首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immobilization of Acidithiobacillus ferrooxidans cells on chitosan and cross-linked chitosan beads and the biooxidation of ferrous iron to ferric iron in a packed-bed bioreactor were studied. The biofilm formation was carried out by using a glass column reactor loaded with chitosan or cross-linked chitosan beads and 9 K medium previously inoculated with A. ferrooxidans cells. The immobilization cycles on the carrier matrix with the bioreactor operating in batch mode were compared. Then, the reactor was operated using a continuous flow of 9 K medium at different dilution rates. The results indicate that the packed-bed reactor allowed increasing the flow rate of medium approximately two fold (chitosan) and eight fold (chitosan cross-linked) without cells washout, compared to a free cell suspension reactor used as control, and to reach ferric iron productivities as high as 1100 and 1500 mg l(-1) h(-1) respectively. Scanning electron microscopy micrographs of the beads, infrared spectroscopy and the X-ray diffraction patterns of precipitates on the chitosan beads were also investigated.  相似文献   

2.
Feng S  Xue L  Liu H  Lu P 《Molecular biology reports》2009,36(6):1433-1439
Dunaliella salina has been exploited as a new type of bioreactor due to its unique advantages. However, this bioreactor application was restricted for absence of a high-efficiency and stable transformation method at present. In the present study, the cells of D. salina were transformed by glass beads. The results of histochemical staining revealed that the GUS gene was successfully expressed in the positive transformants, and PCR and PCR-Southern blot analysis further demonstrated that the bar gene was integrated into the D. salina genome. Moreover, the three transformation methods, including glass beads, bombardment particle and electroporation, were compared for screening a high-efficiency transformation method for gene engineering of D. salina. The results showed that transformation efficiency of the glass beads was the highest, approximately 102 transformants/μg DNA. It is concluded that the established glass beads method has been demonstrated to be an optimal transformation way for D. salina.  相似文献   

3.
In this study, we investigated the effects of glass beads and silicone rubbers on the differentiation and morphological changes of A. chrysogenum M35 in submerged culture. Differentiation in the center of the cell pellets was improved by the addition of glass beads or silicone rubbers to the primary medium. The fragmentation rate constant (k(frag)), which is used to estimate the tensile strength of fungal hyphae, was increased by more than 40% in baffled flasks containing glass beads. The maximum fragmentation rate was also increased by 48% when silicone rubbers were added to a 5 L bioreactor containing the culture. During the cultivation in the main medium with 6 glass beads, the value of the fractal dimension increased by about 8% when it was compared with baffled flasks without glass beads. Additionally, the number of arthrospores and the dry cell weight were increased by more than 10% in baffled flasks containing beads. The degree of roundness, which is the ratio of the object area to the longest Feret diameter, was decreased from 0.85 at day 1 to 0.77 at day 5. The differentiation of A. chrysogenum M35 was also supposedly closely related with the enlargement of the cell surfaces. Taken together, these results indicate that complex changes in morphology resulted in increased cell growth and differentiation in the culture broth containing glass beads and silicone rubbers.  相似文献   

4.
Effect of low density particles on the apparent liquid circulation velocity and overall gas holdup was studied in a modified reversed flow jet loop bioreactor. Experiments were conducted using polyurethane beads, polystyrene particles which are comparable to bioparticles found in biological applications and glass beads. Influence of gas and liquid flow rates, draft tube to reactor diameter ratio and solids loading on these hydrodynamic properties were studied. The liquid circulation velocity was found to increase with an increase in liquid flow rate but decrease with an increase in gas flow rate or solids loading. The overall gas holdup increased with an increase in gas or liquid flow rate but decreased with an increase in solids loading. The range of optimum draft tube to reactor diameter ratio was found to be 04–0.5. The results obtained with low density particles were comparatively better than those with glass beads. Correlations were proposed to evaluate liquid circulation velocity and overall gas holdup in terms of operational and geometrical variables.  相似文献   

5.
The effect of the number of stages and cell carrier loading on the steady-state and startup performance of a continuous pulsed plate bioreactor with glass beads as the cell carrier material for biodegradation of phenol in wastewater using immobilized Nocardia hydrocarbonoxydans has been studied. It was found that the performance of the pulsed plate bioreactor during startup and at steady state can be improved by an increase in cell carrier loading, number of stages, total plate stack height, and with a decrease in plate spacing. The startup time for the continuous bioreactor can be decreased by increasing the number of preacclimatization steps for the cells. The attainment of steady effluent phenol concentration can be considered as an indication of steady state of the continuous bioreactor, as when phenol concentration attained a steady value, biofilm thickness, and the attached biomass dry weight also attained a constant value.  相似文献   

