha-oxoglutarate and about 7% in the presence of pyruvate. Pyruvate consumption was inhibited by 80% by 5mm-propionate. 2. Compared with rat liver, sheep liver was characterized by very high activities of phosphoenolpyruvate carboxykinase and moderately high activities of aconitase in the mitochondria and by low activities of ;malic' enzyme, pyruvate kinase and lactate dehydrogenase in the cytosol. Activities of phosphoenolpyruvate carboxy-kinase were similar in liver cytosol from rats and sheep. Activities of malate dehydrogenase and NADP-linked isocitrate dehydrogenase in sheep liver were about half those in rat liver. 3. The phosphate-dicarboxylate antiport was active in sheep liver mitochondria, but compared with rat liver mitochondria the citrate-malate antiport showed only low activity and mitochondrial aconitase was relatively inaccessible to external citrate. The rate of swelling of mitochondria induced by phosphate in solutions of ammonium malate was inversely related to the concentration of malate. 4. The results are discussed in relation to gluconeogenesis from propionate in sheep liver. It is proposed that propionate is converted into malate by the mitochondria and the malate is converted into phosphoenolpyruvate by enzymes in the cytosol. In this way sufficient NADH would be generated in the cytosol to convert the phosphoenolpyruvate into glucose.  相似文献   

17.
The highest specific activities and the most complex isoenzyme patterns were found in livers of these species, characteristic isoenzymes were observed also in the core of adrenal glands. In spite of a general resemblance the isoenzyme patterns of liver alcohol dehydrogenase are specific for the species tested; the activities in most organs (and blood sera) increase in the sequence cow, pig and sheep. The activities in foetal bovine organs are substantially lower than those in organs of adult cows, the most pronounced increase in activities during the intrauteral development was observed in liver.  相似文献   

18.
A comparative study of glutamate dehydrogenase (GLDH 1.4.1.2) and glutamine synthetase (GS 6.3.1.2.) activity in liver, kidney and spleen homogenates from cattle, sheep, pigs and chickens showed that chicken liver contained on an average 3.5%, pig liver 8.3% and bovine liver 45.6% of the glutamate dehydrogenase activity present in sheep liver. Relatively low trace activity was found in the spleen and kidneys, except for the renal cortex of cattle (32% of activity in the liver). GS activity was the highest in chicken liver; in pigs it amounted to 33.40%, in cattle to 24.2% and in sheep to 19.7% of this activity. No marked interspecies differences were found in the values in the kidneys and spleen. It can be concluded from the results that the relatively high GLDH activity in the liver of ruminants compared with pigs and chicken is associated with the greater ability of ruminants to utilize ammonia. The higher GS activity and lower GLDH activity in chicken liver can be attributed to higher uric acid synthesis from ammonia via glutamine and purine bases and the lower ability of birds to utilize ammonia for protein synthesis. The presence of alanine dehydrogenase was not demonstrated in chicken liver, where the maximum oxidation of NADH after the addition to pyruvate and ammonia substrate was found.  相似文献   

19.
Rat liver biliverdin reductase was purified from control and bromobenzene-treated rats and was designated as C-BVR-T and B-BVR-T, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the existence of two molecular weight variants (30,100 and 29,800) in C-BVR-T but only one form (30,100) in B-BVR-T. Western immunoblotting confirmed that both molecular weight variants were biliverdin reductase. Nondenaturing electrophoresis separated C-BVR-T and B-BVR-T preparations into groups of four variants, designated as BVR ND1 to ND4. However, the C-BVR-T preparation contained three major forms (BVR ND1, ND2, and ND3) while the B-BVR-T preparation contained two major forms (BVR ND2 and ND3). In vitro treatment of biliverdin reductase preparations with either bromobenzene or dithiothreitol did not interconvert the variants of the enzyme. QAE-Sepharose anion-exchange chromatography was used to isolate the ND2 and ND3 variants for physiochemical analysis. The amino acid composition of the variants was rather similar except for their Tyr content. Also, the peptide maps were similar except for a series of moderately early chromatographic peaks. These findings implied secondary modifications to the protein rather than substantial differences in primary structure. The pH-dependent cofactor requirements for enzyme activity were examined. Both variants exhibited 2 pH optima that were cofactor dependent; maximum activity with NADPH and NADH was observed at pH 8.5 and 6.7, respectively. However, both variants exhibited a higher catalytic rate with NADH than with NADPH at their pH optima. Furthermore, BVR ND3 exhibited a higher catalytic rate than BVR ND2 with either cofactor throughout the pH range 6.5-9.  相似文献   

20.
As a possible mechanism for the absence of mitochondria-bindable hexokinase in the liver, the presence of a protease similar in action to chymotrypsin, which specifically eliminates the binding ability of the bindable hexokinase without changing its catalytic properties, was investigated in rat liver. The lysosomal fraction prepared from the liver converted the bindable hexokinase prepared from rat brain to the nonbindable form with little change in catalytic activity. The activity of such a "processing protease" was much lower in rat brain, where the bindable form is predominant. The processing activity cosedimented with lysosomal marker enzyme activities in the subcellular fractionation of livers from normal and Triton WR-1339-injected rats. A fair portion of the activity was detected in the lysosomes without disruption. The activity was maximal at pH 6.0-7.0, inactivated almost completely by tosylphenylalanine chloromethyl ketone, tosyllysine chloromethyl ketone, leupeptin, antipain, and chymostatin, and dependent on dithiothreitol and mercaptoethanol. These results suggest that a protease, properties of which are fairly similar to those of cathepsin M, may be involved in the post-translational processing of original bindable hexokinase to the nonbindable form in rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号