首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of trpA reversions revealed that G:C leads to A:T transitions were stimulated about 30-fold in E. coli ung mutants, whereas other base substitutions were not affected. A dUTPase (dut) mutation, which increases the incorporation of uracil into DNA in place of thymine, had no significant effect on the rate of G:C leads to A:T transitions. The results support the proposal that the glycosylase functions to reduce the mutation rate in wild-type cells by acting in the repair of DNA cytosine residues that have undergone spontaneous deamination to uracil. Further support was provided by the finding that when lambda bacteriophages were treated with bisulfite, an agent known to produce cytosine deamination, the frequency of clear-plaque mutants was increased an additional 20-fold by growth on an ung host. Bisulfite-induced mutations of the cellular chromosome, however, were about equal in ung+ and ung strains; it was found that during the treatment of ung+ cells with bisulfite, the glycosylase was inactivated.  相似文献   

2.
Endonuclease IV (nfo) mutant of Escherichia coli.   总被引:59,自引:26,他引:33       下载免费PDF全文
A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested.  相似文献   

3.
We have constructed a strain of Escherichia coli that is defective in exonuclease VII and uracil-DNA glycosylase activities. This strain (xse ung) facilitates the quantitation of single-stranded apurinic-apyrimidinic endonuclease activity in crude extracts. Quantitative comparisons of single-stranded apurinic-apyrimidinic endonuclease activity under conditions in which uvrC protein is overexpressed showed no differences, suggesting that single-stranded apurinic-apyrimidinic endonuclease and uvrC protein are probably distinct.  相似文献   

4.
Uracil-DNA glycosylase, which acts specifically on uracil-containing DNA, was purified 250-fold from an extract of Escherichia coli 1100. The enzyme releases free uracil from DNA, producing alkali-labile apyrimidinic sites in the DNA. The enzyme is active on both native and heat-denatured DNA of phage PBS1, which contains uracil in place of thymine. piX174 DNA which had been treated with bisulfite and then at alkaline pH was susceptible to the action of uracil-DNA glycosylase. Since DNA treated with bisulfite alone was less susceptible to the enzyme, it is likely that the enzyme recognizes deaminated cytosine, namely uracil, but not bisulfite adducts of uracil and cytosine in the treated DNA. DNA treated with nitrite or hydroxylamine was not attacked by the enzyme. Enzyme activity acting on bisulfite-treated DNA was absent from an extract of E. coli mutant BD10 (ung). The mutant exhibited higher sensitivity to bisulfite than did the wild-type strain and was unable to reactivate phage T1 pre-exposed to bisulfite and weak alkali.  相似文献   

5.
The role of exonuclease III and endonuclease IV in the repair of pyrimidine dimers in bacteriophage T4-infected Escherichia coli was examined. UV-irradiated T4 showed reduced survival when plated on an xth nfo double mutant but showed wild-type survival on either single mutant. T4 denV phage were equally sensitive when plated on wild-type E. coli or an xth nfo double mutant, suggesting that these endonucleases function in the same repair pathway as T4 pyrimidine dimer-DNA glycosylase. A uvrA mutant of E. coli in which the repair of pyrimidine dimers was dependent on the T4 denV gene carried on a plasmid was constructed. Neither an xth nor an nfo derivative of this strain was more sensitive than the parental strain to UV irradiation. We were unable to construct a uvrA xth nfo triple mutant. In addition, T4, which turns off the host UvrABC excision nuclease, showed reduced plating efficiency on an xth nfo double mutant.  相似文献   

