首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maize scutellum slices incubated in water utilized sucrose at a maximum rate of 0.12,μmol/min per g fr. wt of slices. When slices were incubated in DNP, there was a three-fold increase in the rate of sucrose utilization. Sucrose breakdown in higher plants can be achieved by pathways starting with either invertase or sucrose synthase (SS). Invertase activity in scutellum homogenates was found only in the cell wall fraction, indicating that SS was responsible for sucrose breakdown in vivo. SS in crude scutellum extracts broke down sucrose to fructose and UDPG at 0.39,μmol/min per g fresh wt of slices. The UDPG formed was not converted to UDP + glucose, UMP + glucose-1-P, UDP + glucose-1-P or broken down by any other means by the crude extract in the absence of PPi. In the presence of PPi, UDPG was broken down by UDPG pyrophosphorylase which had a maximum activity of 26 μmol/min per g fr. wt of slices. Levels of PPi in the scutellum could not be measured using the UDPG pyrophosphorylase: phosphoglucomutase: glucose-6-P dehydrogenase assay because they were too low relative to glucose-6-P which interferes in the assay. An active inorganic pyrophosphatase was present in the scutellum extract which could prevent the accumulation of PPi in the cytoplasm. ATP pyrophosphohydrolase, which hydrolyses ATP to AMP and PPi, was found in the soluble portion of the scutellum extract. The enzyme activity was increased by fructose-2,6-bisP and Ca2+. In the presence of both activators, enzyme activity was 1.1 μmol/min per g fr. wt of slices, a rate sufficient to supply PPi for the breakdown of UDPG. These results indicate that sucrose breakdown in maize scutellum cells occurs via the SS: UDPG pyrophosphorylase pathway.  相似文献   

2.
Net photosynthesis (CER), assimilate-export rate, sucrose-phosphate-synthase (EC 2.4.1.14) activity, fructose-2,6-bisphosphate content, and 6-phosphofructo-2-kinase (EC 2.7.1.105) activity were monitored in leaves of soybean (Glycine max (L.) Merr.) plants during a 12:12 h day-night cycle, and in plants transferred, at regular intervals throughout the diurnal cycle, to an illuminated chamber for 3 h. In the control plants, assimilate-export rate decreased progressively during the day whereas in transferred plants, a strongly rhythmic fluctuation in both CER and export rate was observed over the 24-h test period. Two maxima during the 24-h period for both processes were observed: one when plants were transferred during the middle of the normal light period, and a second when plants were transferred during the middle of the normal dark period. Overall, the results indicated that export rate was correlated positively with photosynthetic rate and sucrose-phosphate-synthase activity, and correlated negatively with fructose-2,6-bisphosphate levels, and that coarse control and fine control of the sucrose-formation pathway are coordinated during the diurnal cycle. Diurnal changes in sucrose-phosphate-synthase activity were not associated with changes in regulatory properties (phosphate inhibition) or substrate affinities. The biochemical basis for the diurnal rhythm in sucrose-phosphate-synthase activity in the soybean leaf thus appears to involve changes in the amount of the enzyme or a post-translational modification that affects only the maximum velocity.Abbreviations FBPase fructose-1,6-bisphosphatase - SPS sucrose-phosphate synthase - F26BPase fructose-2,6-bisphosphatase - PGI glucose-6-phosphate isomerase - F6P fructose-6-phosphate - F26BP fructose-2,6-bisphosphate - G6P glucose-6-phosphate - CER net carbon exchange rate - Pi inorganic phosphate - DHAP dihydroxyacetone phosphate - PGA glycerate 3-phosphate - F6P,2-kinase 6-phosphofructo-2-kinase Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh. Paper No. 10503 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601  相似文献   

