首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terminal ends of vertebrate chromosomes are protected by tandem repeats of the sequence (TTAGGG). First thought to be vertebrate specific, (TTAGGG) n has recently been identified in several aquatic invertebrates including sea urchin (Strongylocentrotus purpuratus), bay scallop (Argopecten irradians), and wedgeshell clam (Donax trunculus). We analyzed genomic DNA from scleractinian corals, Acropora surculosa, Favia pallida, Leptoria phrygia, and Goniastrea retiformis to determine the telomere sequence. Southern blot analysis suggests the presence of the vertebrate telomere repeats in all four species. Treatment of A. surculosa sperm DNA with Bal31 exonuclease revealed progressive shortening of the DNA fragments positive for the (TTAGGG)22 sequence, supporting location of the repeats at the chromosome ends. The presence of the vertebrate telomere repeats in corals is evidence that the (TTAGGG) n sequence is highly conserved among a divergent group of vertebrate and invertebrate species. Corals are members of the Lower Metazoans, the group of organisms that span the gap between the fungi and higher metazoans. Corals are the most basal organism reported to have the (TTAGGG) n sequence to date, which suggests that the vertebrate telomere sequence may be much older than previously thought and that corals may share a number of genes with their higher relatives.  相似文献   

2.
The majority of chromosomes in Oreochromis niloticus, as with most fish karyotyped to date, cannot be individually identified owing to their small size. As a first step in establishing a physical map for this important aquaculture species of tilapia we have analyzed the location of the vertebrate telomeric repeat sequence, (TTAGGG)n, in O. niloticus. Southern blot hybridization analysis and a Bal31 sensitivity assay confirm that the vertebrate telomeric repeat is indeed present at O. niloticus chromosomal ends with repeat tracts extending for 4-10 kb on chromosomal ends in erythrocytes. Fluorescent in situ hybridization revealed that (TTAGGG)n is found not only at telomeres, but also at two interstitial loci on chromosome 1. These data support the hypothesis that chromosome 1, which is significantly larger than all the other chromosomes in the karyotype, was produced by the fusion of three chromosomes and explain the overall reduction of chromosomal number from the ancestral teleost karyotype of 2n=48 to 2n=44 observed in tilapia.  相似文献   

3.
We present a strategy for the cloning of DNA sequences adjacent to the tandemly repeated DNA sequence (TTAGGG)n. Sequence analysis of 14 independently isolated clones revealed the presence of non-repetitive sequences immediately adjacent to or flanked by blocks of the simple repeat (TTAGGG)n. In addition, we provide sequence information on two previously undescribed tandemly repeated sequences, including a 9 bp repeat and a modification of the (TTAGGG)n repeat. Using different mapping approaches six sub-clones, free of the TTAGGG repeat, were assigned to a single human chromosome. Moreover, in situ hybridization mapped one of these subclones, G2 - 1H, definitively to the telomeric band on chromosome 4q. However, Bal 31 insensitivity suggests a location in a more subterminal region. All the (TTAGGG)n-adjacent unique sequences tested are highly conserved among primates but are not present in other mammalian species. Identification and mapping of TTAGGG-adjacent sequences will provide a refined insight into the genomic organization of the (TTAGGG)n repeat. The isolation of chromosome specific TTAGGG-adjacent sequences from subtelomeric regions of all human chromosomes will serve as important end points for the genetic maps and will be useful for the molecular characterization of chromosomal rearrangements involving telomeres.  相似文献   

4.
The ability to prepare single-stranded chromosomal target DNA allows innovative uses of FISH technology for studies of chromosome organization. Standard FISH methodologies require functionally single-stranded DNAs in order to facilitate hybridization between the probe and the complementary chromosomal target sequence. This usually involves denaturation of double-stranded probes to induce temporary separation of the DNA strands. Strand-specific FISH (CO-FISH; Chromosome Orientation-FISH) involves selective removal of newly replicated strands from DNA of metaphase chromosomes which results in single-stranded target DNA. When single-stranded probes are then hybridized to such targets, the resulting strand-specific hybridization is capable of revealing a level of information previously unattainable at the cytogenetic level. Mammalian telomeric DNA consists of tandem repeats of the (TTAGGG) sequence, oriented 5'-->3' towards the termini of all vertebrate chromosomes. Based on this conserved structural organization, CO-FISH with a telomere probe reveals the absolute 5'-->3' orientation of DNA sequences with respect to the pter-->qter direction of chromosomes. Development and various applications of CO-FISH will be discussed: detection of cryptic inversions, discrimination between telomeres produced by leading- versus lagging-strand synthesis, and replication timing of mammalian telomeres.  相似文献   