6.
Laccase was produced from Streptomyces psammoticus under solid-state fermentation. The enzyme was partially purified by ammonium sulphate precipitation and was immobilized in alginate beads by entrapment method. Calcium alginate beads retained 42.5% laccase activity, while copper alginate beads proved a better support for laccase immobilization by retaining 61% of the activity. Phenol and colour removal from a phenol model solution was carried out using immobilized laccase. Batch experiments were performed using packed bed bioreactor, containing immobilized beads. Reusability of the immobilized matrix was studied for up to 8 successive runs, each run with duration of 6 h. The system removed 72% of the colour and 69.9% of total phenolics from the phenol model solution after the initial run. The immobilized system maintained 50% of its efficiency after eight successive runs. The degradation of phenolic compounds by immobilized laccase was evaluated and confirmed by Thin layer chromatography and nuclear magnetic resonance spectroscopy.  相似文献   

7.
An enzymatic process has been developed for the continuous production of the pharmaceutically important intermediate (R)-1-aminoindan and of the chiral resolving agent (R)-1-(1-naphthyl)ethylamine. The process consists of the subtilisin catalyzed stereoselective aminolysis of the racemic primary amine with an active ester in organic solvent. The competing nonenzymatic reaction has been suppressed by appropriate choice of solvent and reactant's concentration and by minimizing the time of contact between the amine and the active ester. Subtilisin was immobilized on glass beads and the reaction carried out in a continuous-flow column bioreactor. By using a 450-mL column bioreactor containing 5.7 g of subtilisin immobilized on 570 g of glass beads, 1.6 kg of racemic 1-(1-naphthyl)ethylamine was resolved after 320 h of continuous operation with only a slight loss of the enzymatic activity. During the whole process, the optical purity of the chiral amine eluting from the column was higher than 90%. A facile procedure was developed for separating the unreacted (R)-amine from the (S)-amide and for the recycling of the solvent 3-methyl-3-pentanol and the active ester 2,2,2-trifluoroethyl butyrate. (c) 1992 John Wiley & Sons, Inc.  相似文献   

8.
Tse SW  Yu J 《Biofouling》2003,19(4):223-233
Pseudomonas GM3, a highly efficient strain in cleavage of azo bonds of synthetic dyes under anoxic conditions, was immobilized via adsorption on two types of carriers, porous glass beads and solid PVA particles. The cells were cultivated in a nutrient medium, adsorbed on sterile carriers, stabilized as biofilms in repeated batch cultures, and introduced into a chemostat activated sludge reactor for augmented decolourization. The microbial cells were quickly adsorbed and fixed on the PVA surface, compared to a slow and linear immobilization on the glass surface. The porous structure of glass beads provided shelter for the embedded cells, giving a high biomass loading or thick biofilm (13.3 mg VS ml-1 carrier) in comparison with PVA particles (4.8 mg VS ml-1 carrier), but the mass transfer of substrate in the biofilm became a significant limiting factorin the thicker biofilms (effectiveness factor eta = 0.31). The microbial decolourization rate per volume of carriers was 0.15 and 0.17 mg dye ml-1 of glass beads and PVA particles, respectively. In augmented decomposition of a recalcitrant azo dye (60 mg l-1), the immobilized Pseudomonas cells in porous glass beads gave a stable decolourization efficiency (80-81%), but cells fixed on solid PVA particles showed an initial high colour removal of 90% which then declined to a stable removal efficiency of 81%. In both cases, the colour removal efficiency of the chemostat bioreactor was increased from < 10% by an activated sludge to approximately 80% by the augmented system.  相似文献   

9.
Scale-up effects on mass transfer and bioremediation of suspended naphthalene particles have been studied in 20 and 58L bead mill bioreactors and compared to data generated earlier with a laboratory scaled bioreactor. The bead mill bioreactor performance with respect to naphthalene mass transfer rate was dependent on the size and loading of the inert particles, as well as the rotational speed of the roller apparatus. The optimum operating conditions were found to be 15mm glass beads at a loading of 50% (total volume of particles/working volume of bioreactor: v/v%) and a bioreactor rotational speed of 50rpm. The highest naphthalene mass transfer coefficients obtained in the large scale system under these optimum conditions (19.6 and 22.4h(-1) for 20 and 58L vessels, respectively) were higher than those determined previously in a 2.5L bead mill bioreactor (0.7h(-1)). The acute toxicity tests indicated that the bioreactor effluent was less toxic than the untreated naphthalene suspension. Biodegradation rates obtained in these large scale bead mill bioreactors under optimum conditions (36-37.4mgL(-1)h(-1)) were higher than those achieved in the control bioreactors of similar sizes (11.4 and 11.6mgL(-1)h(-1)) but were slower than those previously determined in a 2.5L bead mill bioreactor (59-61.5mgL(-1)h(-1)). The limitation of oxygen in the large scale systems and damage of the bacterial cells due to the crushing effects of the large beads are likely contributing factors in the lower observed biodegradation rates. The optimum conditions with respect to naphthalene mass transfer might not necessarily translate to optimum performance with regard to bioremediation.  相似文献   

