首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer metastasis is a multi-step process in which tumor cells gain the ability to invade beyond the primary tumor and colonize distant sites. The mechanisms regulating the metastatic process confer changes to cell adhesion receptors including the integrin family of receptors. Our group previously discovered that the α6 integrin (ITGA6/CD49f) is post translationally modified by urokinase plasminogen activator (uPA) and its receptor, urokinase plasminogen activator receptor (uPAR), to form the variant ITGA6p. This variant of ITGA6 is a cleaved form of the receptor that lacks the ligand-binding domain. Although it is established that the uPA/uPAR axis drives ITGA6 cleavage, the mechanisms regulating cleavage have not been defined. Intracellular integrin dependent “inside-out” signaling is a major regulator of integrin function and the uPA/uPAR axis. We hypothesized that intracellular signaling molecules play a role in formation of ITGA6p to promote cell migration during cancer metastasis. In order to test our hypothesis, DU145 and PC3B1 prostate cancer and MDA-MB-231 breast cancer cell lines were treated with small interfering RNA targeting actin and the intracellular signaling regulators focal adhesion kinase (FAK), integrin linked kinase (ILK), and paxillin. The results demonstrated that inhibition of actin, FAK, and ILK expression resulted in significantly increased uPAR expression and ITGA6p production. Inhibition of actin increased ITGA6p, although inhibition of paxillin did not affect ITGA6p formation. Taken together, these results suggest that FAK and ILK dependent “inside-out” signaling, and actin dynamics regulate extracellular production of ITGA6p and the aggressive phenotype.  相似文献   

2.
粘附斑激酶(focal adhesion kinase,FAK)是一种胞质非受体酪氨酸激酶,是整合素信号通路里一个重要的调节因子,在肿瘤细胞中高表达,与细胞迁移、粘附和侵袭有关。mTOR (mammalian target of rapamycin)是非典型性的Ser/Thr激酶,属于PIKK(phosphatidylinositol kinase related kinase)超家族,介导营养信号调控细胞生长、分化及代谢等生理过程。近年的研究发现FAK通过三条途径与mTOR相关联,组成FAK/mTOR信号通路,在肿瘤细胞的增殖、迁移及肿瘤微环境中发挥着重要的调控作用。本文综述了FAK、mTOR和FAK/mTOR信号通路的特点及对肿瘤细胞调控作用的研究概况,为肿瘤治疗提供参考。  相似文献   

3.
During human prostate cancer progression, the majority of normally expressed integrins are suppressed with the exception of the alpha6, alpha3, and beta1 integrins. We have shown that in prostate cancer, the alpha6 integrin is found paired with the beta1 integrin and that a novel form of the alpha6 integrin that lacks a large portion of the extracellular domain (alpha6p) exists. The alpha6pbeta1 integrin is found in human prostate cancer tissue specimens as well as tissue culture cell lines and is formed on the cell surface. This review discusses the mechanism of alpha6pbeta1 production and the potential functions of this integrin variant. Our current working model predicts that the alpha6pbeta1 integrin maintains the intracellular cytoskeletal connections associated with the heterodimer while allowing for an alteration in cell adhesion. The mechanism provides a selective advantage for cancer cell metastasis.  相似文献   

4.
The alphavbeta3 integrin has been shown to promote cell migration through activation of intracellular signaling pathways. We describe here a novel pathway that modulates cell migration and that is activated by alphavbeta3 and, as downstream effector, by cdc2 (cdk1). We report that alphavbeta3 expression in LNCaP (beta3-LNCaP) prostate cancer cells causes increased cdc2 mRNA levels as evaluated by gene expression analysis, and increased cdc2 protein and kinase activity levels. We provide three lines of evidence that increased levels of cdc2 contribute to a motile phenotype on integrin ligands in different cell types. First, increased levels of cdc2 correlate with more motile phenotypes of cancer cells. Second, ectopic expression of cdc2 increases cell migration, whereas expression of dominant-negative cdc2 inhibits migration. Third, cdc2 inhibitors reduce cell migration without affecting cell adhesion. We also show that cdc2 increases cell migration via specific association with cyclin B2, and we unravel a novel pathway of cell motility that involves, downstream of cdc2, caldesmon. cdc2 and caldesmon are shown here to localize in membrane ruffles in motile cells. These results show that cdc2 is a downstream effector of the alphavbeta3 integrin, and that it promotes cell migration.  相似文献   

