首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
We studied four monogonont rotifers (Brachionus urceolaris, Floscularia ringens, Hexarthra mira, Notommata glyphura) using two different techniques of microscopy: (1) the presence of filamentous actin was examined using phalloidin-fluorescent labelled specimens and a confocal laser scanning microscope (CLSM); (2) external morphology was investigated using a scanning electron microscope (SEM). B. urceolaris, F. ringens, and N. glyphura showed similar patterns of muscle distribution: a set of longitudinal muscles acting as head and foot retractors, and a set of circular muscles. However, the size and distribution of circular muscles differed among these species. H. mira differed from the other species in that it lacked circular muscles but possessed strong muscles that extended into each arm. The study showed that using both CLSM and SEM provides better resolution of the anatomy and external morphology of rotifers than using one of these techniques alone. This can facilitate better understanding of the complicated anatomy of these animals.  相似文献   

2.
The discovery of this species in plankton samples taken at five stations in the Iguazú River and Uruguay River (in a reservoir and an affluent) is reported. Data on the morphology and measurements of individuals collected are shown. This species had previously been registered in Brazil, South America, where it has dispersed widely. The Iguazú River, tributary of the Paraná River, and the Uruguay River could constitute an important dispersal path from Brazilian territory to aquatic environments of Del Plata basin which contains 85% of the freshwater of Argentina.  相似文献   

3.
Growth hormone (GH, 0.0025 and 0.025 I.U. ml−1) and γ-aminobutyric acid (GABA, 50 μg ml−1) enhance rotifer population growth in batch cultures. In order to further understand the mechanism of their actions, we conducted experiments culturing isolated females at low food and high free ammonia levels. At an optimum food level of 7×106 Nannochloropsis oculata cells ml−1 or at low free ammonia level of 2.4 μg ml−1, the F1 offspring of rotifers treated with GH at 0.0025 I.U. ml−1 had significantly higher population growth rate (r) and net reproduction rate (Ro), and shorter generation time than untreated rotifers. At a lower food level of 7×105 cells ml−1 or at high free ammonia level of 3.1 μg ml−1, rotifers treated with GABA at 50 μg ml−1 had significantly higher r and Ro, and shorter generation time. These results indicate that GABA is effective in enhancing rotifer reproduction when rotifers are cultured under stress whereas GH enhances rotifer reproduction when culture conditions are optimal. Significant effects were also observed in F1 and F2 generations which were not treated with hormones. These data may be useful for treating rotifer mass cultures to mitigate the effects of stress caused by high population densities.  相似文献   

4.
In most populations of the “strumarium” morphological complex of Xanthium strumarium L. (sensu lato) in northern Europe and in India, a new compound, xanthinosin, is the only detectable sesquiterpene lactone. In populations of this morphological complex in Portugal and Egypt as well as in eastern Asia, USSR, Korea, Hong Kong and Taiwan, xanthinin and xanthatin occur as major constituents along with xanthinosin. Experimental F, hybrids between pistillate Indian plants which contained only xanthinosin and staminate plants from Hong Kong which contained a mixture of xanthinin, xanthatin and xanthinosin produced a mixture of compounds in which the percentage of xanthinin increased relative to its percentage in the Hong Kong parent. The sesquiterpenoid data suggest that the various taxa in the “strumarium” morphological complex can be divided into three groups: (a) X. strumarium (sensu stricto) and X. indicum König, containing primarily or exclusively xanthinosin; (b) X. sibiricum Patrin and X. brasilicum Vell., with xanthinin and xanthinosin predominating; and (c) X. inaequilaterum DC., with almost equal proportions of xanthinin, xanthatin and xanthinosin. Two other taxa of the complex. X. japonicum Widd. and X. abyssinicum Wallr., were not available for inclusion in the present study.  相似文献   

5.
6.
Based on the results of a phylogenetic analysis of 16S rRNA and the presence of sphingoglycolipid in cellular lipids of the type strains, transfer of "Rhizomonas" suberifaciens, Blastomonas natatoria and Erythromonas ursincola to the genus Sphingomonas as Sphingomonas suberifaciens (van Bruggen et al 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., and Sphingomonas ursincola (Yurkov et al 1997) comb. nov. are herein proposed together with the emendation of genus Sphingomonas. The type strain of S. suberifaciens is van Bruggen Cal=ATCC 49382=NCPPB 3629=IFO 15211=JCM 8521, that of S. natatoria is ATCC 35951 =DSM 3183=NCIMB 12085=JCM10396, and that of S. ursincola is DSM 9006= KR-99.  相似文献   