5.
A pentanucleotide repetitive sequence, (TTAGG)n, has been isolated from a silkworm genomic library, using cross-hybridization with a (TTNGGG)5 sequence, which is conserved among most eukaryotic telomeres. Both fluorescent in situ hybridization and Bal 31 exonuclease experiments revealed major clusters of (TTAGG)n at the telomeres of all Bombyx chromosomes. To determine the evolutionary origin of this sequence, two types of telomeric sequence, (TTAGG)5 and a hexanucleotide repetitive sequence, (TTAGGG)4, which is conserved mainly among vertebrate and several invertebrate telomeres so far examined, were hybridized to DNAs from a wide variety of eukaryotic species under highly stringent hybridization conditions. The (TTAGGG)5 oligonucleotide hybridized to genomic DNAs from vertebrates and several nonvertebrate species, as has been reported so far, but not to any DNAs from insects. On the other hand, the Bombyx type of telomere sequence, (TTAGG)n, hybridized to DNAs from 8 of 11 orders of insect species tested but not to vertebrate DNAs, suggesting that this TTAGG repetitive sequence is conserved widely among insects.  相似文献   

6.
The physical ends of mammalian and other vertebrate chromosomes consist of tandemly repeated (TTAGGG)(n) hexamers, nucleating a specialized telomeric structure. However, (TTAGGG)(n) sequences can also occur at non-telomeric sites, providing important insights into karyotypic evolution. By fluorescence in situ hybridization (FISH) we studied the chromosomal distribution of (TTAGGG)(n) sequences in 16 bird species, representing seven different orders. Many species, in particular the ratites, display (TTAGGG)(n) hybridization signals in interstitial and centromeric regions of their macrochromosomes in addition to the typical telomeric signals. In some but not all species these non-telomeric sites coincide with C-band-positive heterochromatin. The retention and/or amplification of telomeric (TTAGGG)(n) repeats at interstitial and centromeric sites may indicate the fusion of ancestral chromosomes. Compared with the macrochromosomes, the microchromosomes of most species are enriched with (TTAGGG)(n) sequences, displaying heterogeneous hybridization patterns. We propose that this high density of (TTAGGG)(n) repeats contributes to the exceptionally high meiotic recombination rate of avian microchromosomes.  相似文献   

7.
Huang X  Hu J  Hu X  Zhang C  Zhang L  Wang S  Lu W  Bao Z 《Genes & genetic systems》2007,82(3):257-263
The chromosomes of Argopecten irradians irradians were studied by various cytogenetic approaches. Conventional chromosome characterization built on C-banding, DAPI-staining, and silver staining was complemented by the physical mapping of ribosomal DNA and telomeric sequence (TTAGGG)n by FISH. Results showed that the constitutive heterochromatin revealed by C-banding was mainly distributed at telomeric and centromeric regions. However, interstitial C-bands were also observed. The pattern of DAPI banding was almost consistent with that of C-banding. Silver staining revealed that NORs were located on the short arms of chromosome 3 and 10, and this was further confirmed by FISH using 18S-28S rDNA. 5S rDNA was mapped as two distinguishable loci on the long arm of chromosome 11. 18S-28S and 5S rDNA were located on different chromosomes by sequential FISH. FISH also showed that the vertebrate telomeric sequence (TTAGGG)n was located on both ends of each chromosome and no interstitial signals were detected. Sequential 18S-28S rDNA and (TTAGGG)n FISH demonstrated that repeated units of the two multicopy families were closely associated on the same chromosome pair.  相似文献   

