首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Homologous recombination events occurring during meiotic prophase I ensure the proper segregation of homologous chromosomes at the first meiotic division. These events are initiated by programmed double-strand breaks produced by the Spo11 protein and repair of such breaks by homologous recombination requires a strand exchange activity provided by the Rad51 protein. We have recently reported that the absence of AtXrcc3, an ArabidopsisRad51 paralogue, leads to extensive chromosome fragmentation during meiosis, first visible in diplotene of meiotic prophase I. The present study clearly shows that this fragmentation results from un- or mis-repaired AtSpo11-1 induced double-strand breaks and is thus due to a specific defect in the meiotic recombination process.  相似文献   

2.
Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination.  相似文献   

3.
We have taken advantage of the synchrony of meiotic prophase I in Lilium microsporocytes to investigate the presence and involvement in four stages of meiotic prophase I (leptotene, zygotene, pachytene, and diplotene) of the p34cdc2 H1 histone kinase, a component of MPF and a key participant in division control in other eukaryotes. H1 kinase activity showed a peak pattern during meiotic prophase I with the highest kinase activity at pachytene. A monoclonal antibody directed against a highly conserved region of p34cdc2 (termed the 'PSTAIR') recognized three major protein forms by immunoblotting. The highest level of the fastest-migrating form was observed at pachytene, coinciding with the highest activity of H1 kinase. Both the proteins recognized by the anti-PSTAIR antibody and H1 histone kinase activity were retained on beads conjugated with p13suc1, a protein known to physically associate with p34cdc2. These observations suggest that p34cdc2 or protein(s) highly homologous to p34cdc2 is a component of Lilium H1 histone kinase and plays a role in regulating meiotic prophase I.  相似文献   

4.
In the meiotic prophase, programmed DNA double-strand breaks (DSB) are introduced along chromosomes to promote homolog pairing and recombination. Although meiotic DSBs usually occur in nucleosome-depleted, accessible regions of chromatin, their repair by homologous recombination takes place in a nucleosomal environment. Nucleosomes may represent an obstacle for the recombination machinery and their timely eviction and reincorporation into chromatin may influence the outcome of recombination, for instance by stabilizing recombination intermediates. Here we show in budding yeast that nucleosomes flanking a meiotic DSB are transiently lost during recombination, and that specific histone H3 chaperones, CAF-1 and Hir, are mobilized at meiotic DSBs. However, the absence of these chaperones has no effect on meiotic recombination, suggesting that timely histone reincorporation following their eviction has no influence on the recombination outcome, or that redundant pathways are activated. This study is the first example of the involvement of histone H3 chaperones at naturally occurring, developmentally programmed DNA double-strand breaks.  相似文献   

5.
The Saccharomyces cerevisiae zip1 mutant, which exhibits defects in synaptonemal complex formation and meiotic recombination, triggers a checkpoint that causes cells to arrest at the pachytene stage of meiotic prophase. Overproduction of either the meiotic chromosomal protein Red1 or the meiotic kinase Mek1 bypasses this checkpoint, allowing zip1 cells to sporulate. Red1 or Mek1 overproduction also promotes sporulation of other mutants (zip2, dmc1, hop2) that undergo checkpoint-mediated arrest at pachytene. In addition, Red1 overproduction antagonizes interhomolog interactions in the zip1 mutant, substantially decreasing double-strand break formation, meiotic recombination, and homologous chromosome pairing. Mek1 overproduction, in contrast, suppresses checkpoint-induced arrest without significantly decreasing meiotic recombination. Cooverproduction of Red1 and Mek1 fails to bypass the checkpoint; moreover, overproduction of the meiotic chromosomal protein Hop1 blocks the Red1 and Mek1 overproduction phenotypes. These results suggest that meiotic chromosomal proteins function in the signaling of meiotic prophase defects and that the correct stoichiometry of Red1, Mek1, and Hop1 is needed to achieve checkpoint-mediated cell cycle arrest at pachytene.  相似文献   

6.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

7.
AHZ. McKee  N. Kleckner 《Genetics》1997,146(3):817-834
Two new meiosis-specific genes, SAE1 and SAE3, have been identified in a screen for mutations that confer an intermediate block in meiotic prophase. Such mutations confer a block to spore formation that is circumvented by addition of a mutation that eliminates meiotic recombination initiation and other aspects of chromosome metabolism, i.e., spo11. We show that sae1-1 and sae3-1 mutations each confer a distinct defect in meiotic recombination. sae1-1 produces recombinants but very slowly and ultimately to less than half the wild-type level; sae3-1 makes persistent hyper-resected meiotic double-strand breaks and has a severe defect in formation of recombinants. Both mutants arrest at the pachytene stage of meiotic prophase, sae1-1 temporarily and sae3-1 permanently. The phenotypes conferred by sae3-1 are similar to those conferred by mutation of the yeast RecA homologue DMC1, suggesting that SAE3 and DMC1 act at the same step(s) of chromosome metabolism. These results provide further evidence that intermediate blocks to prophase chromosome metabolism cause cell-cycle arrest. SAE1 encodes a 208-residue protein homologous to vertebrate mRNA cap-binding protein 20. SAE3 corresponds to a meiosis-specific RNA encoding an unusually short open reading frame of 50 codons.  相似文献   

8.
Li W  Ma H 《Cell research》2006,16(5):402-412
Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO 11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD5 1, DMC 1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.  相似文献   

9.
During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.  相似文献   

10.
11.

