首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Developing rabbits reutilize the phosphatidylcholine of surfactant with an efficiency of about 95%. The efficiency of reutilization of other components of surfactant have not been determined. 3-day-old rabbits were injected intratracheally with [3H]dipalmitoylphosphatidylcholine (DPPC) mixed with unlabeled natural surfactant and either disaturated [32P]phosphatidylglycerol (DSPG) or [14C]dipalmitoylphosphatidyl-ethanolamine (DPPE). The recovery of [3H]DPPC, [14C]DPPE, and [32P]DSPG in the alveolar wash was measured at different times after injection. By plotting the ratio of [32P]DSPG to [3H]DPPC or [14C]DPPE to [3H]DPPC counts/min in the alveolar wash vs. time after injection we showed that these two phospholipids are reutilized less efficiently than phosphatidylcholine. Based on other studies, several assumptions were made about the kinetics of surfactant phosphatidylethanolamine and phosphatidylglycerol. From the slopes of the semilog plots of total [14C]DPPE and total [32P]DSPG counts/min in the alveolar wash vs. time and these assumptions, we determined that these two phospholipids were reutilized at an efficiency of only 79%.  相似文献   

2.
Reutilization of surfactant phosphatidylcholine in adult rabbits   总被引:5,自引:0,他引:5  
32P-saturated phosphatidylcholine was added to [3H]choline-labeled natural surfactant and the mixture was injected intratracheally into 87 adult rabbits. The rabbits were also given [14C]palmitate intravenously at the same time. Rabbits were killed in groups from 10 min to 72 h after injection. In each rabbit we measured the total recovered [3H]phosphatidylcholine (PC) in the alveolar wash, the ratio of [3H]PC to [32P]PC in the alveolar wash, and the specific activity of [14C]PC in the alveolar wash and lamellar bodies. Values were averaged for all rabbits killed at the same times and smooth curves were fit to the data by computer. From the intravenous [14C]palmitate data we calculated a turnover time for alveolar PC of 6.0 h. From the intratracheal labeling data, we calculated a turnover time for alveolar PC of 5.7 h and determined that alveolar PC was reutilized at an efficiency of only 23%. We also concluded that this reutilization occurred as intact molecules.  相似文献   

3.
Tracer quantities of 3H-labeled lysoPC and 32P-labeled natural rabbit surfactant were given intratracheally via a bronchoscope and [14C]palmitate was given intravenously to 25 rabbits with labeled PC and lysoPC measured in the alveolar wash, lung homogenate, lamellar bodies and microsomes at five times from 10 min to 6 h after tracheal injection. Surprisingly, only 31% of the administered lysoPC remained in its original form in the total lungs (alveolar wash + lung homogenate) by 10 min, of which 77% was in the alveolar wash. Meanwhile, by 10 min an additional 37% was already converted to PC, of which more than 98% was in the lung homogenate. LysoPC continued to be rapidly and efficiently converted to PC, with 62% conversion measured at 3 h. The converted lysoPC initially appeared with high specific activity in microsomes, then in lamellar bodies, and finally in the alveolar wash. The intravascular palmitate labeled lung PC had similar specific activity-time profiles in the subcellular fractions, while intratracheally administered natural rabbit surfactant had a constantly low specific activity in microsomes and much higher specific activities in lamellar bodies and alveolar wash. Another 25 rabbits received intratracheal lysoPC labeled in both the choline and palmitate moieties and then were studied from 1 to 24 h after tracheal injection. The ratio of the palmitate to choline labels indicated uptake and conversion to PC primarily by direct acylation rather than transacylation and by intact reuptake and conversion rather than breakdown and resynthesis. LysoPC is an attractive 'metabolic probe' of surfactant metabolism which undergoes very rapid and efficient intracellular conversion to PC via a subcellular pathway that parallels the remodeling and de novo synthetic pathways.  相似文献   