8.
Lack of Arabidopsis-type T3AG3 telomere sequences has recently been reported for the majority of investigated taxa of the monocot order Asparagales. In order to investigate this phenomenon in more detail, we conducted extensive cytogenetic and molecular analyses of the telomeres in Othocallis siberica, a member of this order. Terminal restriction fragment analysis together with Bal31 exonuclease assay showed that chromosome termini in O. siberica are formed by long stretches (more than 10 kbp) of vertebrate-type T2AG3 repeats. In addition, telomerase activity specifically synthesising (T2AG3)n sequence was detected in O. siberica protein extracts by telomerase repeat amplification protocol (TRAP). Fluorescence in situ hybridisation (FISH) revealed the presence of the vertebrate-type T2AG3 telomere sequences at all chromosome termini and at a few additional regions of O. siberica chromosomes, whereas Arabidopsis-type T3AG3 DNA and peptide nucleic acid (PNA) probes did not hybridise to chromosomes of Othocallis, except for polymorphic blocks in chromosomes 2 (interstitial) and 4 (terminal). These interstitial/terminal regions are apparently composed of large blocks of (T2AG3)n and (T3AG3)n DNA and represent a unique example of interspersion of two types of telomeric repeats within one genome. This may be a reflection of the recent evolutionary switch from Arabidopsis- to vertebrate-type telomeric repeats in this plant group.  相似文献   

9.
We have cloned a telomere and adjacent sequences from rat-derived Pneumocystis carinii using the ability of foreign telomeres to complement a yeast artificial chromosome (YAC) deficient by one telomere in Saccharomyces cerevisiae . Characterization of the cloned DNA in the recombinant YAC demonstrated that it was a chimera of two P. carinii sequences, namely a 13.5 kb fragment of mitochondrial DNA and an 8.3 kb distal portion consisting of subtelomeric DNA. The P. carinii telomere repeat was demonstrated to be TTAGGG, the most common telomere repeat found in organisms from the animal and fungal kingdoms. Karyotype analysis confirmed that this sequence was present on all the P. carinii chromosomes. Sequence adjacent to the telomere repeats was shown by Bal 31 exonuclease digestion to be located at the chromosome ends. Analysis of the subtelomeric fragment revealed homology to the gene encoding the major surface glycoprotein of P. carinii  相似文献   

10.
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.  相似文献   

11.
Spermatocyte chromosomes of Melarhaphe neritoides (Mollusca, Prosobranchia, Caenogastropoda) were studied using fluorescent in situ hybridization (FISH) with four repetitive DNA probes (18S rDNA, 5S rDNA, (TTAGGG)n and (GATA)n). Single-colour FISH consistently mapped one chromosome pair per spread using either 18S or 5S rDNA as probes. The telomeric sequence (TTAGGG)n hybridized with termini of all chromosomes whereas the (GATA)n probe did not label any areas. Simultaneous 18S-5S rDNA and 18S-(TTAGGG)n FISH demonstrated that repeated units of the three multicopy families are closely associated on the same chromosome pair.  相似文献   

12.
The C-band pattern and the distribution of the (TTAGGG)(n) sequence after fluorescence in situ hybridization (FISH), were studied in eight species of Didelphidae marsupials: four species with 2n = 14 (Marmosops parvidens, Marmosops incanus, Marmosa murina and Metachirus nudicaudatus), two species with 2n = 18 (Monodelphis domestica and M. americana), and two with 2n = 22 (Didelphis marsupialis and Lutreolina crassicaudata). The hybridization signals were observed at both termini telomeres of all chromosomes. In addition, interstitial sequences were detected in the pericentromeric region of all chromosomes of Marmosops parvidens, in five chromosome pairs of M. incanus, and in the first pair of Monodelphis domestica. These sites always occur in the region of constitutive heterochromatin, even though C-band positive regions do not always present interstitial telomeric sequences (ITS). We suggest that the interstitial (TTAGGG)(n) sequences are associated with satellite DNA and do not necessarily arise through chromosomal rearrangements.  相似文献   

13.
The physical location of 18S-5.8S-28S rDNA, telomeric sequences with (TTAGGG)n DNA probe and (GATA)n microsatellites were performed by fluorescence in situ hybridization in chromosomes of red abalone Haliotis rufescens. The karyotype of red abalone showed a diploid number of 36 (8M+9SM+1ST). FISH performed with rDNA probe, showed the location of major ribosomal clusters in the terminal region of the large arms of two submetacentric pairs (chromosome 4 and 5). Localization of heteromorphisms of FISH-rDNA was found between chromosome homologues and sister chromatids in all metaphases analyzed. This indicates that rDNA clusters are variable within the red abalone genome. The variability in the NOR-bearing reported using silver staining in other gastropods and our result are discussed. In addition, the presence of microsatellite (TTAGGG)n and (GATA)n was demonstrated after FISH treatment by DNA probes. The telomeric sequence occurred at the ends of all mitotic chromosomes, while the (GATA)n repetitive was found on chromosomal interstitial zones as well as at the telomeres in abalone chromosomes.  相似文献   