Background

Over the past thirty years several reports of the pairing or association of non-homologous centromeres during meiotic prophase have appeared in the literature. Recently, the homology-independent pairwise association of centromeres, termed centromere coupling, was also reported in budding yeast. It seems paradoxical that centromeres would pair with non-homologous partners during a process intended to align homologous chromosomes, yet the conservation of this phenomenon across a wide range of species suggests it may play an important role in meiosis.

Principal Findings

To better define the role of this phenomenon in budding yeast, experiments were preformed to place centromere coupling within the context of landmark meiotic events. Soon after the initiation of the meiotic program, centromeres were found to re-organize from a single cluster into non-homologous couples. Centromere coupling is detected as soon as chromosome replication is finished and persists while the recombination protein Dmc1 is loaded onto the chromosomes, suggesting that centromere coupling persists through the time of double strand break formation. In the absence of the synaptonemal complex component, Zip1, centromere coupling was undetectable, at all times examined, confirming the essential role of this protein on this process. Finally, the timely release of centromere coupling depends on the recombination-initiating enzyme, Spo11, suggesting a connection between events in homologous pairing/recombination and the regulation of centromere coupling.

Conclusions

Based on our results we propose a role for centromere coupling in blocking interactions between homologous centromeres as recombination initiation is taking place.  相似文献   

12.
13.
D K Bishop  D Park  L Xu  N Kleckner 《Cell》1992,69(3):439-456
DMC1 is a new meiosis-specific yeast gene. Dmc1 protein is structurally similar to bacterial RecA proteins. dmc1 mutants are defective in reciprocal recombination, accumulate double-strand break (DSB) recombination intermediates, fail to form normal synaptonemal complex (SC), and arrest late in meiotic prophase. dmc1 phenotypes are consistent with a functional relationship between Dmc1 and RecA, and thus eukaryotic and prokaryotic mechanisms for homology recognition and strand exchange may be related. dmc1 phenotypes provide further evidence that recombination and SC formation are interrelated processes and are consistent with a requirement for DNA-DNA interactions during SC formation. dmc1 mutations confer prophase arrest. Additional evidence suggests that arrest occurs at a meiosis-specific cell cycle "checkpoint" in response to a primary defect in prophase chromosome metabolism. DMC1 is homologous to yeast's RAD51 gene, supporting the view that mitotic DSB repair has been recruited for use in meiotic chromosome metabolism.  相似文献   

14.
15.
Synaptonemal complex (SC) formation must be regulated to occur only between aligned pairs of homologous chromosomes, ultimately ensuring proper chromosome segregation in meiosis. Here we identify SYP-3, a coiled-coil protein that is required for assembly of the central region of the SC and for restricting its loading to occur only in an appropriate context, forming structures that bridge the axes of paired meiotic chromosomes in Caenorhabditis elegans. We find that inappropriate loading of central region proteins interferes with homolog pairing, likely by triggering a premature change in chromosome configuration during early prophase that terminates the search for homologs. As a result, syp-3 mutants lack chiasmata and exhibit increased chromosome mis-segregation. Altogether, our studies lead us to propose that SYP-3 regulates synapsis along chromosomes, contributing to meiotic progression in early prophase.  相似文献   

16.
Cyclin-dependent kinase directly regulates initiation of meiotic recombination   总被引:11,自引:0,他引:11  
Henderson KA  Kee K  Maleki S  Santini PA  Keeney S 《Cell》2006,125(7):1321-1332
Meiosis is a specialized cell division that halves the genome complement, producing haploid gametes/spores from diploid cells. Proper separation of homologous chromosomes at the first meiotic division requires the production of physical connections (chiasmata) between homologs through recombinational exchange of chromosome arms after sister-chromatid cohesion is established but before chromosome segregation takes place. The events of meiotic prophase must thus occur in a strictly temporal order, but the molecular controls coordinating these events have not been well elucidated. Here, we demonstrate that the budding yeast cyclin-dependent kinase Cdc28 directly regulates the formation of the DNA double-strand breaks that initiate recombination by phosphorylating the Mer2/Rec107 protein and thereby modulating interactions of Mer2 with other proteins required for break formation. We propose that this function of Cdc28 helps to coordinate the events of meiotic prophase with each other and with progression through prophase.  相似文献   

