首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Growth and spore formation of Candida albicans Y-45 was enhanced by low oxygen tension. Mycelium and chlamydospores were abundantly found on rice infusion-Tween 80 agar within 48 to 96 h, and abundant chlamdospore production occurred most rapidly under reduced oxygen tension and incubation at 30 degrees C. Zn, Mg, Mn, anf Fe were tested for their ability to promote filamentation in C. albicans Y-45. Filamentation under conditions of low Mg and high Mn suggested that morphogenesis is possibly correlated with the presence of salts of these heavy metals.  相似文献   

2.
3.
4.
The ability of the human fungal pathogen Candida albicans to reversibly switch between different morphological forms and establish biofilms is crucial for establishing infection. Targeting phenotypic plasticity and biofilm formation in C. albicans represents a new concept for antifungal drug discovery. The present study evaluated the influence of cyclic lipopeptide biosurfactant produced by Bacillus amyloliquefaciens strain AR2 on C. albicans biofilms. The biosurfactant was characterized as a mixture of iturin and fengycin by MALDI-TOF and amino acid analysis. The biosurfactant exhibited concentration dependent growth inhibition and fungicidal activity. The biosurfactant at sub-minimum growth inhibition concentration decreased cell surface hydrophobicity, hindered germ tube formation and reduced the mRNA expression of hyphae-specific gene HWP1 and ALS3 without exhibiting significant growth inhibition. The biosurfactants inhibited biofilm formation in the range of 46–100 % depending upon the concentration and Candida strains. The biosurfactant treatment dislodged 25–100 % of preformed biofilm from polystyrene plates. The biosurfactant retained its antifungal and antibiofilm activity even after exposure to extreme temperature. By virtue of the ability to inhibit germ tube and biofilm formation, two important traits of C. albicans involved in establishing infection, lipopeptides from strain AR2 may represent a potential candidate for developing heat stable anti-Candida drugs.  相似文献   

5.
Temperature markedly affected germination and germ tube length of A. niger. More than 90% of the spores were germinated in the range 30°–34 °C and formed maximum length of germ tubes. At temperatures from 38° to 43 °C, the proportion of the spores that germinated as well as the germ tube length were both gradually decreased. However, at 47°C germ tube formation was completely inhibited up to 15 hrs. after inoculation.High relative humidity was found necessary for the spore germination of A. niger. Germination failed to occur at 76% relative humidity. At 78 and 81% relative humidity germination was detected 15 hrs. after inoculation while at the higher humidities germination was started after 6 hrs. only.Conidiospores of A. niger were very sensitive to changes in the hydrogen ion concentration, pH. Complete inhibition of germination was found at pH less than 3.5. The germination and the length of the formed germ tubes increased with pH to reach their maximum rates at pH 4.5.  相似文献   

6.
7.
Ethanol-induced germ tube formation in Candida albicans   总被引:1,自引:0,他引:1  
Ethanol is the first reported compound which can induce germ tube formation in Candida albicans without the addition of any nitrogen-containing nutrients. Conditions controlling induction of germ tubes in C. albicans by ethanol were investigated. Ethanol (17.1 mM) in buffered salts solution containing sodium bicarbonate induced 70 to 80% of yeast phase cells of C. albicans to form germ tubes. Germ tubes could be induced by ethanol (0.08 to 340 mM) at temperatures ranging from 29 to 41 degrees C (optimum 37 degrees C) and at pH values ranging from 3.0 to 8.0 (optimum 5.75). The germ tubes averaged 11 micron in length after 6 h at 37 degrees C. The percentage of cells forming germ tubes decreased as the concentration of cells in the induction solution was increased above 4 X 10(5) cells ml-1. Germ tubes first appeared 45 to 60 min after continuous exposure to ethanol at 37 degrees C and all cells which formed germ tubes did so by 2 h. Germ tube length decreased as the pH was increased but was independent of the concentration of ethanol. Oxygen was required for germ tube formation. In addition to ethanol, 1-propanol, 2-propanol, 1-butanol and acetic acid could induce germ tube formation, whereas methanol could not. These results indicate that the cells must mobilize their endogenous nitrogen and probably carbohydrate reserves in order to initiate formation of germ tubes. The evidence is inconclusive as to whether ethanol itself must be metabolized for germ tube induction to occur, although it is not thought to act by a nonspecific interaction with the cell membrane.  相似文献   