5.
黏着斑激酶(focal adhesion kinase,FAK)是一种非受体型蛋白酪氨酸激酶,在肿瘤细胞的侵袭和转移中起着重要的作用。FAK是整合素介导的或生长因子受体诱导的调节细胞迁移的信号通路的关键组分。FAK通过与相关分子作用可以调节细胞骨架重构、胞外基质降解、细胞黏附更新以及质膜突出,进而参与肿瘤细胞的运动等多个过程,所以FAK与肿瘤发展的关系已经越来越受到重视。  相似文献   

6.
细胞粘附介导的信号分子——粘着斑激酶研究进展   总被引:6,自引:0,他引:6  
粘着斑激酶(focaladhesionkinase,FAK)是整合蛋白介导的信号转导中的重要成员,有酪氨酸蛋白激酶活性,并可自身磷酸化;具有类似FAK作用的FAK家族新成员不断发现。新近发现FAK可抑制细胞凋亡,FAK本身是胱冬肽酶(caspase)的底物。作为信号分子的FAK,还与细胞内其他信号转导通路存在串话(crostalk),直接参与了细胞多种功能的调节。  相似文献   

7.
During hematogenous cancer metastasis, tumor cells separate from a primary mass, enter the bloodstream, disperse throughout the body, migrate across vessel walls, and generate distant colonies. The later steps of metastasis superficially resemble leukocyte extravasation, a process initiated by selectin-mediated cell tethering to the blood vessel wall followed by integrin-mediated arrest and transendothelial migration. Some cancer cells express P-selectin ligands and attach to immobilized P-selectin, suggesting that these cells can arrest in blood vessels using sequential selectin- and integrin-mediated adhesion, as do leukocytes. We hypothesize that selectin binding may regulate subsequent integrin-mediated steps in metastasis. Using a model system of cultured Colo 320 human colon adenocarcinoma cells incubated with soluble P-selectin-IgG chimeric protein, we have found that P-selectin can stimulate activation of the alpha(5)beta(1) integrin resulting in a specific increase of adhesion and spreading of these cells on fibronectin substrates. P-selectin binding also induced activation of p38 mitogen-activated protein kinase (p38 MAPK) and phosphatidylinositol 3-kinase (PI3-K). PI3-K inhibitors blocked P-selectin-mediated integrin activation, cell attachment, and cell spreading. Inhibition of p38 MAPK activation blocked cell spreading, but not cell attachment. P-selectin binding also resulted in formation of a signaling complex containing PI3-K and p38 MAPK. These results suggest that P-selectin binding to tumor cells can activate alpha(5)beta(1) integrin via PI3-K and p38 MAPK signaling pathways leading to increased cell adhesion. We propose that P-selectin ligands are important tumor cell signaling molecules that modulate integrin-mediated cell adhesion in the metastatic process.  相似文献   

8.
Although the timing with which common epithelial malignancies arise and become established remains a matter of debate, it is clear that by the time they are detected these tumors harbor hundreds of deregulated, aberrantly expressed or mutated genes. This enormous complexity poses formidable challenges to identify gene pathways that are drivers of tumorigenesis, potentially suitable for therapeutic intervention. An alternative approach is to consider cancer pathways as interconnected networks, and search for potential nodal proteins capable of connecting multiple signaling networks of tumor maintenance. We have modeled this approach in advanced prostate cancer, a condition with current limited therapeutic options. We propose that the integration of three signaling networks, including chaperone‐mediated mitochondrial homeostasis, integrin‐dependent cell signaling, and Runx2‐regulated gene expression in the metastatic bone microenvironment plays a critical role in prostate cancer maintenance, and offers novel options for molecular therapy. J. Cell. Biochem. 107: 845–852, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Patients with advanced prostate cancer often exhibit increased activation of the coagulation system. The key activator of the coagulation cascade is the serine protease thrombin which is capable of eliciting numerous cellular responses. We previously reported that the thrombin receptor PAR1 is overexpressed in prostate cancer. To investigate further the role of PAR1 in prostate cancer metastasis, we examined the effects of thrombin activation on cell adhesion and motility in PC-3 prostate cancer cells. Activation of PAR1-induced dynamic cytoskeletal reorganization and reduced PC-3 binding to collagen I, collagen IV, and laminin (P < 0.01) but not fibronectin. Expression of the cell surface integrin receptors did not change as assessed by flow cytometry. Immunofluorescence microscopy revealed that PAR1 stimulation caused reorganization of the focal adhesions, suggesting that PAR1 activation in PC-3 cells may be modulating cell adhesion through integrin function but not expression. Furthermore, RhoA was activated upon stimulation with thrombin with subsequent cell contraction, decreased cell adhesion, and induced migration towards monocyte chemoattractant protein 1 (MCP-1; CCL2). Thus, it appears that thrombin stimulation plays a role in prostate cancer metastasis by decreasing cell adhesion to the extracellular matrix and positioning the cell in a "ready state" for migration in response to a chemotactic signal. Further exploration is needed to determine whether PAR1 activation affects other signaling pathways involved in prostate cancer.  相似文献   