17.
HORMA domain-containing proteins regulate interactions between homologous chromosomes (homologs) during meiosis in a wide range of eukaryotes. We have identified a mouse HORMA domain-containing protein, HORMAD1, and biochemically and cytologically shown it to be associated with the meiotic chromosome axis. HORMAD1 first accumulates on the chromosomes during the leptotene to zygotene stages of meiotic prophase I. As germ cells progress into the pachytene stage, HORMAD1 disappears from the synapsed chromosomal regions. However, once the chromosomes desynapse during the diplotene stage, HORMAD1 again accumulates on the chromosome axis of the desynapsed homologs. HORMAD1 thus preferentially localizes to unsynapsed or desynapsed chromosomal regions during the prophase I stage of meiosis. Analysis of mutant strains lacking different components of the synaptonemal complex (SC) revealed that establishment of the SC is required for the displacement of HORMAD1 from the chromosome axis. Our results therefore strongly suggest that also mammalian cells use a HORMA domain-containing protein as part of a surveillance system that monitors synapsis or other interactions between homologs.  相似文献   

18.
The telomere bouquet, i.e., telomere clustering on the nuclear envelope (NE) during meiotic prophase, is thought to promote homologous chromosome pairing. Using a visual screen, we identified bqt2/im295, a mutant that disrupts telomere clustering in fission yeast. Bqt2p is required for linking telomeres to the meiotic spindle pole body (SPB) but not for attachment of telomeres or the SPB to the NE. Bqt2p is expressed upon pheromone sensing and colocalizes thereafter to Sad1p, an SPB protein. This localization only depends on Bqt1p, not on other identified proteins required for telomere clustering. Upon pheromone sensing, generation of Sad1p foci next to telomeres depends on Bqt2p. However, depletion of Bqt2p from the SPB is dispensable for dissolving the telomere bouquet at the end of meiotic prophase. Therefore, telomere bouquet formation requires Bqt2p as a linking component and is finely regulated during meiotic progression.  相似文献   

19.
Mitra N  Roeder GS 《Genetics》2007,176(2):773-787
During meiotic prophase, assembly of the synaptonemal complex (SC) brings homologous chromosomes into close apposition along their lengths. The Zip1 protein is a major building block of the SC in Saccharomyces cerevisiae. In the absence of Zip1, SC fails to form, cells arrest or delay in meiotic prophase (depending on strain background), and crossing over is reduced. We created a novel allele of ZIP1, zip1-4LA, in which four leucine residues in the central coiled-coil domain have been replaced by alanines. In the zip1-4LA mutant, apparently normal SC assembles with wild-type kinetics; however, crossing over is delayed and decreased compared to wild type. The zip1-4LA mutant undergoes strong checkpoint-induced arrest in meiotic prophase; the defect in cell cycle progression is even more severe than that of the zip1 null mutant. When the zip1-4LA mutation is combined with the pch2 checkpoint mutation, cells sporulate with wild-type efficiency and crossing over occurs at wild-type levels. This result suggests that the zip1-4LA defect in recombination is an indirect consequence of cell cycle arrest. Previous studies have suggested that the Pch2 protein acts in a checkpoint pathway that monitors chromosome synapsis. We hypothesize that the zip1-4LA mutant assembles aberrant SC that triggers the synapsis checkpoint.  相似文献   

20.
Chromosome pairing in meiotic prophase is a prerequisite for the high fidelity of chromosome segregation that haploidizes the genome prior to gamete formation. In the budding yeast Saccharomyces cerevisiae, as in most multicellular eukaryotes, homologous pairing at the cytological level reflects the contemporaneous search for homology at the molecular level, where DNA double-strand broken ends find and interact with templates for repair on homologous chromosomes. Synapsis (synaptonemal complex formation) stabilizes pairing and supports DNA repair. The bouquet stage, where telomeres have formed a transient single cluster early in meiotic prophase, and telomere-promoted rapid meiotic prophase chromosome movements (RPMs) are prominent temporal correlates of pairing and synapsis. The bouquet has long been thought to contribute to the kinetics of pairing, but the individual roles of bouquet and RPMs are difficult to assess because of common dependencies. For example, in budding yeast RPMs and bouquet both require the broadly conserved SUN protein Mps3 as well as Ndj1 and Csm4, which link telomeres to the cytoskeleton through the intact nuclear envelope. We find that mutants in these genes provide a graded series of RPM activity: wild-type>mps3-dCC>mps3-dAR>ndj1Δ>mps3-dNT = csm4Δ. Pairing rates are directly correlated with RPM activity even though only wild-type forms a bouquet, suggesting that RPMs promote homologous pairing directly while the bouquet plays at most a minor role in Saccharomyces cerevisiae. A new collision trap assay demonstrates that RPMs generate homologous and heterologous chromosome collisions in or before the earliest stages of prophase, suggesting that RPMs contribute to pairing by stirring the nuclear contents to aid the recombination-mediated homology search.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号