首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Three different bioassay methods to investigate the orientation behaviour of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), to host plant volatiles and a synthetic pheromone (cosmolure+) were compared. A locomotion compensator was used to separately record walking tracks in response to three odour sources. The data show that C. sordidus uses odour‐conditioned anemotaxis in its orientation to the odour sources tested. Of the two olfactometers tested, a dual port olfactometer using a continuous airflow showed stronger discrimination by C. sordidus to the different odours compared with a double pitfall olfactometer. The results of all three bioassays indicate that C. sordidus responds in an additive way to the combination of fermentation plant volatiles and the synthetic pheromone.  相似文献   

2.
Research on bee communication has focused on the ability of the highly social bees, stingless bees (Hymenoptera, Apidae, Meliponini) and honeybees (Apidae, Apini), to communicate food location to nest-mates. Honeybees can communicate food location through the famous waggle dance. Stingless bees are closely related to honeybees and communicate food location through a variety of different mechanisms, many of which are poorly understood. We show that a stingless bee, Trigona hyalinata, uses a pulsed mass-recruitment system that is highly focused in time and space. Foragers produced an ephemeral, polarized, odour trail consisting of mandibular gland secretions. Surprisingly, the odour trail extended only a short distance away from the food source, instead of providing a complete trail between the nest and the food source (as has been described for other stingless bees). This abbreviated trail may represent an intermediate strategy between full-trail marking, found in some stingless bees, and odour marking of the food alone, found in stingless bees and honeybees.  相似文献   

3.
The human olfactory psychophysical literature is rich with anecdotal reports of variation in the perceived quality between weak and strong concentrations of the same odour (Wilson and Stevenson 2006). Psychophysical experiments using animals have also found similar effects of concentration on odour quality. The proboscis extension reflex (PER) is an appetitive Pavlovian conditioning assay that has been used to investigate olfactory stimuli in the honeybee. In this series of experiments I aim to identify the sensitivity of honeybees to changes in odorant concentration across the range of a honeybee’s sensorium (0.01–100 Pa). I compared generalisation to test odours that differed in molecular identity, odour concentration or both and found that large changes in odorant concentration (1,000 fold change) can produce greater shifts in perceptual similarity than a change in the odorant’s molecular structure. Our findings suggest a failure in concentration invariance when identical odours differ greatly in concentration. I also found poorer olfactory sensitivity (between identical odours of differing concentration) and acuity (between novel odours of identical concentration) at low odour concentrations (0.01 Pa).  相似文献   

4.
Solitary bees often form specialised mutualisms with particular plant species, while honeybees are considered to be relatively opportunistic foragers. Thus, it may be expected that solitary bees are more effective pollinators than honeybees when foraging on the same floral resource. To test this, we studied two Wahlenbergia species (Campanulaceae) in South Africa that are visited by both social honeybees and solitary bees, and which are shown here to be genetically self-incompatible and thus reliant on pollinator visits for seed production. Contrary to expectation, the solitary bee Lipotriches sp. (Halictidae) and social bee Apis mellifera (Apidae), which were the two most frequent visitors to flowers of the study species, were equally effective pollinators in terms of the consequences of single visits for fruit and seed set. Both bee species preferentially visited female phase flowers, which contain more nectar than male phase flowers. Male solitary bees of several genera frequently shelter overnight in flowers of both Wahlenbergia species, but temporal exclusion experiments showed that this behaviour makes little contribution to either seed production or pollen dispersal (estimated using a dye particle analogue). Manipulation of flower colour using a sunscreen that removed UV reflectance strongly reduced visits by both bee groups, while neither group responded to Wahlenbergia floral odour cues in choice tests. This study indicates that while flowers of Wahlenbergia cuspidata and W. krebsii are pollinated exclusively by bees, they are not under strong selection to specialise for pollination by any particular group of bees.  相似文献   

5.
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.  相似文献   

6.
When a colony of honeybees relocates to a new nest site, less than 5?% of the bees (the scout bees) know the location of the new nest. Nevertheless, the small minority of informed bees manages to provide guidance to the rest and the entire swarm is able to fly to the new nest intact. The streaker bee hypothesis, one of the several theories proposed to explain the guidance mechanism in bee swarms, seems to be supported by recent experimental observations. The theory suggests that the informed bees make high-speed flights through the swarm in the direction of the new nest, hence conspicuously pointing to the desired direction of travel. This work presents a mathematical model of flight guidance in bee swarms based on the streaker bee hypothesis. Numerical experiments, parameter studies, and comparison with experimental data are presented.  相似文献   