3.
The kinetic data on sugarcane (Saccharum spp. hybrids) sucrose synthase (SuSy, UDP-glucose: D-fructose 2-alpha-D-glucosyltransferase, EC 2.4.1.13) are limited. We characterized kinetically a SuSy activity partially purified from sugarcane variety N19 leaf roll tissue. Primary plot analysis and product inhibition studies showed that a compulsory order ternary complex mechanism is followed, with UDP binding first and UDP-glucose dissociating last from the enzyme. Product inhibition studies showed that UDP-glucose is a competitive inhibitor with respect to UDP and a mixed inhibitor with respect to sucrose. Fructose is a mixed inhibitor with regard to both sucrose and UDP. Kinetic constants are as follows: Km values (mm, +/- SE) were, for sucrose, 35.9 +/- 2.3; for UDP, 0.00191 +/- 0.00019; for UDP-glucose, 0.234 +/- 0.025 and for fructose, 6.49 +/- 0.61. values were, for sucrose, 227 mm; for UDP, 0.086 mm; for UDP-glucose, 0.104; and for fructose, 2.23 mm. Replacing estimated kinetic parameters of SuSy in a kinetic model of sucrose accumulation with experimentally determined parameters of the partially purified isoform had significant effects on model outputs, with a 41% increase in sucrose concentration and 7.5-fold reduction in fructose the most notable. Of the metabolites included in the model, fructose concentration was most affected by changes in SuSy activity: doubling and halving of SuSy activity reduced and increased the steady-state fructose concentration by about 42 and 140%, respectively. It is concluded that different isoforms of SuSy could have significant differential effects on metabolite concentrations in vivo, therefore impacting on metabolic regulation.  相似文献   

4.
Barber GA 《Plant physiology》1985,79(4):1127-1128
The equilibrium constant for the reaction catalyzed by sucrose phosphate synthase was reported 25 years ago to be 3250 at pH 7.5. It has been redetermined and found to be about 2 in the direction of synthesis and 6 to 10 when measured in the opposite direction.  相似文献   

5.
1. A substantial increase of the initial rate of ATP hydrolysis was observed after preincubation of bovine heart submitochondrial particles with phosphoenolpyruvate and pyruvate kinase. 2. The activation was accompanied by an increase of Vmax, without change of Km for ATP. 3. The activated particles catalysed the biphasic hydrolysis of ATP in the presence of an ATP-regenerating system; the initial rapid phase was followed by a second, slower, phase in a time-dependent fashion. 4. The higher the ATP concentration used as a substrate, the higher is the rate of transition between these two phases. 5. The particles catalysed the hydrolysis of ITP with a lag phase; after preincubation with phosphoenolpyruvate and pyruvate kinase, ITP was hydrolysed at a constant rate. 6. Qualitatively the same phenomena were observed when soluble mitochondrial ATPase (F1-ATPase) prepared by the conventional method in the presence of ATP was used as nucleotide triphosphatase. 7. A kinetic scheme is proposed, in which the intermediate active enzyme-product complex (E.ADP) formed during ATP hydrolysis is in slow equilibrium with the inactive E*.ADP complex forming as a result of dislocation of ADP from the active site of ATPase to the other site, which is not in rapid equilibrium with the surrounding medium.  相似文献   

6.
Invertases and life beyond sucrose cleavage   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
Isolation and sequencing of tomato fruit sucrose synthase cDNA.   总被引:8,自引:1,他引:7       下载免费PDF全文
F Wang  A G Smith    M L Brenner 《Plant physiology》1993,103(4):1463-1464
  相似文献   

9.
Leucrose formation from sucrose and fructose by dextransucrase is of practical interest. It has been investigated at different experimental conditions, including the influence of temperature on reaction rate and selectivity. Under appropriate conditions high product yield can be obtained. Furthermore, a model is presented that allows interpretation of the experimental data.  相似文献   

10.
11.
12.
Proteolytic degradation of inducible nitric oxide synthase (iNOS or NOS2; EC 1.14.13.39) is one of the key steps by which the synthetic glucocorticoid dexamethasone controls the amount of iNOS protein and thus the production of nitric oxide (NO) in interferon-gamma-stimulated RAW 264.7 cells. In the present study we examined the role of the calmodulin (CaM)-binding site present within iNOS protein for the proteolytic degradation by the calcium-dependent neutral cysteine protease calpain I (EC 3.4.22.17). Using pulse chase experiments as well as cell-free degradation assays we show that the iNOS monomer is a direct substrate for cleavage by calpain I. Two structural determinants are involved in proteolytic cleavage, the canonical CaM-binding domain present at amino acids 501-532 and a conformational determinant located within iNOS. The access of the CaM-binding region appears to be critical for substrate cleavage as incubation of in vitro synthesized iNOS with purified CaM inhibits iNOS degradation by calpain I. Moreover, cytosolic CaM levels are decreased upon treatment of RAW 264.7 cells with dexamethasone as assessed by immunoprecipitation. The data shown herein provide novel insights into the underlying mechanisms involved in the anti-inflammatory actions of glucocorticoids.  相似文献   