10.
The enzymatic production of trehalose from dextrins was studied as a series reaction in a packed bed reactor containing immobilized recombinant Escherichia coli cells, expressing either the Sulfolobus solfataricus (strain MT4) trehalosyl-dextrin forming enzyme (TDFE) or the trehalose-forming enzyme (TFE). The cells, subjected to thermal treatments to increase cell permeability and to inactivate the unwanted host proteins, were entrapped separately or together in a calcium alginate polymeric matrix. The biocatalyst beads were used to pack a tubular glass reactor that was operated in a recycle mode. The performances of a bioreactor containing alternate layers of EcTFE and EcTDFE alginate beads were evaluated and compared with the performance of the co-immobilized biocatalysts. The latter showed a superior throughput, therefore the bioreactor packed with the co-entrapped biocatalysts was tested for the production of trehalose from concentrated dextrin solutions (10%-30% w/v) and a conversion up to 90% was obtained. This conversion corresponded to a production of 127 g trehalose h(-1) kg(-1) of biocatalyst. The results obtained suggest that the bioprocess described may be of interest in the development of a large-scale industrial process for trehalose production at high temperature.  相似文献   

11.
Recently, we reported an improved technology for the degradation of organophosphate nerve agents using whole cells of genetically engineeredEscherichia coli that anchored and displayed the enzyme organophosphorus hydrolase on the cell surface. In this paper we report the immobilization of these cells on highly porous sintered glass beads and the subsequent application of the immobilized cell in a continuous-flow packed bed bioreactor for the biodetoxification of a widely used insecticide, coumaphos.  相似文献   

12.
Sulfate reducing bacteria (SRB) are commonly used in environmental bioprocesses for the treatment of acid mine drainage and sulfate wastewaters. Biogenic H(2)S is also a potential source of H(2) fuel with the recent development of H(2)S splitting technologies. In this study, a sulfate reducing packed bed bioreactor (PBR) capable of rapidly achieving high volumetric productivities was developed using a novel method of rational inoculum design and the selection of improved biomass carrier materials. An inoculum with initial composition of approximately 95% Desulfovibrio desulfuricans (ATCC 7757) and 5% SRB consortium was designed based on the pure strain's superior immobilization potential and the SRB consortium's superior kinetics. Diatomaceous earth (DE) pellets, porous glass beads, polyurethane foam and bone char were evaluated as potential biomass carrier materials. The DE pellets immobilized the most biomass and were employed in two packed bed bioreactor fermentations. Using the designed inoculum and DE pellets, a packed bed bioreactor achieved a volumetric productivity of 493 mol H(2)S m(-3) day(-1) (based on a 308 mL working volume) with a dissolved sulfide concentration of 9.9 mM. This occurred after 8.3 days of operation and represents a tenfold reduction in the start-up period compared to other sulfate reducing PBRs described in the literature.  相似文献   

13.
Siu-Wah Tse  Jian Yu 《Biofouling》2013,29(4):223-233

Pseudomonas GM3, a highly efficient strain in cleavage of azo bonds of synthetic dyes under anoxic conditions, was immobilized via adsorption on two types of carriers, porous glass beads and solid PVA particles. The cells were cultivated in a nutrient medium, adsorbed on sterile carriers, stabilized as biofilms in repeated batch cultures, and introduced into a chemostat activated sludge reactor for augmented decolourization. The microbial cells were quickly adsorbed and fixed on the PVA surface, compared to a slow and linear immobilization on the glass surface. The porous structure of glass beads provided shelter for the embedded cells, giving a high biomass loading or thick biofilm (13.3 mg VS ml?1 carrier) in comparison with PVA particles (4.8 mg VS ml?1 carrier), but the mass transfer of substrate in the biofilm became a significant limiting factor in the thicker biofilms (effectiveness factor η = 0.31). The microbial decolourization rate per volume of carriers was 0.15 and 0.17 mg dye ml?1 of glass beads and PVA particles, respectively. In augmented decomposition of a recalcitrant azo dye (60 mg l?1), the immobilized Pseudomonas cells in porous glass beads gave a stable decolourization efficiency (80 - 81%), but cells fixed on solid PVA particles showed an initial high colour removal of 90% which then declined to a stable removal efficiency of 81%. In both cases, the colour removal efficiency of the chemostat bioreactor was increased from < 10% by an activated sludge to ~80% by the augmented system.  相似文献   