6.
The extent and location of DNA repair synthesis in a double-stranded oligonucleotide containing a single dUMP residue have been determined. Gently prepared Escherichia coli and mammalian cell extracts were employed for excision repair in vitro. The size of the resynthesized patch was estimated by restriction enzyme analysis of the repaired oligonucleotide. Following enzymatic digestion and denaturing gel electrophoresis, the extent of incorporation of radioactively labeled nucleotides in the vicinity of the lesion was determined by autoradiography. Cell extracts of E. coli and of human cell lines were shown to carry out repair mainly by replacing a single nucleotide. No significant repair replication on the 5' side of the lesion was observed. The data indicate that, after cleavage of the dUMP residue by uracil-DNA glycosylase and incision of the resultant apurinic-apyrimidinic site by an apurinic-apyrimidinic endonuclease activity, the excision step is catalyzed usually by a DNA deoxyribophosphodiesterase rather than by an exonuclease. Gap-filling and ligation complete the repair reaction. Experiments with enzyme inhibitors in mammalian cell extracts suggest that the repair replication step is catalyzed by DNA polymerase beta.  相似文献   

7.
Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase.   总被引:27,自引:14,他引:13       下载免费PDF全文
A new assay specific for uracil-DNA glycosylase is described, Escherichia coli mutants partially and totally deficient in uracil-DNA glycosylase activity have been isolated by using this assay in mass-screening procedures. These have been designated ung mutants. The ung gene maps between tyrA and nadB on the E. coli chromosome. T4 phage containing uracil in their DNA grow on the most glycosylase-deficient hosts but are unable to grow on wild-type bacteria. This provides a simple spot test for the ung genotype. The ung mutants show slightly higher rates of spontaneous mutation to antibiotic resistance. Taken together, these results suggest a central role for uracil-DNA glycosylase in the initiation of an excision repair pathway for the exclusion of uracil from DNA.  相似文献   

8.
A number of mutant strains of Escherichia coli have been examined for their sensitivity to nitrous acid and in some instances to methylmethanesulfonate. All ung- mutants tested are abnormally sensitive to nitrous acid. Since the ung mutation is phenotypically expressed as a defect in uracil DNA glycosidase, this observation supports the contention that treatment of cells with nitrous acid causes deamination of cytosine to uracil. In addition the observed sentitivity indicates that the ung gene is involved in the repair of uracil in DNA. Studies with other mutants suggest that both exonuclease III and DNA polymerase I of E. coli are involved in the repair of nitrous acid damage in vivo.  相似文献   

9.
Mutants of Escherichia coli K-12 deficient in both exonuclease III (the product of the xth gene) and deoxyuridine triphosphatase (the dut gene product) are inviable at high temperatures and undergo filamentation when grown at such temperatures. In dut mutants, the dUTP pool is known to be greatly enhanced, resulting in an increased substitution of uracil for thymine in DNA during replication. The subsequent removal of uracil from the DNA by uracil-DNA glycosylase produces apyrimidinic sites, at which exonuclease III is known to have an endonucleolytic activity. The lethality of dut xth mutants, therefore, indicates that exonuclease III is important for this base-excision pathway and suggests that unrepaired apyrimidinic sites are lethal. Two confirmatory findings were as follows. (i) dut xth mutants were viable if they also had a mutation in the uracil-DNA glycosylase (ung) gene; such mutants should not remove uracil from DNA and should not, therefore, generate apyrimidinic sites. (ii) In the majority of the temperature-resistant revertants isolated, viability had been restored by a mutation in the dCTP deaminase (dcd) gene; such mutations should decrease dUTP production and hence uracil misincorporation. The results indicate that, in dut mutants, exonuclease III is essential for the repair of uracil-containing DNA and of apyrimidinic sites.  相似文献   