13.
Biotin synthase (BioB) catalyzes the insertion of a sulfur atom between the C6 and C9 carbons of dethiobiotin. Reconstituted BioB from Escherichia coli contains a [4Fe-4S](2+/1+) cluster thought to be involved in the reduction and cleavage of S-adenosylmethionine (AdoMet), generating methionine and the reactive 5'-deoxyadenosyl radical responsible for dethiobiotin H-abstraction. Using EPR and M?ssbauer spectroscopy as well as methionine quantitation we demonstrate that the reduced S = 1/2 [4Fe-4S](1+) cluster is indeed capable of injecting one electron into AdoMet, generating one equivalent of both methionine and S = 0 [4Fe-4S](2+) cluster. Dethiobiotin is not required for the reaction. Using site-directed mutagenesis we show also that, among the eight cysteines of BioB, only three (Cys-53, Cys-57, Cys-60) are essential for AdoMet reductive cleavage, suggesting that these cysteines are involved in chelation of the [4Fe-4S](2+/1+) cluster.  相似文献   

14.
Results presented in a previous report from this laboratory indicated the presence, in crude extracts from sycamore (Acer pseudoplatanus) and spinach (Spinacea oleracea), of a sucrose synthase (EC 2.4.1.13) showing high affinity for ADP as the glucose acceptor in the sucrose-cleaving reaction. In the present paper we report that the modified enzymatic method previously used to measure sucrose synthase activities leads to the detection of artifactual ADP-dependent sucrose synthase, which in fact arises from the combined action of invertase (EC 3.2.1.26) and nucleoside diphosphate kinase (EC 2.7.4.6) activities. We also present data on the partial purification of nucleoside diphosphate kinase from sycamore cells.  相似文献   

15.
The in vivo amounts of UDPG, UTP, UDP and UMP, metabolites known to influence the activity of sucrose phosphate synthase (SPS) and sucrose synthase (SS), were measured throughout 5 hr incubations of scutellum slices in fructose or water, i.e. under conditions of sucrose synthesis or breakdown. Cytosolic concentrations were estimated assuming that these metabolites were confined to the cytosol. Within the estimated in vivo concentration ranges, UDPG, UTP and UDP had little effect on the in vitro SS activity, but glucose (100 mM) inhibited SS in the synthesis direction by 63–70% and in the breakdown direction by 86–93%. Glucose inhibition of SS was considerably less when saturating levels of substrates were used. Sucrose did not inhibit SS. It is concluded that during germination the glucose produced from starch breakdown in the maize endosperm enters the scutellum and inhibits SS, preventing a futile cycle and limiting SS participation in sucrose synthesis.  相似文献   

16.
Current concepts of the factors determining sink strength and the subsequent regulation of carbohydrate metabolism in tomato fruit are based upon an understanding of the relative roles of sucrose synthase, sucrose phosphate synthase and invertase, derived from studies in mutants and transformed plants. These enzymes participate in at least four futile cycles that involve sugar transport between the cytosol, vacuole and apoplast. Key reactions are (1) the continuous rapid degradation of sucrose in the cytosol by sucrose synthase (SuSy), (2) sucrose re-synthesis via either SuSy or sucrose phosphate synthase (SPS), (3) sucrose hydrolysis in the vacuole or apoplast by acid invertase, (4) subsequent transport of hexoses to the cytosol where they are once more converted into sucrose, and (5) rapid synthesis and breakdown of starch in the amyloplast. In this way futile cycles of sucrose/hexose interchange govern fruit sugar content and composition. The major function of the high and constant invertase activity in red tomato fruit is, therefore, to maintain high cellular hexose concentrations, the hydrolysis of sucrose in the vacuole and in the intercellular space allowing more efficient storage of sugar in these compartments. Vacuolar sugar storage may be important in sustaining fruit cell growth at times when less sucrose is available for the sink organs because of exhaustion of the carbohydrate pools in source leaves.  相似文献   