7.
1. Since avoiding predation can compromise animal fitness, prey are expected to respond to different predator species with an intensity appropriate to the level of risk. In fresh waters, the threat of predation is typically assessed by chemical cues, in particular by odours released by either injured/disturbed conspecifics (conspecific alarm odour) or predators (predator odours). Here, we used the most widely distributed crayfish in the world, the invasive North American Procambarus clarkii, to investigate the relative effectiveness of odours emitted by fish predators compared with conspecific alarm odour. We also tested whether P. clarkii is able to discriminate between fish predators of which it has ‘experience’ (either recent, via introduction to the same water body, or old, by sharing a native range), as well as between fish predators that pose low or high risk. 2. The study was carried out on introduced populations of P. clarkii from two sites, characterised by different fish assemblages: the Malewa River (a tributary of Lake Naivasha, Kenya) and Lake Trasimeno (Italy). Laboratory experiments consisted of three sequential phases (‘water’, ‘food’ and ‘smell’ phases) and five treatments. Treatments differed in the odour presented during the smell phase, i.e. no odour (plain water) and odours from either injured conspecifics or three fish species per site. Crayfish from the Malewa River population were confronted with the odours of largemouth bass (Micropterus salmoides), common carp (Cyprinus carpio) and tilapia (Tilapia zillii) (all introduced to Lake Naivasha but absent from the Malewa River), and those from the Lake Trasimeno population with the odours of the introduced largemouth bass and carp and the native chub (Squalius cephalus). Largemouth bass is the only predator that imposes a high risk to crayfish, and it also shares its native range with P. clarkii. We analysed the time spent by crayfish feeding, in locomotion and in adopting a raised or lowered posture. A reduction in the time spent feeding and in locomotion, and an increase in the time spent in the lowered posture were considered to indicate alarm. 3. Crayfish from both populations responded with a more pronounced reduction in feeding to conspecific alarm odour rather than to predator odours. Crayfish from the Malewa River reacted with the same intensity to the odours of the three fish species tested, whereas, in Lake Trasimeno, the odour of largemouth bass was significantly more threatening than the odours of the other two species. 4. Procambarus clarkii seems to perceive a general fish odour that alerts it to possible predation risk without the need of either a direct recent experience or via sharing a common native range. However, where they coexist with fish, crayfish become able to distinguish among species, adapting the intensity of their response to the effective risk. Our results confirm the relatively high learning capacity of P. clarkii reported in previous studies and suggest the existence of mechanisms that make predator recognition particularly efficient in this extraordinarily successful invader.  相似文献   

8.
1. Prior studies suggest that both the mean and variation of worker size predict the performance of bumble bee colonies. The ‘variation hypothesis’ posits that colony performance increases with variation of worker body size due to more efficient division of labour within colonies. The ‘mean size hypothesis’ posits that colony performance increases with mean bumble bee size, as each individual's efficiency tends to increase with body size. 2. The present study tested these non‐mutually exclusive hypotheses by establishing 62 Bombus impatiens Cresson (Hymenoptera, Apidae) nest boxes in 32 semi‐natural savanna fragments within large‐scale experimental landscapes in South Carolina (U.S.A.). 3. Based on measurements of > 24 000 individuals and on colony growth over ~7 weeks, our results support the mean size hypothesis, not the variation hypothesis.  相似文献   

9.
Studies of Varroa destructor orientation to honey bees were undertaken to isolate discrete chemical compounds that elicit host-finding activity. Petri dish bioassays were used to study cues that evoked invasion behaviour into simulated brood cells and a Y-tube olfactometer was used to evaluate varroa orientation to olfactory volatiles. In Petri dish bioassays, mites were highly attracted to live L5 worker larvae and to live and freshly freeze-killed nurse bees. Olfactometer bioassays indicated olfactory orientation to the same type of hosts, however mites were not attracted to the odour produced by live pollen foragers. The odour of forager hexane extracts also interfered with the ability of mites to localize and infest a restrained nurse bee host. Varroa mites oriented to the odour produced by newly emerged bees (<16 h old) when choosing against a clean airstream, however in choices between the odours of newly emerged workers and nurses, mites readily oriented to nurses when newly emerged workers were <3 h old. The odour produced by newly emerged workers 18–20 h of age was equally as attractive to mites as that of nurse bees, suggesting a changing profile of volatiles is produced as newly emerged workers age. Through fractionation and isolation of active components of nurse bee-derived solvent washes, two honey bee Nasonov pheromone components, geraniol and nerolic acid, were shown to confuse mite orientation. We suggest that V. destructor may detect relative concentrations of these compounds in order to discriminate between adult bee hosts, and preferentially parasitize nurse bees over older workers in honey bee colonies. The volatile profile of newly emerged worker bees also may serve as an initial stimulus for mites to disperse before being guided by allomonal cues produced by older workers to locate nurses. Fatty acid esters, previously identified as putative kairomones for varroa, proved to be inactive in both types of bioassays.  相似文献   