10.
Uracil-DNA glycosylase (UDG) is a ubiquitous enzyme found in eukaryotes and prokaryotes [1][2][3]. This enzyme removes uracil bases that are present in DNA as a result of either deamination of cytosine or misincorporation of dUMP instead of dTMP [4] [5], and it is the primary activity in the DNA base excision repair pathway. Although UDG activities have been shown to be present in several thermophiles [6][7][8], no sequences have been found that are complementary to the Escherichia coli ung gene, which encodes UDG [9]. Here, we describe a UDG from the thermophile Thermotoga maritima. The T. maritima UDG gene has a low level of homology to the E. coli G-T/U mismatch-specific DNA glycosylase gene (mug). The expressed protein is capable of removing uracil from DNA containing either a U-A or a U-G base pair and is heat-stable up to 75 degrees C. The enzyme is also active on single-stranded DNA containing uracil. Analogous genes appear to be present in several prokaryotic organisms, including thermophilic and mesophilic eubacteria as well as archaebacteria, the human-disease pathogens Treponema palladium and Rickettsia prowazekii, and the extremely radioresistant organism Deinococcus radiodurans. These findings suggest that the T. maritima UDG is a member of a new class of DNA repair enzymes.  相似文献   

11.
Correction of heteroduplex DNA obtained by hybridization of uracil-containing single-stranded M13mp18 phage DNA and "mutant" synthetic oligonucleotide with deletion of cytosine in SalGI site was studied in ung+ and ung- E. coli strains. Uracil-containing DNA was prepared after growth of phage in an E. coli strain dut- ung-. The DNA was hybridized with "mutant" oligonucleotide then complementary DNA chain was synthesized by T4 DNA polymerase. Ung+ and ung- E. coli cells were transformed by DNA. In all experiments mutation frequency in ung+ was higher than in ung- cells (approximately 6-fold) and reached 11-50%. Absolute number of mutants was higher in ung+ cells. The results indicate that high level of mutagenesis depends on uracil repair system polarizing the correction of heteroduplex DNA.  相似文献   

12.
Chromosomal rearrangements and base substitutions contribute to the large intraspecies genetic diversity of Helicobacter pylori. Here we explored the base excision repair pathway for the highly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG), a ubiquitous form of oxidized guanine. In most organisms, 8-oxoG is removed by a specific DNA glycosylase (Fpg in bacteria or OGG1 in eukaryotes). In the case where replication of the lesion yields an A/8-oxoG base pair, a second DNA glycosylase (MutY) can excise the adenine and thus avoid the fixation of the mutation in the next round of replication. In a genetic screen for H. pylori genes complementing the hypermutator phenotype of an Escherichia coli fpg mutY strain, open reading frame HP0142, a putative MutY coding gene, was isolated. Besides its capacity to complement E. coli mutY strains, HP0142 expression resulted in a strong adenine DNA glycosylase activity in E. coli mutY extracts. Consistently, the purified protein also exhibited such an activity. Inactivation of HP0142 in H. pylori resulted in an increase in spontaneous mutation frequencies. An Mg-dependent AP (abasic site) endonuclease activity, potentially allowing the processing of the abasic site resulting from H. pylori MutY activity, was detected in H. pylori cell extracts. Disruption of HP1526, a putative xth homolog, confirmed that this gene is responsible for the AP endonuclease activity. The lack of evidence for an Fpg/OGG1 functional homolog is also discussed.  相似文献   

13.
14.
Endonuclease V (deoxyinosine 3'-endonuclease) of Escherichia coli K-12 is a putative DNA repair enzyme that cleaves DNA's containing hypoxanthine, uracil, or mismatched bases. An endonuclease V (nfi) mutation was tested for specific mutator effects on a battery of trp and lac mutant alleles. No marked differences were seen in frequencies of spontaneous reversion. However, when nfi mutants were treated with nitrous acid at a level that was not noticeably mutagenic for nfi(+) strains, they displayed a high frequency of A:T-->G:C, and G:C-->A:T transition mutations. Nitrous acid can deaminate guanine in DNA to xanthine, cytosine to uracil, and adenine to hypoxanthine. The nitrous acid-induced A:T-->G:C transitions were consistent with a role for endonuclease V in the repair of deaminated adenine residues. A confirmatory finding was that the mutagenesis was depressed at a locus containing N(6)-methyladenine, which is known to be relatively resistant to nitrosative deamination. An alkA mutation did not significantly enhance the frequency of A:T-->G:C mutations in an nfi mutant, even though AlkA (3-methyladenine-DNA glycosylase II) has hypoxanthine-DNA glycosylase activity. The nfi mutants also displayed high frequencies of nitrous acid-induced G:C-->A:T transitions. These mutations could not be explained by cytosine deamination because an ung (uracil-DNA N-glycosylase) mutant was not similarly affected. However, these findings are consistent with a role for endonuclease V in the removal of deaminated guanine, i.e., xanthine, from DNA. The results suggest that endonuclease V helps to protect the cell against the mutagenic effects of nitrosative deamination.  相似文献   