14.
Cells of an aerobic three-membered bacterial co-culture, designated as ECO3, capable of cometabolizing and aerobically dechlorinating low-chlorinated biphenyls in the presence of biphenyl, were immobilized on Manville silica beads, on frosted-glass beads and on polyurethane foam cubes in packed-bed bioreactors continuously fed with a biphenyl-saturated air stream. The ECO3 biofilm reactors were found to be capable of extensively mineralizing several pure dichlorobiphenyls (75 mg/l) and Aroclor 1221 (75 mg/l) in batch mode. Immobilized ECO3 cells could aerobically degrade and dechlorinate the dichlorobiphenyls tested more extensively than suspended ECO3 cells. Among the three biofilm reactors, the glass bead bioreactor and the polyurethane bioreactor exhibited the highest capability of mineralizing both dichlorobiphenyls and Aroclor 1221; the polychlorinated biphenyl availability in the bioreactors, more than the biomass availability, both depending on the nature of the support employed, significantly governed the efficiency of the treatment. These results are of interest for the possible development of a bioreactor system for continuous treatment of polychlorinated-biphenyl-contaminated wastewaters.  相似文献   

15.
In the present paper the effect of adding veratryl alcohol and copper sulphate on laccase activity production by Trametes versicolor immobilized into alginate beads has been investigated. Employing copper sulphate as laccase inducer or supplementing the culture medium with veratryl alcohol, led to maximum values of laccase activity. However, the highest laccase activity (around 4,000 U l−1) was obtained in cultures simultaneously supplemented with copper sulphate (3 mM) and veratryl alcohol (20 mM). These values implied a considerable enhancement in relation to␣control cultures without any inducer (around 200 U l−1). The production of laccase by immobilized T. versicolor in a 2-l airlift bioreactor with the optimized inducer has been evaluated. Laccase activities around 1,500 U l−1 were attained. The bioreactor operated for 44 days without operational problems and the bioparticles (fungus grows in alginate beads) maintained their shape throughout the fermentation. Moreover, the extracellular liquid obtained was studied in terms of pH and temperature activity and stability. On the other hand, anthracene was added in two-repeated batches in order to determine the efficiency of this process to degrade pollutants. Near complete degradation was reached in both batches. Moreover, in vitro degradation of several polycyclic aromatic hydrocarbons by crude laccase was also performed.  相似文献   

16.
Chinese hamster ovary cells (CHO-K1) were cultivated in macroporous gelatin microcarriers (CultiSpher G and CultiSpher S) in spinner flasks and a 5 1 bioreactor. Near-to-confluent cultures were harvested by bead-to-bead transfer where intact microcarriers with cells were transferred from a spinner flask to another spinner flask or to the bioreactor with naked microcarrier beads. Successful bead-to-bead transfer was achieved in various split ratios. The duration of attachment seemed to be important where the direct contact of beads to each other can be achieved by intermittent stirring. Repeated transfers were performed and at least four transfers in spinner flasks were achieved.Two variations of bead-to-bead transfer were performed in the 5 1 bioreactor either by seeding the bioreactor with near-to-confluent beads cultivated in spinner flasks orin situ transfer by adding fresh beads to the bioreactor. As in the spinner case, attachment was achieved by intermittent stirring where donor beads were in close proximity to the acceptor beads. Again successful transfers were obtained as evidenced by the good growth on acceptor beads where cell yields were in the range of 3100–4500 cells/bead.The results suggest that bead-to-bead transfer of CHO-K1 cells can be easily performed and do provide an alternative route to applications where dissolution techniques may not offer an efficient solution.  相似文献   