4.
Twenty-five adult rabbits were each injected intratracheally with a solution containing 1-palmitoyl-2-[3H]palmitoyl phosphatidylcholine (DPPC) and 1-palmitoyl-2-[14C]oleoyl-PC that had been associated with with 32P-labeled natural rabbit surfactant. The animals were killed in groups of 5 at 1, 4, 8, 15 and 24 h after isotope injection. Isotope recovery and PC specific activities were measured in alveolar washes, lung homogenates, lamellar bodies and microsomes. The percent clearance per h of PC was very similar for the three labels and were; 3.56, 3.44 and 3.00%, respectively, for the 3H-, 14C- and 32P-labeled PC in the total lung (alveolar wash plus lung homogenate) and 3.84, 3.79 and 3.70%, respectively, for alveolar wash alone. The intracellular pathways of the three labels were assessed by comparing the specific activities in the lamellar bodies over 24 h as well as comparing the ratios of lamellar body to microsome specific activities over this period. These ratios were very similar for the monoenoic and saturated PC labels over time, indicating comparable recycling. In a separate experiment, three other unsaturated species; 1,2-[14C]dioleoyl-PC, 1-palmitoyl-2-[14C]linoleoyl-PC, and 1-palmitoyl-2-[14C]arachidonyl-PC were compared to 1-palmitoyl-2-[14C]oleoyl-PC. Recovery in the alveolar wash and total lung were similar at 16 h for all four labeled phospholipids. The intracellular pathways were also similar, except for the arachidonyl compound. More relative to the lamellar bodies as compared to the other. Thus, the catabolic pathways were similar for the saturated and unsaturated PC species initially present in the airspaces. The only metabolic difference between the compounds appears to be in the intracellular handling of the arachidonic species.  相似文献   

5.
The significance of reutilization of surfactant phosphatidylcholine   总被引:8,自引:0,他引:8  
To assess the magnitude of reutilization of surfactant phosphatidylcholine, 68 3-day-old rabbits were injected intratracheally with a trace dose of [3H]choline-labeled surfactant mixed with [14C]palmitate-labeled synthetic dipalmitoylphosphatidylcholine. After timed kills we measured the total phosphatidylcholine associated counts/min in whole lung and alveolar wash and the specific activities of phosphatidylcholine in the alveolar wash, lamellar bodies, and microsomes isolated from the lung of each rabbit. Using a modification of the compartment analysis of Skinner et al. (Skinner, S. M., Clark, R. E., Baker, N., and Shipley, R. A. (1959) Am. J. Physiol. 196, 238-244), we found that surfactant phosphatidylcholine was reutilized with greater than 90% efficiency. The turnover time of the alveolar wash phosphatidylcholine was estimated to be 10.1 h and 9.3 h as measured by the 3H and 14C labels, respectively. From the ratios of alveolar wash-associated natural to synthetic phosphatidylcholine specific activities and from similar ratios obtained in 30 additional rabbits using [14C]choline-labeled natural surfactant and [3H]choline-labeled dipalmitoylphosphatidylcholine, we showed that phosphatidylcholine was reutilized intact rather than as component parts. Within 6 h of injection, the synthetic dipalmitoylphosphatidylcholine functioned metabolically as that administered in the form of natural surfactant.  相似文献   

6.
Intrapulmonary surfactant catabolism was investigated by use of a phospholipase A1- and A2-resistant analogue of dipalmitoylphosphatidylcholine (DPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPC ether). [14C]DPC ether, made into liposomes with [3H]DPC and associated with 32P-labeled rabbit surfactant, was given intratracheally to 1-kg rabbits, which were killed at preset times to 48 h. Recoveries of radiolabel as saturated phosphatidylcholine (Sat PC) isolated from alveolar wash (AW), postlavage lung homogenate (LH), and alveolar macrophages were measured. All groups had similar AW and LH Sat PC pool sizes, indicating no perturbation of endogenous Sat PC pools. Despite a nearly fivefold accumulation of [14C]DPC ether in the lung by 48 h (P less than 0.01), the three probes had similar alveolar clearance curves. Furthermore, the Sat PC reutilization efficiency (41.6%) and turnover time (5.9 h) calculated for DPC ether were not different from values for the DPC and rabbit surfactant. Of the DPC ether (0.7%) and DPC (9%) labels recovered as PC in organs outside the lung, greater than 85% was unsaturated, indicating de novo synthesis using precursors from degraded PC. DPC ether was a useful probe of intrapulmonary DPC catabolism, and after alveolar uptake there was no direct reentry of intact DPC from the catabolic compartment(s) into the secretory pathway.  相似文献   