10.
The biological functions of transmembrane 4 L6 family member 5 (TM4SF5) homologues to a tumor-associated antigen L6 are unknown, although it is over-expressed in certain forms of cancer. In the present study, the ectopic expression of TM4SF5 in Cos7 cells reduced integrin signaling under serum-containing conditions, but increased integrin signaling upon serum-free replating on substrates. TM4SF5 regulated actin organization and focal contact dynamics via the serum treatment-dependent differential regulation of FAK Tyr925 and paxillin Tyr118 phosphorylations and their localizations on peripheral cell boundaries. Y925F FAK mutation abolished the TM4SF5 effects. TM4SF5 associated with integrin alpha2 subunit, and this association was abolished by serum treatment. Furthermore, functional blocking anti-integrin alpha2 antibody abolished TM4SF5-enhanced signaling activity and caused membrane blebbing with abnormal actin organization. TM4SF5 increased chemotactic but decreased haptotactic migration. Altogether, this study reveals the functions of TM4SF5 collaborative with integrin signaling to alter focal contact dynamics, actin reorganization, and migration. Furthermore, this study suggests a mechanism of cross-talk between TM4SF5 and integrin which is further regulated by growth factor signaling.  相似文献   

11.
5α-Androstane-3α,17β-diol (3α-diol) is reduced from the potent androgen, 5α-dihydrotestosterone (5α-DHT), by reductive 3α-hydroxysteroid dehydrogenases (3α-HSDs) in the prostate. 3α-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5α-DHT. However, 3α-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3α-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3α-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3α-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3α-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3α-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3α-HSD expression are significantly elevated in localized and advanced prostate cancer, 3α-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.  相似文献   

12.
5alpha-Androstane-3alpha,17beta-diol (3alpha-diol) is reduced from the potent androgen, 5alpha-dihydrotestosterone (5alpha-DHT), by reductive 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs) in the prostate. 3alpha-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5alpha-DHT. However, 3alpha-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3alpha-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3alpha-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3alpha-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3alpha-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3alpha-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3alpha-HSD expression are significantly elevated in localized and advanced prostate cancer, 3alpha-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.  相似文献   

13.
Cell adhesion and migration play important roles in physiological and pathological states, including embryonic development and cancer invasion and metastasis. The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed mainly in brain and prostate and its expression is deregulated in prostate cancer. We have previously shown that TMEFF2 can function as a tumor suppressor by inhibiting cell migration and invasion of prostate cells. However, the molecular mechanisms involved in this inhibition are not clear. In this study we demonstrate that TMEFF2 affects cell adhesion and migration of prostate cancer cells and that this effect correlates with changes in integrin expression and RhoA activation. Deletion of a 13 basic-rich amino acid region in the cytoplasmic domain of TMEFF2 prevented these effects. Overexpression of TMEFF2 reduced cell attachment and migration on vitronectin and caused a concomitant decrease in RhoA activation, stress fiber formation and expression of αv, β1 and β3 integrin subunits. Conversely, TMEFF2 interference in 22Rv1 prostate cancer cells resulted in an increased integrin expression. Results obtained with a double TRAMP/TMEFF2 transgenic mouse also indicated that TMEFF2 expression reduced integrin expression in the mouse prostate. In summary, the data presented here indicate an important role of TMEFF2 in regulating cell adhesion and migration that involves integrin signaling and is mediated by its cytoplasmic domain.  相似文献   