17.
A new method for the immobilization of microbial cells has been developed. Whole cells of Escherichia coli with aspartase activity were immobilized by capture on the surface of cross-linked poly(N-benzyl-4-vinylpyridinium bromide) containing styrene (BVPS resin), an insoluble pyridinium-type resin. When a suspension of the bacterial cells in buffer solution was passed through a glass column containing beads of BVPS resin, the cells were captured on the resin surface and formed an immobilized cell system. A fixed-bed column reactor containing 300 mg of the bacterial cells immobilized by capture on 10 g of BVPS resin beads was used for the preparation of L-aspartic acid from ammonium fumarate. Continuous operation of tne bioreactor produced L-aspartic acid in a quantitative yield when the influent substrate concentration was 0.1M and the flow rate was 0.41-0.83 bed volumes per hour at pH 7.4-7.7 at 30 degrees C.  相似文献   

18.
The bioproduction of 3-methylcatechol from toluene via Pseudomonas putida MC2 was performed in a solid-liquid two-phase partitioning bioreactor with the intent of increasing yield and productivity over a single-phase system. The solid phase consisted of HYTREL, a thermoplastic polymer that was shown to possess superior affinity for the inhibitory 3-methylcatechol compared to other candidate polymers as well as a number of immiscible organic solvents. Operation of a solid-liquid biotransformation utilizing a 10% (w/w) solid (polymer beads) to liquid phase ratio resulted in the bioproduction of 3-methylcatechol at a rate of 350 mg/L-h, which compares favorably to the single phase productivity of 128 mg/L-h. . HYTREL polymer beads were also reconstituted into polymer sheets, which were placed around the interior circumference of the bioreactor and successfully removed 3-methylcatechol from solution resulting in a rate of 3-methylcatechol production of 343 mg/L-h. Finally, a continuous biotransformation was performed in which culture medium was circulated upwards through an external extraction column containing HYTREL beads. The design maintained sub lethal concentrations of 3-methylcatechol within the bioreactor by absorbing produced 3-methylcatechol into the polymer beads. As 3-methylcatechol concentrations in the aqueous phase approached 500 mg/L the extraction column was replaced (twice) with a fresh column and the process was continued representing a simple and effective approach for the continuous bioproduction of 3-methylcatechol. Recovery of 3-methylcatechol from HYTREL was also achieved by bead desorption into methanol.  相似文献   

19.
In clinical applications, colonization of metal implants by adhesive and biofilm-forming bacteria not only prolong healing but create additional healthcare costs for implant revision and antimicrobial treatment. An in vitro assay was established investigating the antimicrobial surface activity of external fixation pins intended for use in bone fractures and deformities. Test articles made out of stainless steel and coated with a polymer-containing nanoparticulate silver were compared to non-coated reference controls out of stainless steel, copper and titanium. Staphylococcus epidermidis, known as a predominant cause for implant-related infections was used as test organism. Test pins and bacteria were incubated for a period of 20 h found to be sufficient for initiating biofilm formation. After removing non- and low-adherent bacteria by rinsing, two methods were used to isolate high-adherent (sessile) bacteria from the implant surfaces. Besides shaking the implants in a solution containing small glass beads, a cytobrush technique was used to mechanically harvest viable bacteria. Finally, the amount of detached bacteria was determined by plate counts. Several parameters identified to be critical within the different removal procedures such as the inoculum concentration and the shaking time in the presence of glass beads as well as time of the cytobrush treatment were analysed. The final test scheme resulted in the use of an inoculum of 105 colony forming units (CFU) per millilitre, ten rinsing steps for the removal of low adherent bacteria and 5 min of shaking in the presence of glass beads, detaching the high-adherent bacteria. Due to subjective variations impacting the outcome of the procedure, the cytobrush technique was not favoured and finally rejected. Using the in vitro assay developed, it could be demonstrated that fixation pins coated with silver show a 3 log step reduction in the number of biofilm-forming bacteria compared to a non-coated stainless steel or titanium implant. Pins made out of copper showed the highest antimicrobial efficacy, as the number of detached bacteria was found to be below the detection limit, they served as a positive control within this test.  相似文献   

20.
In batch fermentation Leuconostoc mesenteroides immobilized in calcium alginate beads produced a total dextransucrase activity equal to about 93% of that by free, suspended bacterial cells under comparable conditions in a bubble column reactor. Continuous sucrose feeding (5 g/L h) to the immobilized-cell culture in the airlift bioreactor increased production of enzymatic activity by about 107% compared with ordinary batch operation of this reactor. About 14% of the enzymatic activity produced by the immobilized cells appears as soluble activity in the cell-free broth compared with about 40% in case of free cells. In an airlift bioreactor, both the soluble and the intact (sorbed and entrapped) enzymatic activity produced by the immobilized bacterial cells was about 34% greater under automatic pH control, compared to that produced in a bubble column reactor with only manual pH control. During formation of dextran by intact enzyme within cells and beads, declines are observed in apparent enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号