10.
We investigated the ability of honeybees, Apis mellifera, to use olfactory information gained in a given experimental context, in other contexts. First, restrained bees were subjected to a Pavlovian associative learning procedure, based on the conditioning of the proboscis extension response (PER), where a floral odour was paired with a sugar reward. We observed the orientation behaviour of conditioned and na?ve bees in a four-armed olfactometer with four contiguous fields either scented with the conditioning odour or unscented. Information transfer was clearly shown, conditioned bees orienting towards the conditioning odour, whilst na?ve bees shunned it. Second, the effect of passive olfactory exposures during the bees' development was assessed in two behavioural contexts: either orientation in the olfactometer or a PER conditioning procedure. Two exposure periods were applied: (1) the pupal stage (9 days before emergence); (2) the early adult stage (8 days after emergence). No effect of preimaginal exposure was recorded, but exposure during the early adult stage induced a higher choice frequency of the odour field in the olfactometer, and lower learning performance in the PER conditioning assay. These observations show that olfactory information gained during development can modify bees' later behaviour in different contexts: this is another instance of olfactory information transfer in bees. These results also suggest that nonassociative learning phenomena, taking place at a critical period during development, might be involved in the maturation of the bees' olfactory system, and in the organization of odour-mediated behaviours. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

11.
Upon capture in a bee ball (i.e., a dense cluster of Japanese honeybees forms in response to a predatory attack), an Asian giant hornet causes a rapid increase in temperature, carbon dioxide (CO?), and humidity. Within five min after capture, the temperature reaches 46°C, and the CO? concentration reaches 4%. Relative humidity gradually rises to 90% or above in 3 to 4 min. The hornet dies within 10 min of its capture in the bee ball. To investigate the effect of temperature, CO?, and humidity on hornet mortality, we determined the lethal temperature of hornets exposed for 10 min to different humidity and CO?/O? (oxygen) levels. In expiratory air (3.7% CO?), the lethal temperature was ≥ 2° lower than that in normal air. The four hornet species used in this experiment died at 44-46°C under these conditions. Hornet death at low temperatures results from an increase in CO? level in bee balls. Japanese honeybees generate heat by intense respiration, as an overwintering strategy, which produces a high CO? and humidity environment and maintains a tighter bee ball. European honeybees are usually killed in the habitat of hornets. In contrast, Japanese honeybees kill hornets without sacrificing themselves by using heat and respiration by-products and forming tight bee balls.  相似文献   

12.
Wild pollinators may benefit Brassica oilseed production in temperate Australia, yet it is not known how the density of potential pollinators varies in these landscapes. In this study we assessed whether the density of feral honeybees, hoverflies (probably 2 species) and native bees (multiple species) in temperate Australian Brassica oilseed crops was related to the composition of the landscape. The density of pollinators was measured at multiple points in six different Brassica oilseed paddocks (20–80 ha) at least 1.75 km apart. Landscape composition at multiple scales (radii 100–2000 m) was determined from GIS layers of Brassica paddocks, woody vegetation and non-woody vegetation, and a derived layer expected to reflect the condition of woody vegetation remnants (the ‘Link’ score). Densities of feral honeybees were higher near the edges of Brassica fields than towards the middle. Densities of feral honeybees were strongly positively associated with the summed ‘Link’ score within 300 m and with the amount of woody vegetation. Densities of native bees and hoverflies were not strongly associated with woody vegetation or with woody vegetation with a high ‘Link’ score. Our results suggest that maximising feral honeybee abundance within paddocks in these landscapes may require smaller paddocks than those typically used, interspersed with habitat beneficial to feral honeybees such as woody vegetation in good condition.  相似文献   