7.
Lung surfactant dipalmitoylphosphatidylcholine (DPPC) is endocytosed by alveolar epithelial cells and degraded by lysosomal-type phospholipase A2 (aiPLA2). This enzyme is identical to peroxiredoxin 6 (Prdx6), a bifunctional protein with PLA2 and GSH peroxidase activities. Lung phospholipid was studied in Prdx6 knockout (Prdx6-/-) mice. The normalized content of total phospholipid, phosphatidylcholine (PC), and disaturated phosphatidylcholine (DSPC) in bronchoalveolar lavage fluid, lung lamellar bodies, and lung homogenate was unchanged with age in wild-type mice but increased progressively in Prdx6-/- animals. Degradation of internalized [3H]DPPC in isolated mouse lungs after endotracheal instillation of unilamellar liposomes labeled with [3H]DPPC was significantly decreased at 2 h in Prdx6-/- mice (13.6 +/- 0.3% vs. 26.8 +/- 0.8% in the wild type), reflected by decreased dpm in the lysophosphatidylcholine and the unsaturated PC fractions. Incorporation of [14C]palmitate into DSPC at 24 h after intravenous injection was decreased by 73% in lamellar bodies and by 54% in alveolar lavage surfactant in Prdx6-/- mice, whereas incorporation of [3H]choline was decreased only slightly. Phospholipid metabolism in Prdx6-/- lungs was similar to that in wild-type lungs treated with MJ33, an inhibitor of aiPLA2 activity. These results confirm an important role for Prdx6 in lung surfactant DPPC degradation and synthesis by the reacylation pathway.  相似文献   

8.
In whole animal studies, it has been shown that turnover of surfactant dipalmitoylphosphatidylglycerol (DPPG) is faster than that of dipalmitoylphosphatidylcholine (DPPC). The goal of this investigation was to characterize the metabolism of DPPG by alveolar macrophages and to determine whether they contribute to the faster alveolar clearance of DPPG. Isolated rat alveolar macrophages were incubated with liposomes colabeled with [(3)H]DPPG and [(14)C]DPPC. Macrophages internalized both lipids in a time- and temperature-dependent manner. The uptake of both lipids was increased by surfactant protein (SP) A and by adherence of the macrophages to plastic slides. The isotope ratio of DPPC to DPPG internalized by macrophages in suspension in the absence of SP-A was significantly lower than the isotope ratio in liposomes, suggesting that macrophages preferentially internalize DPPG when SP-A is absent. Phospholipase activity in macrophage homogenate was higher toward sn-2-labeled DPPG than toward sn-2-labeled DPPC. These studies show that alveolar macrophages play an important role in catabolizing surfactant lipids and may be partially responsible for the relatively faster clearance of DPPG from the lung.  相似文献   

9.
Lung injury was induced in rabbits with N-nitroso-N-methylurethane (NNNMU), and saturated phosphatidylcholine (Sat PC) pool sizes and phospholipid compositions were measured in alveolar wash subfractions isolated by differential centrifugation (large and small surfactant aggregates). Surfactant metabolism also was studied using intravascular and intratracheal radiolabels. Protein permeability, gas exchange, and compliance were significantly abnormal as lung injury progressed. At peak injury, there was a decrease in the large aggregate Sat PC pool size in alveolar wash accompanied by increased uptake of Sat PC from the air space and increased specific activity of both intravascular and intratracheal radiolabels in lamellar bodies. This was followed by a marked rise in the small aggregate pool size in the alveolar wash and increased secretion of Sat PC into the air spaces. Phospholipid compositions, total phospholipid-to-protein ratios, and in vivo functional studies using a preterm ventilated rabbit model were abnormal for both large and small aggregate surfactant fractions from the lung-injured rabbits. These studies characterize quantitative, qualitative, and functional changes of alveolar wash surfactant subfractions in NNNMU-injured lungs.  相似文献   

10.
Pulmonary surfactant is a lipid:protein complex containing dipalmitoyl-phosphatidylcholine (DPPC) as the major component. Recent studies indicate adsorbed surfactant films consist of a surface monolayer and a monolayer-associated reservoir. It has been hypothesized that the monolayer and its functionally contiguous reservoir may be enriched in DPPC relative to bulk phase surfactant. We investigated the compositional relationship between the monolayer and its reservoir using paper-supported wet bridges to transfer films from adsorbing dishes to clean surfaces on spreading dishes. Spreading films appear to form monolayers in the spreading dishes. We employed bovine lipid extract surfactant [BLES(chol)] containing [3H]DPPC and either [14C]palmitoyl, oleoyl-phosphatidylcholine (POPC), [14C]dipalmitoyl-phosphatidylglycerol (DPPG), [14C]palmitoyl, oleoyl-phosphatidylglycerol (POPG), or [14C]cholesterol. Radiolabeled phosphatidylglycerols were prepared using phospholipase D. The studies demonstrated that the [3H]DPPC-[14C] POPC ratios were the same in the prepared BLES dispersions as in Langmuir-Blodgett films, indicating a lack of DPPC selectivity during film formation. Furthermore, identical 3H-14C isotopic ratios were observed with DPPC and either 14C-labeled POPC, DPPG, POPG, or cholesterol in the original dispersions, the bulk phases in adsorption dish D1, and monolayers recovered from spreading dish D2. These relationships remained unperturbed with 2-fold increases in bulk concentrations in D1 and 10-fold variations in D1-D2 surface area. These results indicate adsorbed surfactant monolayers and their associated reservoirs possess similar lipid compositions and argue against selective adsorption of DPPC.  相似文献   