8.
The supply of acetyl units from the mitochondrion to the cytosol of Candida albicans appears to be dependent only upon the activity of carnitine acetyltransferase (CAT). The enzyme ATP:citrate lyase (ACL), the major source of acetyl units in oleaginous yeasts, is absent from C. albicans in both the mycelial and yeast forms. There appears to be no other active translocation of acetate or acetyl groups except via the action of carnitine acetyltransferase.  相似文献   

9.
10.
Strain differentiation of 66 clinical isolates of Candida albicans obtained from healthy dentate and complete denture wearers was performed. Resistogram method based on differences in the resistance of C. albicans isolates to sodium selenite, boric acid, cetrimide, sodium periodate and silver nitrate was used for strain differentiation. Of the 32 potential strains that can be distinguished, 14 different resistogram strains of C. albicans were found among the 66 isolates tested. Strain-C--was the most predominant (24.3% of total isolates), while strain A-CDE was the least predominant (1.5%). The results showed no particular association of certain strains with Candida infections in complete denture wearers. Sensitivity to antifungal agents showed that isolates from different strains were most sensitive to amphotericin B and nystatin and least sensitive to miconazole.  相似文献   

11.
A variety of manifestations of Candida albicans infections are associated with the formation of biofilms on the surface of biomaterials. Cells in biofilms display phenotypic traits that are dramatically different from their free-floating planktonic counterparts, such as increased resistance to anti-microbial agents and protection form host defenses. Here, we describe the characteristics of C. albicans biofilm development using a 96 well microtitre plate model, microscopic observations and a colorimetric method based on the use of a modified tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide, XTT) to monitor metabolic activities of cells within the biofilm. C. albicans biofilm formation was characterized by initial adherence of yeast cells (0-2 h), followed by germination and micro-colony formation (2-4 h), filamentation (4-6 h), monolayer development (6-8 h), proliferation (8-24 h) and maturation (24-48 h). The XTT-reduction assay showed a linear relationship between cellular density of the biofilm and metabolic activity. Serum and saliva pre-conditioning films increased the initial attachment of C. albicans, but had minimal effect on subsequent biofilm formation. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize C. albicans biofilms. Mature C. albicans biofilms consisted of a dense network of yeasts cells and hyphal elements embedded within exopolymeric material. C. albicans biofilms displayed a complex three dimensional structure which demonstrated spatial heterogeneity and a typical architecture showing microcolonies with ramifying water channels. Antifungal susceptibility testing demonstrated the increased resistance of sessile C. albicans cells against clinically used fluconazole and amphotericin B as compared to their planktonic counterparts.  相似文献   

12.
Multifactorial and multistep alterations are involved in acquired fluconazole (FLC) resistance in Candida albicans. In this study, a FLC-resistant C. albicans strain was obtained by serial cultures of a FLC-susceptible C. albicans strain in incrementally increasing concentrations of FLC. The comparative proteomic study, confirmed by real-time RT-PCR, was performed with the susceptible parental strain and the resistant daughter strain to identify proteins altered during the development of FLC resistance. Our analysis of the differentially expressed proteins identified 22 different proteins, most of which were related to energy metabolisms (e.g., Pgk1, Fba1, and Adh1), and some of which have been previously identified as being involved in FLC resistance in C. albicans (e.g., Ald5, Cdc19, and Gap1). Functional analysis revealed lower intracellular ATP level and mitochondrial membrane potential, less endogenous reactive oxygen species generation in response to antifungal agents, and identical susceptibility to exogenous hydrogen peroxide, heat, and hyperosmotic shock in the resistant strain compared with the susceptible strain. Our results suggest that a metabolism shift might contribute to FLC resistance in C. albicans.  相似文献   