14.
Spermatogonial and metaphase I chromosomes of the lumbricid earthworm Octodrilus complanatus (Annelida: Oligochaeta) were examined using fluorescent in situ hybridization (FISH) with three repetitive DNA probes-5S rDNA, 18S-26S rDNA, and (TTAGGG)(n). Single-color FISH consistently mapped one chromosome pair per spread using either 5S rDNA or 18S-26S rDNA as probes. Simultaneous (18S-26S)-5S and (18S-26S)-(TTAGGG)(n) FISH demonstrated that repeated units of the two ribosomal families were overlapped and closely associated with telomeric sequences.  相似文献   

15.
The ends of eukaryotic chromosomes have special properties and roles in chromosome behavior. Selection for telomere function in yeast, using a Chinese hamster hybrid cell line as the source DNA, generated a stable yeast artificial chromosome clone containing 23 kb of DNA adjacent to (TTAGGG)n, the vertebrate telomeric repeat. The common repetitive element d(GT)n appeared to be responsible for most of the other stable clones. Circular derivatives of the TTAGGG-positive clone that could be propagated in E. coli were constructed. These derivatives identify a single pair of hamster telomeres by fluorescence in situ hybridization. The telomeric repeat tract consists of (TTAGGG)n repeats with minor variations, some of which can be cleaved with the restriction enzyme MnlI. Blot hybridization with genomic hamster DNA under stringent conditions confirms that the TTAGGG tracts are cleaved into small fragments due to the presence of this restriction enzyme site, in contrast to mouse telomeres. Additional blocks of (TTAGGG)n repeats are found 4–5 kb internally on the clone. The terminal region of the clone is dominated by a novel A-T rich 78 bp tandemly repeating sequence; the repeat monomer can be subdivided into halves distinguished by more or less adherence to the consensus sequence. The sequence in genomic DNA has the same tandem organization in probably a single primary locus of >20–30 kb and is thus termed a minisatellite.  相似文献   

16.
We have cloned a Chinese hamster chromosome-specific repeated sequence (SatCH5). This satellite is composed of a 33-bp unit organized in two extended tandem arrays. It is localized at the centromere and at the short-arm subtelomere of chromosome 5. Altogether, SatCH5 covers about 1-2 Mb per diploid genome and is not present in other species, including the Syrian hamster and mouse. Since it is known in the Chinese hamster and numerous other vertebrate species that telomeric (TTAGGG)n repeats are localized at the centromeres of several chromosomes, we studied the localization of SatCH5 relative to (TTAGGG)n sequences. Using two-color fluorescence in situ hybridization on stretched chromosomes and on DNA fibers, we have shown that at the centromere of chromosome 5 SatCH5 and the (TTAGGG)n arrays are contiguous. SatCH5 is the first chromosome-specific repetitive sequence located at both the pericentromeric and subtelomeric regions of the same chromosome.  相似文献   

17.
A portion of an insertion sequence present in a member of the RIRE3 family of retrotransposons in Oryza sativa L. cv. IR36 was found to have an LTR sequence followed by a PBS sequence complementary to the 3'-end region of tRNAMet, indicative of another rice retrotransposon (named RIRE7). Cloning and sequencing of PCR-amplified fragments that made up all parts of the RIRE7 sequence showed that RIRE7 is a gypsy-type retrotransposon with partial homology in the pol region to the rice gypsy-type retrotransposons RIRE2 and RIRE3 identified in rice previously. Interestingly, various portions of the RIRE7 sequence were homologous to several DNA segments present in the centromere regions of cereal chromosomes. Further cloning and nucleotide sequencing of fragments flanking RIRE7 copies showed that RIRE7 was inserted into a site within a tandem repeat sequence that has a unit length of 155 bp. The tandem repeat sequence, named TrsD, was homologous to tandem repeat sequences RCS2 and CentC, previously identified in the centromeric regions of rice and maize chromosomes. Fluorescence in situ hybridization (FISH) analysis of the metaphase chromosomes of O. sativa cv. Nipponbare showed that both RIRE7 and TrsD sequences were present in the centromere regions of the chromosomes. The presence of RIRE7 and the TrsD sequences in the centromere regions of several chromosomes was confirmed by the identification of several YAC clones whose chromosomal locations are known. Further FISH analysis of rice pachytene chromosomes showed that the TrsD sequences were located in a pericentromeric heterochromatin region. These findings strongly suggest that RIRE7 and TrsD are components of the pericentromeric heterochromatin of rice chromosomes.  相似文献   