11.
Although alveolar surfactant is rapidly catabolized in adult rabbit lungs, the pathways have not been characterized. Pathways of surfactant secretion and recycling involve lamellar bodies and multivesicular bodies, organelles shown to be related to lysosomes by cytochemistry and autoradiography. Since lysosomes are central to intracellular catabolic events, it is possible that lysosomes are involved in intrapulmonary surfactant catabolism. Lysosomes relatively free of contaminating organelles (as determined morphologically and by marker enzymes for mitochondria, endoplasmic reticulum, peroxisomes, and plasma membranes) were obtained from post-lavage lung homogenates of 1-kg rabbits by differential centrifugation in buffered sucrose and gradient separation in percoll (density, 1.075-1.165). The role of lung lysosomes in catabolism of dipalmitoylphosphatidylcholine (DPC) was then studied in rabbits killed 4, 12, and 24 h following intratracheal injection of [3H]DPC and [14C] dihexadecyl phosphatidylcholine (DPC-ether). While equal amounts of label were in the lamellar body containing fractions at 4 h, nearly 6-fold more DPC-ether label than DPC label was recovered in the lysosomal fractions. By 24 h, there was 15-fold more DPC-ether in the lysosomes. This is the first report of successful isolation of lysosomes relatively free of other organelles from rabbit lungs. The tracer studies indicate DPC and DPC-ether follow similar intracellular processing after alveolar uptake. The subsequent accumulation of the ether analog in the lysosomal fractions supports a role for these organelles in surfactant DPC catabolism.  相似文献   

12.
Lamellar inclusion bodies in the type II alveolar epithelial cell are believed to be involved in pulmonary surfactant production. However, it is not clear whether their role is that of synthesis, storage, or secretion. We have examined the phospholipid composition and fatty acid content of rabbit lung wash, lamellar bodies, mitochondria, and microsomes. Phosphatidylcholine and phosphatidylglycerol, the surface-active components of pulmonary surfactant, accounted for over 80% of the total phospholipid in lung wash and lamellar bodies but for only about 50% in mitochondria and microsomes. Phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and sphingomyelin accounted for over 40% of the total in mitochondria and microsomes but for only 6% in lung wash and 15% in lamellar bodies. The fatty acid composition of lamellar body phosphatidylcholine was similar to that of lung wash, but different from that of mitochondria and microsomes, in containing palmitic acid as a major component with little stearic acid and few fatty acids of chain length greater than 18 carbon atoms. The biosynthesis of phosphatidylcholine and phosphatidylglycerol was examined in the mitochondrial, microsomal, and lamellar body fractions from rat lung. Cholinephosphotransferase was largely microsomal. The activity in the lamellar body fraction could be attributed to microsomal contamination. The activity of glycerolphosphate phosphatidyltransferase, however, was high in the lamellar body fraction, although it was highest in the mitochondria and was also active in the microsomes. These data suggest that the lamellar bodies are involved both in the storage of the lipid components of surfactant and in the synthesis of at least one of those components, phosphatidylglycerol.  相似文献   

13.
Phosphatidyl glycerol is present in lamellar bodies and in the material obtained by alveolar wash representing 12.3 and 11.5%, respectively, of the total phospholipid phosphorus. Lung microsomes catalyze the formation of phosphatidyl glycerol from the known precursors, L-glycerol 3-phosphate and CDP-diglyceride. The rate of [14C]L-glycerol 3-phosphate incorporation into phosphatidyl glycerol was 30% higher in microsomes as compared to mitochondria. The addition of mercuric chloride inhibited the synthesis of phosphatidyl glycerol, and stimulated the incorporation into another as yet incompletely identified lipid. After pulse labeling of microsomal phosphatidyl glycerol in vitro, further incubation of microsomes with lamellar bodies or alveolar wash resulted in nearly quantitative appearance of label in surfactant.  相似文献   