13.
14.
Auger  Pierre  Joly  Jeannine 《Mycopathologia》1977,61(3):183-186
The capacity of Candida albicans to produce germ tubes in a simple medium is analysed as a function of the pH variation, the bacterial supernatant and the addition of differing concentrations of various species of bacteria.  相似文献   

15.
16.
17.
Filament ring formation in the dimorphic yeast Candida albicans   总被引:11,自引:0,他引:11       下载免费PDF全文
Stationary phase cultures of Candida albicans inoculated into fresh medium at 37 degrees C synchronously from buds at pH 4.5 and mycelia at pH 6.5. During bud formation, a filament ring forms just under the plasma membrane at the mother cell-bud junction at roughly the time of evagination. A filament ring also forms in mycelium-forming cells, but it appears later than in a budding cell and it is positioned along the elongating mycelium, on the average 2 microns from the mother cell-mycelium junction. Sections of filament rings in early and late budding cells and in mycelia appear similar. Each contains approximately 11 to 12 filaments equidistant from one another and closely associated with the plasma membrane. In both budding and mycelium-forming cells, the filament ring disappears when the primary septum grows inward. The close temporal and spatial association of the filament ring and the subsequent chitin-containing septum suggests a role for the filament ring in septum formation. In addition, a close temporal correlation is demonstrated between filament ring formation and the time at which cells become committed to bud formation at pH 4.5 and mycelium formation at pH 6.5. The temporal and spatial differences in filament ring formation between the two growth forms also suggest a simple model for the positioning of the filament ring.  相似文献   

18.
Cytoplasmic alkalinization during germ tube formation in Candida albicans   总被引:7,自引:0,他引:7  
Weak acids were used to measure the internal pH of yeast cells of Candida albicans that had been induced to form buds or germ tubes. Under conditions that supported germ tube formation the internal pH rose from around 6.8 to over 8.0 after 30 min in two different induction media. Internal pH measured by 31P NMR confirmed this pattern and also showed that the internal pH fell to around 7.0 prior to the outgrowth of germ tubes. Conditions which led to budding induced less cytoplasmic alkalinization. This alkalinization was brought about when cells were inoculated into media of neutral pH and at an increased temperature. Increasing the temperature of the medium augmented the alkalinization of the cytoplasm induced by raising the external pH. Strains of C. albicans defective in the ability to produce germ tubes did not show this dramatic cytoplasmic alkalinization under conditions which normally supported filamentous growth. The raising of internal pH may be due to the activation of the plasma membrane proton-pumping ATPase since diethylstilboestrol inhibited the cytoplasmic alkalinization and germ tube formation without causing irreversible loss of cell viability. The results show that the induction of the dimorphic transition in this organism is accompanied by a steep rise in internal pH. It is not known whether these changes are the cause or consequence of morphogenesis.  相似文献   

19.
A clinical isolate of Candida albicans, a member of the Fungi Imperfecti, was polyploid as shown by the fact that it contained two kinds of nuclei, one of diploid and one of tetraploid DNA content. These determinations were made by fluorescence microscopy-photometry. The nucleus-associated organelles (NAOs), or spindle pole bodies, of yeast cells in this isolate were classified into two groups, one diploid and the other tetraploid, according to their dimensions as determined by serial thin-sectioning electron microscopy. A ploidy shift from diploid to tetraploid was found in individual cells of a culture of this isolate undergoing diphasic growth in minimal salts medium. A process of shift-down or reduction of ploidy from tetraploid to diploid was also observed by electron microscopy during these growth conditions: this appeared to occur in large cells which showed multiple spindle formation during nuclear division, a phenomenon apparently similar to the process of meiosis II during sporogenesis of Saccharomyces cerevisiae, but differing in that it produces diploid daughter nuclei by the vegetative process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号