18.
Cheng Z  Stupar RM  Gu M  Jiang J 《Chromosoma》2001,110(1):24-31
Highly repetitive tandem DNA sequence repeats are often associated with centromeric and telomeric regions of eukaryotic chromosomes. The rice tandem repeat Os48 is organized as long arrays of a 355 bp monomer and is mainly located in the telomeric regions. The chromosomal locations of the Os48 sequence were determined by fluorescence in situ hybridization (FISH) on rice pachytene chromosomes. The majority of the Os48 loci are associated with brightly 4',6-diamidino-2-phenylindole (DAPI)-stained and knob-like heterochromatin in rice pachytene chromosomes. As with other DNA sequences located in the heterochromatic regions, the cytosines of the CG and C(A/T)G sites within the Os48 repeat are heavily methylated. Surprisingly, a proportion of the FISH signals are highly decondensed and deviate significantly from the DAPI-stained periphery of the pachytene chromosomes. This highly decondensed chromatin structure has not been reported in pachytene chromosomes prepared from alcohol/acid-fixed meiotic samples in any other eukaryotic species. The condensation of the Os48 sequences is dynamic during prophase I of meiosis. The FISH signals derived from the Os48 repeat progress from a condensed configuration between leptonema and early pachynema into a decondensed structure from middle pachynema to diakinesis, and then return to a condensed form at metaphase I.  相似文献   

19.
Chromosomal localization of the telomeric sequence (TTAGGG)(n) in eight New World Primates (Platyrrhini) (Alouatta caraya, Alouatta palliata, Alouatta guariba clamitans, Aotus azarae, Ateles chamek, Cebus nigritus, Cebus paraguayanus, and Saimiri boliviensis) using Fluorescence In Situ Hybridization (FISH) with a peptide nucleic acid (PNA) pantelomeric probe and their possible relationship with the C-banding pattern were analyzed. FISH showed telomeric signals only at the terminal regions of chromosomes from all the species analyzed. Although all of them showed centromeric C+ bands and different size and location of extracentromeric C+ bands, none, except Aotus azarae exhibited (peri)centromeric interstitial telomere-like sequences (ITS). The presence of ITS in Aotus azarae was limited to one pair of submetacentric chromosomes and very likely represents telomeric sequences remaining after a fusion event of ancestral chromosomes during karyotype evolution. Therefore, our data indicate that the distribution of heterochromatin blocks do not correlate with the presence of ITS. However, we cannot rule out the possibility that simple ITS arrays with a few copies of the (TTAGGG)(n) sequence, not detectable by conventional FISH, might play a role in the karyotypic evolution of Ceboidea. Further FISH and molecular studies will be needed to confirm this hypothesis.  相似文献   

20.
Telomeres are a class of repetitive DNA sequences that are located at chromosome termini and that act to stabilize the chromosome ends. The rapid karyotypic evolution of the genus Equus has given rise to ten taxa, all with different diploid chromosome numbers. Using fluorescence in situ hybridization (FISH) we localized the mammalian telomere sequence, (TTAGGG)(n), to the chromosomes of nine equid taxa. TTAGGG signal was located at chromosome termini in all species, however additional signal was seen at interstitial sites on some chromosomes in the Burchell's zebra, Equus quagga burchelli, the Hartmann's zebra, Equus zebra hartmannae, and at large heterochromatin-associated regions on the chromosomes of the donkey, Equus asinus. The interstitial signal in the zebras may be a relic of an ancient telomere-telomere fusion and mark the point at which two ancestral chromosomes may have fused. For the donkey, the heterochromatin-associated signal may represent degenerate telomere-like satellite sequences and identify a second type of satellite DNA for this taxon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号