15.
It is reported here that the rpr DNA repair gene of Serratia marcescens does not complement an Escherichia coli xth nfo AP endonuclease mutation for resistance to methyl methanesulphonate (MMS). Rather, rpr sensitized Escherichia coli wild-type, xth, and nfo strains to MMS. Also, it was found that rpr could not complement a triple tag alkA recA mutation in E. coli, indicating that there are limits to rpr complementing capabilities. It was determined that rpr gene dosage was not a factor in recA complementation. MMS sensitization of an E. coli wild-type strain, however, was directly related to rpr copy number. These data indicate that Rpr does not have an associated AP endonuclease activity, and that it is incapable of substituting for Tag I, Tag II, and RecA in a tag alkA recA background.  相似文献   

16.
The error frequency and mutational specificity associated with Escherichia coli uracil-initiated base excision repair were measured using an M13mp2 lacZalpha DNA-based reversion assay. Repair was detected in cell-free extracts utilizing a form I DNA substrate containing a site-specific uracil residue. The rate and extent of complete uracil-DNA repair were measured using uracil-DNA glycosylase (Ung)- or double-strand uracil-DNA glycosylase (Dug)-proficient and -deficient isogenic E. coli cells. In reactions utilizing E. coli NR8051 (ung(+) dug(+)), approximately 80% of the uracil-DNA was repaired, whereas about 20% repair was observed using NR8052 (ung(-) dug(+)) cells. The Ung-deficient reaction was insensitive to inhibition by the PBS2 uracil-DNA glycosylase inhibitor protein, implying the involvement of Dug activity. Under both conditions, repaired form I DNA accumulated in conjunction with limited DNA synthesis associated with a repair patch size of 1-20 nucleotides. Reactions conducted with E. coli BH156 (ung(-) dug(+)), BH157 (ung(+) dug(-)), and BH158 (ung(-) dug(-)) cells provided direct evidence for the involvement of Dug in uracil-DNA repair. The rate of repair was 5-fold greater in the Ung-proficient than in the Ung-deficient reactions, while repair was not detected in reactions deficient in both Ung and Dug. The base substitution reversion frequency associated with uracil-DNA repair was determined to be approximately 5.5 x 10(-)(4) with transversion mutations dominating the mutational spectrum. In the presence of Dug, inactivation of Ung resulted in up to a 7.3-fold increase in mutation frequency without a dramatic change in mutational specificity.  相似文献   

17.
The EcoRII endonuclease cleaves DNA containing the sequence CC(A/T)GG before the first cytosine. The methylation of the second cytosine in the sequence by either the EcoRII methylase or Dcm, a chromosomally coded protein in Escherichia coli, inhibits the cleavage. The gene for the EcoRII endonuclease was mapped by analysis of derivatives containing linker insertions, transposon insertions, and restriction fragment deletions. Surprisingly, plasmids carrying the wild-type endonuclease gene and the EcoRII methylase gene interrupted by transposon insertions appeared to be lethal to dcm+ strains of E. coli. We conclude that not all the EcoRII/Dcm recognition sites in the cellular DNA are methylated in dcm+ strains. The DNA sequence of a 1650-base pair fragment containing the endonuclease gene was determined. It revealed an open reading frame that could code for a 45.6-kDa protein. This predicted size is consistent with the known size of the endonuclease monomer (44 kDa). The endonuclease and methylase genes appear to be transcribed convergently from separate promoters. The reading frame of the endonuclease gene was confirmed at three points by generating random protein fusions between the endonuclease and beta-galactosidase, followed by an analysis of the sequence at the junctions. One of these fusions is missing 18 COOH-terminal amino acids of the endonuclease but still displays significant ability to restrict incoming phage in addition to beta-galactosidase activity. No striking similarity between the sequence of the endonuclease and any other protein in the PIR data base was found. The knowledge of the primary sequence of the endonuclease and the availability of the various constructs involving its gene should be helpful in the study of the interaction of the enzyme with its substrate DNA.  相似文献   