17.
Analysis of the sucrose synthase gene family in Arabidopsis   总被引:1,自引:0,他引:1  
The properties and expression patterns of the six isoforms of sucrose synthase in Arabidopsis are described, and their functions are explored through analysis of T-DNA insertion mutants. The isoforms have generally similar kinetic properties. Although there is variation in sensitivity to substrate inhibition by fructose this is unlikely to be of major physiological significance. No two isoforms have the same spatial and temporal expression patterns. Some are highly expressed in specific locations, whereas others are more generally expressed. More than one isoform is expressed in all organs examined. Mutant plants lacking individual isoforms have no obvious growth phenotypes, and are not significantly different from wild-type plants in starch, sugar and cellulose content, seed weight or seed composition under the growth conditions employed. Double mutants lacking the pairs of similar isoforms sus2 and sus3, and sus5 and sus6, are also not significantly different in these respects from wild-type plants. These results are surprising in the light of the marked phenotypes observed when individual isoforms are eliminated in crop plants including pea, maize, potato and cotton. A sus1/sus4 double mutant grows normally in well-aerated conditions, but shows marked growth retardation and accumulation of sugars when roots are subjected to hypoxia. The sucrose synthase activity in roots of this mutant is 3% or less of wild-type activity. Thus under well-aerated conditions sucrose mobilization in the root can proceed almost entirely via invertases without obvious detriment to the plant, but under hypoxia there is a specific requirement for sucrose synthase activity.  相似文献   

18.
The in vivo and in vitro nitrate effects on pea (Pisum sativum L.) sucrose synthase (SS) were studied. At the period of plant transition from heterotrophic to autotrophic nutrition, exogenous nitrate (14.2 mM) absorbed in the form of KNO3 and Ca(NO3)2 during 10–20 days activated SS in the roots by 22–100% as compared with plants grown on nitrogen-free medium. Such effect was observed only at plant growing under high light (natural illumination up to 25 klx) and thus their sufficient supplement with sucrose. Under low light (climate-controlled chamber, 2.5 klx), nitrate could not activate SS. In the in vitro experiments, nitrate activated SS exponentially by a dose-dependent mode with the plateau at 3–5 mM, where its activity was increased by 50%. It is supposed that there is a second constituent in SS activation by nitrate, and it carries information about plant carbohydrate status. Possible mechanisms of nitrate-induced SS activation are discussed.  相似文献   

19.
Sucrose unloading and sink activity were examined in tomato plants (Lycopersicon esculentum) overexpression sucrose phosphate synthase (SPS; EC 2.3.1.14). Like the leaves, the fruit of the transformed tomato plants had elevated (2.4-fold) SPS activity. SPS over-expression in tomato fruit did not significantly change acid invertase, and only slightly reduced ADPglc ppase activity, but enhanced sucrose synthase activity by 27%. More importantly, the amount of sucrose unloaded into the fruit was considerably increased. Using [3H]- (fructosyl)-sucrose in in vitro unloading experiments with harvested 20-d-old fruit, 70% more sucrose was unloaded into the transformed fruits compared to the untransformed controls. Furthermore, the turnover of the sucrose unloaded into the fruit of transformed plants was 60% higher than that observed in the untransformed controls. Taken together, these results demonstrate that SPS overexpression increases the sink strength of transformed tomato fruit.  相似文献   

20.
The relative contributions of invertase and sucrose synthase to initial cleavage of phloem-imported sucrose was calculated for sink leaves of soybean (Glycine max L. Merr cv Wye) and sugar beet (Beta vulgaris L. monohybrid). Invertase from yeast hydrolyzed sucrose 4200 times faster than 1′-deoxy-1′-fluorosucrose (FS) while sucrose cleavage by sucrose synthase from developing soybean leaves proceeded only 3.6 times faster than cleavage of FS. [14C]Sucrose and [14C]FS, used as tracers of sucrose, were transported at identical rates to developing leaves through the phloem. The rate of label incorporation into insoluble products varied with leaf age from 3.4 to 8.0 times faster when [14C]sucrose was supplied than when [14C]FS was supplied. The discrimination in metabolism was related to enzymatic discriminations against FS to calculate the relative contributions of invertase and sucrose synthase to sucrose cleavage. In the youngest soybean leaves measured, 4% of final laminar length (FLL), all cleavage was by sucrose synthase. Invertase contribution to sucrose metabolism was 47% by 7.6% FLL, increased to 54% by 11% FLL, then declined to 42% for the remainder of the import phase. In sugar beet sink leaves at 30% FLL invertase contribution to sucrose metabolism was 58%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号