13.
Effects of experience on parasitoid movement in odour plumes   总被引:1,自引:0,他引:1  
Abstract. Insects commonly improve the effectiveness with which they locate biotic resources through learning, but the mechanism by which experience exerts its effects has rarely been studied in detail. The effect of oviposition experience on upwind movement of the eucoilid parasitoid, Leptopilina heterotoma (Thomson) (Hym.: Eucoilidae), in odour plumes of host microhabitats, was quantified with the use of a Kramer-type locomotion compensator. A 2h exposure to host Drosophila melanogaster larvae in either fermenting apple-yeast or decaying mushroom substrate (known to affect their preference for these odours in glasshouse and field choice experiments) had a number of effects on movement in plumes of each substrate. Females experienced with a particular substrate walked faster and straighter, made narrower turns and spent more time in upwind movement (i.e. toward the source) in a plume of odour from that substrate than in odour from an alternative substrate. Inexperienced females, by contrast, generally showed little or no significant difference in responses to alternative odours. In addition to affecting the mean values of movement parameters, experience also affected variability around those means. When walking speed or path straightness in an odour plume was increased by experience, variability among individuals was correspondingly decreased. The consequences of odour learning for microhabitat choice is discussed briefly.  相似文献   

14.
Abstract An air conditioned wind tunnel system was designed, fabricated, and tested to determine whether tethered bees scavenge microbeads or Bacillus subtilis var. niger spores from aerosols. Tests showed that microbeads and spores were scavenged by bumblebees and honeybees, respectively. Five independent variables and their interactions were used in a stepwise multiple regression. Two of them, the cube root of the electrostatic charge on the honeybee and the dose of the spore aerosol, accounted for most of the statistically significant fit to the model's two dependent variables: the percentage of the dose adsorbed by honeybees and the number of spores adsorbed by the same bees. Both dependent variables increased directly so that an increase in electrostatic charge on the bee (i.e., cube root 32 pC) resulted in an increase (i.e., approximately 1%) in the spore dose adsorbed and the number of spores adsorbed by the bees. It was theorized that the spores were in an adsorption/desorption equilibrium that responded to the concentration ``pressure' of the spore aerosol. Further, the charge on the bee affected the adsorption force on the bee's surface, as well as increasing the effective aerosol volume accessible for the bee's scavenging. In short, relating these findings to bees scavenging bacteria from the ambient atmosphere, it appears that the spore exposure (where exposure means the product of the ambient concentration, the time the bee is exposed, and air volume through which the bee flies) controls the number of spores adsorbed by a bee, and the static charge on the bee controls the adsorption/desorption equilibrium and presumably the scavenging volume. Received: 22 November 1999; Accepted: 21 January 2000; Online Publication: 29 May 2000  相似文献   

15.
Upon leaving the nest for the first time, honeybees employ a tripartite orientation/exploration system to gain the requisite knowledge to return to their hive after foraging. Focal exploration comes first- the departing bee turns around to face the return target and oscillates in a lateral flight pattern of increasing amplitude and distance. Thereafter, for the peripheral exploration, the forward flying bee circles the return-goal area with expanding and alternating clockwise and counterclockwise arcs. After this two- part proximal exploration follows distal exploration, the bee flies straight towards her potential distal goal. For the return path, supported by the preceding exploratory learning, the return navigational performance is expected to reflect the three exploratory parts in reverse order. Previously only two performance parts have been experimentally identified: focal navigation and distal navigation. Here we discovered peripheral navigation as being distinct from focal and distal navigation. Like focal navigation, yet unlike distal navigation, peripheral navigation is invariably triggered by local place recognition. Whereas focal navigation (orientation) is close to unidirectional, peripheral navigation makes use of multiple goal-vector knowledge. We term the area in question the Peripheral Correction Area because within it peripheral navigation is triggered, which in turn is capable of correcting errors that accumulated during a preceding distal dead-reckoning based flight.  相似文献   