14.
Type II alveolar epithelia produce, store and secrete pulmonary surfactant, a phospholipid and protein mixture which stabilizes alveoli at low lung volumes and, thereby, prevents alveolar collapse. We determined the developmental changes in the uptake, metabolism and reutilization of surfactant-related phospholipid in primary cultures of type II cells derived from fetal rat lung. Primary cultures of fetal and neonatal type II cells were incubated in media containing labelled liposomes. After the incubation phospholipids were extracted from the cells and uptake of label was analyzed. Re-uptake of radiolabelled dipalmitoyl phosphatidylcholine (DPPC) was concentration-dependent in undifferentiated fetal cells, differentiated fetal cells and neonatal cells. Re-uptake of DPPC by undifferentiated fetal cells was lower than re-uptake by both differentiated fetal and neonatal cells at 15 and 75 μM PC. Binding of DPPC to the cell surface involved a protein interaction, since trypsin was able to dissociate this trypsin-releasable fraction from internalized label. Undifferentiated fetal, differentiated fetal and neonatal cells all exhibited approx. 50% metabolic degradation of internalized phospholipid. Degraded lipids were reutilized in the synthesis of phosphatidylglycerol, but neonatal cells resynthesized twice as much phosphatidylglycerol as did undifferentiated fetal cells. These are the first studies which show that morphologically undifferentiated fetal type II cells are capable of the uptake of surfactant phospholipid as well as the degradation and reutilization of internalized phospholipid. Re-uptake, degradation and reutilization of internalized phospholipid appear to be under developmental control.  相似文献   

15.
Pulmonary surfactant, a lipid-protein complex, secreted into the fluid lining of lungs prevents alveolar collapse at low lung volumes. Pulmonary surfactant protein C (SP-C), an acylated, hydrophobic, alpha-helical peptide, enhances the surface activity of pulmonary surfactant lipids. Fluorescein-labeled SP-C (F-SP-C) (3, 6, 12 wt%) in dipalmitoylphosphatidylcholine (DPPC), and DPPC:dipalmitoylphosphatidylglycerol (DPPG) [DPPC:DPPG 7:3 mol/mol] in spread monolayers was studied by epifluorescence microscopy. Mass spectometry of F-SP-C indicated that the protein is partially deacylated and labeled with 1 mol fluorescein/1 mol protein. The protein partitioned into the fluid, or liquid expanded, phase. Increasing amounts of F-SP-C in DPPC or DPPC:DPPG monolayers decreased the size and total amounts of the condensed phase at all surface pressures. Calcium (1.6 mM) increased the amount of the condensed phase in monolayers of DPPC:DPPG but not of DPPC alone, and such monolayers were also perturbed by F-SP-C. The study indicates that SP-C perturbs the packing of neutral and anionic phospholipid monolayers even when the latter systems are condensed by calcium, indicating that interactions between SP-C and the lipids are predominantly hydrophobic in nature.  相似文献   

16.
It is not yet completely understood how a cell is able to export specific phospholipids, like dipalmitoylphosphatidylcholine (dipalmitoyl-PC), which is secreted by pneumocytes type II, into pulmonary surfactant. The acyl species composition of [3H]PC which was synthesized in type II cells in the presence of [2-3H]glycerol resembled the species composition of PC localized in intracellular pneumocyte membranes. This species pattern was different from the pattern of PC of lamellar bodies, i.e., intracellularly stored surfactant, by a higher proportion of dipalmitoyl-PC mainly at expense of 1-palmitoyl-2-oleoyl-PC. Lamellar body PC in turn showed the same species distribution as surfactant PC. The data suggest that subcellular compartmentation and/or intracellular transfer of PC destined to storage in lamellar bodies, but not secretion of lamellar bodies, involves an enrichment of dipalmitoyl-PC and a depletion of 1-palmitoyl-2-oleoyl-PC. In contrast, the acyl species pattern of phosphatidylglycerol does not seem to undergo gross changes on the path from synthesis to secretion.  相似文献   