7.
8.
Members of the family Brachionidae are free-living organisms that range in size from 170 to 250 microns. They comprise part of the zooplankton in freshwater and marine systems worldwide. Morphologically, members of the family are characterized by a single piece loricated body without furrows, grooves, sulci or dorsal head shields, and a malleate trophi. Differences in these structures have been traditionally used to recognize 217 species that are classified into seven genera. However, the validity of the species, Plationus patulus, P. patulus macracanthus P. polyacanthus, and P. felicitas have been confused because they were alternatively assigned in Brachionus or Platyias, when considering only morphological and ecological characters. Based on scanning electron microscope (SEM) images of the trophi, these taxa were assigned in a new genus, Plationus. In this study, we examined the systematic position of P. patulus and P. patulus macracanthus using DNA sequences of two genes: the cytochrome oxidase subunit 1 (cox1) and domains D2 and D3 of the large subunit of the nuclear ribosomal RNA (LSU). In addition, the cox1 and LSU sequences representing five genera of Brachionidae (Anuraeopsis, Brachionus, Keratella, Plationus, and Platyias) plus four species of three families from the order Ploima were used as the outgroup. The maximum likelihood (ML) analyses were conducted for each individual gene as well as for the combined (cox1 + LSU) data set. The ML tree from the combined data set yielded the family Brachionidae as a monophyletic group with weak bootstrap support (<50%). Five main clades in this tree had high (>85%) bootstrap support. The first clade was composed of three populations of P. patulus + P. patulus macracanthus. The second clade was composed of a single species of Platyias. The third clade was composed of six species of Brachionus. The fourth clade included a single species of the genus Anuraeopsis, and the fifth clade was composed of three species of the genus Keratella. The genetic divergence between Plationus and Platyias ranged from 18.4 to 19.2% for cox1, and from 4.5 to 4.9% for LSU, and between Brachionus and Plationus, it ranged from 16.9 to 23.1% (cox1), and from 7.3 to 9.1% (LSU). Morphological evidence, the amount of genetic divergence, the systematic position of Plationus within the family Brachionidae, and the position of Plationus as a sister group of Brachionus and Platyias support the validity of Plationus patulus and P. patulus macracanthus into the genus Plationus.  相似文献   

9.
Fluorescence-labelled phalloidin in combination with confocal laser scanning microscopy (cLSM) has been used to reconstruct the body musculature in Encentrum mucronatum and Dicranophorus forcipatus in order to gain insight into the architecture of body musculature in representatives of the hitherto uninvestigated Dicranophoridae.

In both species, a system of outer circular and inner longitudinal muscles has been found. In E. mucronatum, seven circular muscles (musculi circulares I–VII) and six paired longitudinal muscles (musculi longitudinales I–VI) have been identified. In D. forcipatus, eight circular muscles (musculi circulares I–VIII) and nine paired longitudinal muscles (musculi longitudinales I–IX) are present. In both species, some of the longitudinal muscles span the whole specimen, while others are shorter and connect head and trunk or foot and trunk. Differences in shape and extension of the circular muscles in both species are related to differences in structure of the trunk integument.

Surveying the literature on rotifer musculature, muscles identified in this study are homologised across Rotifera and given individual names. Based on the study of E. mucronatum and D. forcipatus and previous studies on other rotifers, a system of musculature in the ground pattern of Ploima comprising at least three circular muscles (pars coronalis, corona sphincter, musculus circumpedalis) and three pairs of longitudinal muscles (musculi longitudinales ventrales, musculi longitudinales dorsales and musculi longitudinales capitum) is suggested.  相似文献   


10.
11.
12.
We present 151 SNPs (single nucleotide polymorphisms) identified in Tatra and Alpine chamois individuals after genotyping with the Bovine SNP50 Genotyping BeadChip (Illumina®). Population structure analysis based on the identified 151 SNPs as well as a subset of 48 SNPs were able to give information about geographic origin of each individual making the markers suitable for future evaluation and monitoring of the genetic status of the Tatra and Alpine chamois. Our study demonstrates how it is possible to quickly identify informative SNPs in non-model organisms based on a SNP marker panel created for a related domestic species.  相似文献   

13.
Comprehensive molecular analyses of phylogenetic relationships within euplotid ciliates are relatively rare, and the relationships among some families remain questionable. We performed phylogenetic analyses of the order Euplotida based on new sequences of the gene coding for small-subunit RNA (SSrRNA) from a variety of taxa across the entire order as well as sequences from some of these taxa of other genes (ITS1-5.8S-ITS2 region and histone H4) that have not been included in previous analyses. Phylogenetic trees based on SSrRNA gene sequences constructed with four different methods had a consistent branching pattern that included the following features: (1) the “typical” euplotids comprised a paraphyletic assemblage composed of two divergent clades (family Uronychiidae and families Euplotidae–Certesiidae–Aspidiscidae–Gastrocirrhidae), (2) in the family Uronychiidae, the genera Uronychia and Paradiophrys formed a clearly outlined, well-supported clade that seemed to be rather divergent from Diophrys and Diophryopsis, suggesting that the Diophrys-complex may have had a longer and more separate evolutionary history than previously supposed, (3) inclusion of 12 new SSrRNA sequences in analyses of Euplotidae revealed two new clades of species within the family and cast additional doubt on the present classification of genera within the family, and (4) the intraspecific divergence among five species of Aspidisca was far greater than those of closely related genera. The ITS1-5.8S-ITS2 coding regions and partial histone H4 genes of six morphospecies in the Diophrys-complex were sequenced along with their SSrRNA genes and used to compare phylogenies constructed from single data sets to those constructed from combined sets. Results indicated that combined analyses could be used to construct more reliable, less ambiguous phylogenies of complex groups like the order Euplotida, because they provide a greater amount and diversity of information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号