16.
Hairs on the abdomen of honeybees contain dendrites and a rod and ring structure composed of black particles, presumed to be superparamagnetic (SPM) magnetite. The rod and ring were divided into compartments and each compartment approximated by a dipole. The magnetic fields were calculated at a point P at various locations for a change of the external geomagnetic field from zero to 0.5 G in 0.1 s. The magnetite amplifies the external field at the rod/ring-dendrite interface. The induced electric field and potential difference for a small circular area are in the order of 10–7 V/m and 10–13 V respectively. Mechanisms are proposed for amplifying the electric fields in the dendrite and in an integrating nerve fibre. A hypothesis is developed for associative learning of visual and magnetic stimuli. If magnetic and visual inputs are associated in the ganglion and in the brain, very small changes of either magnetic or visual inputs could be perceived. A bee could sequentially follow the images associated with magnetic gradients on a cloudy day and find the food source.This paper is dedicated to the memory of the late Prof. Dr. W. Reichardt, an outstanding scientist and personality, who will be greatly missed by all who knew him and his work  相似文献   

17.

Background

The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures.

Methodology/Principal Findings

This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees'' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant''s volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants.

Conclusions/Significance

Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees.  相似文献   

18.
Dendrocacalia crepidifolia Nakai (Compositae, Senecioneae), the only species of this arboreal genus endemic to Haha Island in the Bonin Islands, was found to be dioecious. Male flowers differ from female ones in having a stunted style (style in female exserted from corolla and deeply bifurcating) and anthers filled with fertile pollen (anthers in the female lacking pollen). The size of the corolla and number of florets per head were similar between male and female flowers. The crown area of this arboreal species was also similar in male and female plants. The sex ratio was 0.55 male, not significantly different from 0.5. Both sexes produced nectar of similar sugar concentration (ca. 50%). The flowers are pollinated by feral honeybees (Apis mellifera), but they are thought to have been pollinated by small, lesshairy, endemic solitary bees before honeybees were introduced and subsequently became the dominant bee species on the island. The evolution of dioecy ofDendrocacalia on the island is thought to stem from the deleterious effects of inbreeding that are inherent in plants with geitonogamy. The increased geitonogamy on the island has resulted from increased woodiness (i.e., increased number of flowers per plant) and the original dependence on endemic bee pollinators, which are now endangered.  相似文献   

19.
Flowers exhibit symmetrical patterns, and innate preferences for symmetry in pollinators like honeybees are documented. Most previous studies of symmetry preferences in honeybees, Apis mellifera, tested levels of asymmetry using artificial flowers or stimuli. Here we investigated the effect of flower asymmetry on flower preferences of honeybees in a novel approach using real flowers, incorporating their spectral properties and how the receivers process the visual signals. Importantly, we also tested the response of an ‘eavesdropping’ predator, the crab spider Thomisus spectabilis, that also utilizes the same flower to prey on honeybees. Flowers (Chrysanthemum frutescens) were manipulated to contain asymmetrical and symmetrical patterns, excluding olfactory cues. Both crab spiders and honeybees exhibited a significant preference for symmetrical flowers. Moreover, honeybees exhibited a significant preference for radial symmetry over bilateral symmetry, but no corresponding effect was recorded in crab spiders. Further analyses demonstrated that flower reflectance and orientation of the axis of symmetry did not affect crab spider decisions. Field observations on T. spectabilis revealed that the natural variation in C. frutescens symmetry had no effect on the choice of crab spiders. This indicates that spiders and honeybees may use other flower characteristics, for example, olfactory cues, together with flower symmetry, to make their foraging decisions.  相似文献   

20.
Insect olfactory orientation along odour plumes has been studied intensively with respect to pheromonal communication, whereas little knowledge is available on how plant odour plumes (POPs) affect olfactory searching by an insect for its host plants. The primary objective of this review is to examine the role of POPs in the attraction of insects. First, we consider parameters of an odour source and the environment which determine the size, shape and structure of an odour plume, and we apply that knowledge to POPs. Second, we compare characteristics of insect pheromonal plumes and POPs. We propose a ‘POP concept’ for the olfactory orientation of insects to plants. We suggest that: (i) an insect recognises a POP by means of plant volatile components that are encountered in concentrations higher than a threshold detection limit and that occur in a qualitative and quantitative blend indicating a resource; (ii) perception of the fine structure of a POP enables an insect to distinguish a POP from an unspecific odorous background and other interfering plumes; and (iii) an insect can follow several POPs to their sources, and may leave the track of one POP and switch to another one if this conveys a signal with higher reliability or indicates a more suitable resource. The POP concept proposed here may be a useful tool for research in olfactory‐mediated plant–insect interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号