17.
Lamellar bodies and alveolar lavage from adult mammalian lung contain unusually high concentrations of phosphatidylglycerol that could serve as a sensitive indicator of surfactant. Phosphatidylglycerol was absent and phosphatidylinositol was correspondingly prominent in surfactant from the preterm rabbit fetus. Phosphatidylglycerol rapidly appeared and phosphatidylinositol decreased following the delivery. Surfactant isolated from the prematurely born rabbit or from humans with respiratory distress syndrome never contained phosphatidylglycerol. Comparison between lamellar bodies from fetal and postnatal rabbits revealed remarkably similar composition except for the acidic phospholipids; however, the physico-chemical properties were different. The compressibility of the surface film (i.e. the ratio of the fractional decrease in surface area and the corresponding decrease in surface tension) at low surface tensions was higher with fetal than with postnatal surfactant, whereas the difference in minimum surface tensions was small. These data suggest that phosphatidylglycerol is not an essential component required for the formation of the complex, but it improves the properties of surfactant in stabilizing the alveoli.  相似文献   

18.
The role of a lysosome fraction from rabbit type II cells in surfactant dipalmitoylphosphatidylcholine (DPPC) catabolism was investigated in vivo using radiolabeled DPPC and dihexadecylphosphatidylcholine (1, 2-dihexadecyl-sn-glycero-3-phosphocholine; DEPC), a phospholipase A(1)- and A(2)-resistant analog of DPPC. Freshly isolated type II cells were gently disrupted by shearing, and lysosomes were isolated with Percoll density gradients (density range 1.0591-1.1457 g/ml). The lysosome fractions were relatively free of contaminating organelles as determined by electron microscopy and organelle marker enzymes. After intratracheal injection of rabbits with [(3)H]DPPC and [(14)C]DEPC associated with a trace amount of natural rabbit surfactant, the degradation-resistant DEPC accumulated 16-fold compared with DPPC in lysosome fractions at 15 h. Lysosomes can be isolated from freshly isolated type II cells, and lysosomes from type II cells are the primary catabolic organelle for alveolar surfactant DPPC following reuptake by type II cells in vivo.  相似文献   

19.
Deuterium nuclear magnetic resonance was used to monitor lipid acyl-chain orientational order in suspensions of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) containing Ca(2+) and the lung surfactant proteins SP-A and SP-B separately and together. To distinguish between protein-lipid interactions involving the PC and PG lipid headgroups and to examine whether such interactions might influence spatial distribution of lipids within the bilayer, acyl chains on either the DPPC or the DPPG component of the mixture were deuterated. The lipid components of the resulting mixtures were thus either DPPC-d(62)/DPPG (7:3) or DPPC/DPPG-d(62) (7:3), respectively. SP-A had little effect on DPPC-d(62) chain order but did narrow the temperature range over which DPPG-d(62) ordered at the liquid-crystal-to-gel transition. No segregation of lipid components was seen for temperatures above or below the transition. Near the transition, though, there was evidence that SP-A promoted preferential depletion of DPPG from liquid crystalline domains in the temperature range over which gel and liquid crystal domains coexist. SP-B lowered average chain order of both lipids both above and below the main transition. The perturbations of chain order by SP-A and SP-B together were smaller than by SP-B alone. This reduction in perturbation of the lipids by the additional presence of SP-A likely indicated a strong interaction between SP-A and SP-B. The competitive lipid-lipid, lipid-protein, and protein-protein interactions suggested by these observations presumably facilitate the reorganization of surfactant material inherent in the transformation from lamellar bodies to a functional surfactant layer.  相似文献   

20.
Type II cells and macrophages are the major cells involved in the alveolar clearance and catabolism of surfactant. We measured type II cell and macrophage contributions to the catabolism of saturated phosphatidylcholine and surfactant protein A (SP-A) in mice. We used intratracheally administered SP-A labeled with residualizing (125)I-dilactitol-tyramine, radiolabeled dipalmitoylphosphatidylcholine ([(3)H]DPPC), and its degradation-resistant analog [(14)C]DPPC-ether. At 15 min and 7, 19, 29, and 48 h after intratracheal injection, the mice were killed; alveolar lavage was then performed to recover macrophages and surfactant. Type II cells and macrophages not recovered by the lavage were subsequently isolated by enzymatic digestion of the lung. Radioactivity was measured in total lung, lavage fluid macrophages, alveolar washes, type II cells, and lung digest macrophages. Approximately equal amounts of (125)I-dilactitol-tyramine-SP-A and [(14)C]DPPC-ether associated with the macrophages (lavage fluid plus lung digest) and type II cells when corrected for the efficiency of type II cell isolation. Eighty percent of the macrophage-associated radiolabel was recovered from lung digest macrophages. We conclude that macrophages and type II cells contribute equally to saturated phosphatidylcholine and SP-A catabolism in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号