14.
15.
16.
Integrins are cell surface heterodimeric transmembrane receptors that, in addition to mediating cell adhesion to extracellular matrix proteins modulate cell survival. This mechanism may be exploited in cancer where evasion from apoptosis invariably contributes to cellular transformation. The molecular mechanisms responsible for matrix-induced survival signals begin to be elucidated. Here we report that the inhibitor of apoptosis survivin is expressed in vitro in human prostate cell lines with the highest levels present in aggressive prostate cancer cells such as PC3 and LNCaP-LN3 as well as in vivo in prostatic adenocarcinoma. We also show that interference with survivin in PC3 prostate cancer cells using a Cys84--> Ala dominant negative mutant or survivin antisense cDNA causes nuclear fragmentation, hypodiploidy, cleavage of a 32-kDa proform caspase-3 to active caspase-3, and proteolysis of the caspase substrate poly(ADP-ribose) polymerase. We demonstrate that in the aggressive PC3 cell line, adhesion to fibronectin via beta1 integrins results in up-regulation of survivin and protection from apoptosis induced by tumor necrosis factor-alpha (TNF-alpha). In contrast, survivin is not up-regulated by cell adhesion in the non-tumorigenic LNCaP cell line. Dominant negative survivin counteracts the ability of fibronectin to protect cells from undergoing apoptosis, whereas wild-type survivin protects non-adherent cells from TNF-alpha-induced apoptosis. Evidence is provided that expression of beta1A integrin is necessary to protect non-adherent cells transduced with survivin from TNF-alpha-induced apoptosis. In contrast, the beta1C integrin, which contains a variant cytoplasmic domain, is not able to prevent apoptosis induced by TNF-alpha in non-adherent cells transduced with survivin. Finally, we show that regulation of survivin levels by integrins are mediated by protein kinase B/AKT. These findings indicate that survivin is required to maintain a critical anti-apoptotic threshold in prostate cancer cells and identify integrin signaling as a crucial survival pathway against death receptor-mediated apoptosis.  相似文献   

17.
In spite of our conceptual view of how differential gene expression is used to define different cell identities, we still do not understand how different cell identities are translated into actual cell properties. The example discussed here is that of the fly wing, which is composed of two main cell types: vein and intervein cells. These two cell types differ in many features, including their adhesive properties. One of the major differences is that intervein cells express integrins, which are required for the attachment of the two wing layers to each other, whereas vein cells are devoid of integrin expression. The major signaling pathways that divide the wing to vein and intervein domains have been characterized. However, the genetic programs that execute these two alternative differentiation programs are still very roughly drawn. Here we identify the bHLH protein Delilah (Dei) as a mediator between signaling pathways that specify intervein cell-fate and one of the most significant realizators of this fate, βPS integrin. Dei's expression is restricted to intervein territories where it acts as a potent activator of βPS integrin expression. In the absence of normal Dei activity the level of βPS integrin is reduced, leading to a failure of adhesion between the dorsal and ventral wing layers and a consequent formation of wing blisters. The effect of Dei on βPS expression is not restricted to the wing, suggesting that Dei functions as a general genetic switch, which is turned on wherever a sticky cell-identity is determined and integrin-based adhesion is required.  相似文献   

18.
19.
Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated by a serine/threonine phosphatase. Ephrin-A1-induced Akt dephosphorylation was observed not only in PC3 prostate cancer cells but also in other cancer cell types. Thus, activation of EphA2 signaling represents a possible new avenue for anti-cancer therapies that exploit the remarkable ability of this receptor to counteract multiple oncogenic signaling pathways.  相似文献   

20.
Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of death from cancer in men. Epithelial-mesenchymal transition (EMT) is a process by which cancer cells invade and migrate, and is characterized by loss of cell-cell adhesion molecules such as E-cadherin and increased expression of mesenchymal proteins such as vimentin; EMT is also associated with resistance to therapy. Snail, a master regulator of EMT, has been extensively studied and reported in cancers such as breast and colon; however, its role in prostate cancer is not as widely reported. The purpose of this review is to put together recent facts that summarize Snail signaling in human prostate cancer. Snail is overexpressed in prostate cancer and its expression and activity is controlled via phosphorylation and growth factor signaling. Snail is involved in its canonical role of inducing EMT in prostate cancer cells; however, it plays a role in non-canonical pathways that do not involve EMT such regulation of bone turnover and neuroendocrine differentiation. Thus, studies indicate that Snail signaling contributes to prostate cancer progression and metastasis and therapeutic targeting of Snail in prostate cancer holds promise in ?future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号