18.
The DNA base excision repair pathway is responsible for removal of oxidative and endogenous DNA base damage in both prokaryotes and eukaryotes. This pathway involves formation of an apurinic/apyrimidinic (AP) site in the DNA, which is further processed to restore the integrity of the DNA. In Escherichia coli it has been suggested that the major mode of repair involves replacement of a single nucleotide at the AP site, based on repair synthesis studies using oligonucleotide substrates containing a unique uracil base. The mechanism of the post-incision steps of the bacterial base excision repair pathway was examined using a DNA plasmid substrate containing a single U:G base pair. Repair synthesis carried out by repair-proficient ung, recJ and xon E.coli cell extracts was analyzed by restriction endonuclease cleavage of the DNA containing the uracil lesion. It was found that replacement of the uracil base was always accompanied by replacement of several nucleotides ( approximately 15) 3' of the uracil and this process was absolutely dependent on initial removal of the uracil base by the action of uracil-DNA glycosylase. In contrast to findings with oligonucleotide substrates, replacement of just a single nucleotide at the lesion site was not detected. These results suggest that repair patch length may be substrate dependent and a re-evaluation of the post-incision steps of base excision repair is suggested.  相似文献   

19.
The uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 was cloned, and the effects of this inhibitor on Escherichia coli cells that contain uracil-DNA glycosylase activity were determined. A PBS2 genomic library was constructed by inserting EcoRI restriction fragments of PBS2 DNA into a plasmid pUC19 vector. The library was used to transform wild-type (ung+) E. coli, and the presence of the functional inhibitor gene was determined by screening for colonies that supported growth of M13mp19 phage containing uracil-DNA. A clone was identified that carried a 4.1-kilobase EcoRI DNA insert in the vector plasmid. Extracts of cells transformed with this recombinant plasmid lacked detectable uracil-DNA glycosylase activity and contained a protein that inhibited the activity of purified E. coli uracil-DNA glycosylase in vitro. The uracil-DNA glycosylase inhibitor expressed in these E. coli was partially purified and characterized as a heat-stable protein with a native molecular weight of about 18,000. Hence, we conclude that the PBS2 uracil-DNA glycosylase inhibitor gene was cloned and that the gene product has properties similar to those from PBS2-infected Bacillus subtilis cells. Inhibitor gene expression in E. coli resulted in (i) a weak mutator phenotype, (ii) a growth rate similar to that of E. coli containing pUC19 alone, (iii) a sensitivity to the antifolate drug aminopterin similar to that of cells lacking the inhibitor gene, and (iv) an increased resistance to the lethal effects of 5-fluoro-2'-deoxyuridine. These physiological properties are consistent with the phenotypes of other ung mutants.  相似文献   

20.
The development of bacteriophage T7 was examined in an Escherichia coli double mutant defective for the two major apurinic, apyrimidinic endonucleases (exonuclease III and endonuclease IV, xth nfo). In cells infected with phages containing apurinic sites, the defect in repair enzymes led to a decrease of phage survival and a total absence of bacterial DNA degradation and of phage DNA synthesis. These results directly demonstrate the toxic action of apurinic sites on bacteriophage T7 at the intracellular level and its alleviation by DNA repair. In addition, untreated T7 phage unexpectedly displayed reduced plating efficiency and decreased DNA synthesis in the xth nfo double mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号