首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The advances made in quantifying electromagnetic absorption and its distribution for various exposure profiles are described. The conditions that have been studied extensively are: free-space irradiation and its variations, such as the presence of ground and reflecting surfaces and other humans in close proximity. Using an inhomogeneous block model of man, work has recently been extended to leakage-type near-fields such as those from RF heat sealers and other electronic equipment. Projections are made for the extension of this work to evaluate coupled near-fields, design of multielement near-field applicators to obtain physician-prescribed uniform or nonuniform rates of regional heating, and for the inverse scattering problem necessary for electromagnetic biomedical imaging. Accurate information about the dielectric properties of various tissues becomes increasingly important for proper inhomogeneous modeling of man.  相似文献   

2.
Localized and averaged specific absorption rates (SARs) were obtained in a full-size muscle-equivalent human model exposed to near-field 29.9 MHz irradiation at an outdoor facility. The model was positioned erect on a metallic groundplane 1.22 m (4 ft) from the base of a 10.8-m (35 ft) whip antenna with an input power of 1.0 kW. For whole-body SAR, a mean value of 0.83 W/kg was determined using two gradient-layer calorimeters in a twin-well configuration. The localized SARs at 12 body locations were measured using nonperturbing temperature probes and were highest in the ankle region. We conclude that averaged SAR measurements in a full-size phantom are feasible using a twin-calorimeter approach; measurements in the field are practical when human-size (183 x 61 x 46 cm) calorimeters are used.  相似文献   

3.
In-vitro studies of biological effects of electromagnetic fields are often conducted with cultured cells either in suspension or grown in a monolayer. In the former case, the exposed medium can be assumed to be homogeneous; however, eventually the cells settle to the bottom of the container forming a two layer system with different dielectric and conductive properties. In the present work the effect of this separation on the electric field distribution is calculated and experimentally measured at selected positions for a commonly used exposure configuration. The settled cell suspension is modeled by a well-defined two layer system placed in a rectangular container with the base of the container parallel to the direction of the magnetic field. Theoretical calculations based on numerical techniques are done for various two layer systems with different conductivities in each layer. The agreement between the theoretical calculations and the experimental measurements is within ± 1.5 mV/m, or 10% of the maximum induced field when the conductivity of the lower layer is ten times that of the upper layer. This result is well within experimental error. When the thickness of one of the layers is small compared to the thickness of the other layer, it is found that the electric field distribution is essentially that of the homogeneous case. The latter situation corresponds to a typical cell exposure condition. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Electromagnetic dosimetry was conducted in a tissue-equivalent full-sized model of man irradiated at 2 GHz inside a microwave-anechoic chamber. A nonperturbing temperature probe and a gradient-layer calorimeter were used to determine local and whole-body specific absorption rate (SAR), respectively. Relatively high SAR values were found in the limbs compared to the axis of the trunk of the model. The calorimeter experiments yielded an average SAR about three times higher than that estimated theoretically for a prolate spheroidal model of man. It is suggested that resonant interactions involving the limbs may be responsible for the disparity between theory and experiment.  相似文献   

5.
A homogeneous, lossy circular cylinder is used as a simple model of a biological object in which interior heating is produced by the absorption of electromagnetic waves. For this model, we determined the optimum frequency, polarization, orientation and shape of applicators. Analytical and numerical results are given for both electric and magnetic line sources, with three different polarizations relative to the cylinder. Coupling efficiencies and contour plots are presented for a range of parameters. One particularly interesting result is the production of maximum energy deposition at the center of a cylinder of muscle tissue when exposed in the 100-MHz frequency range by the use of four applicators surrounding the cylinder.  相似文献   

6.
This paper presents three-dimensional finite difference calculations of induced current densities in a grounded, homogeneous, realistically human-shaped phantom. Comparison is made with published experimental values of current density at 60 Hz, measured in conducting saline manikins with their arms down by the side. The congruence between calculation and experiment gives confidence in the applicability of the numerical method and phantom shape to other configurations. The effect of raising both arms above the head is to reduce the current densities in the head and neck by approximately 50% and to increase those from the thorax downwards by 20-30%. A sensitivity analysis was performed on the shape and dimensions of the phantom, from a 45-kg, 1.5-m-tall person to a 140-kg, 1.9-m-tall person. When the phantom is grounded through both feet the current densities range from 50 to 90 microAm-2 in the head (all values for a 60-Hz, 1-kVm-1, vertical applied field), 70 to 140 microAm-2 in the thorax, 150 to 440 microAm-2 at the crotch, and 500 to 2,230 microAm-2 in the ankle. When grounded through only one foot the current densities at the crotch range from 400 to 1,000 microAm-2 and from 1,000 to 4,400 microAm-2 in the ankle of the grounded leg. Scale transformations of the short-circuit current with phantom height, weight, and surface area are confirmed.  相似文献   

7.
This paper presents calculations for the electric field and absorbed power density distribution in chick brain tissue inside a test tube, using an off-center spherical model. It is shown that the off-center spherical model overcomes many of the limitations of the concentric spherical model, and permits a more realistic modeling of the brain tissue as it sits in the bottom of the test tube surrounded by buffer solution. The effect of the unequal amount of buffer solution above the upper and below the lower surfaces of the brain is analyzed. The field distribution is obtained in terms of a rapidly converging series of zonal harmonics. A method that permits the expansion of spherical harmonics about an off-center origin in terms of spherical harmonics at the origin is developed to calculate in closed form the electric field distribution. Numerical results are presented for the absorbed power density distribution at a carrier frequency of 147 MHz. It is shown that the absorbed power density increases toward the bottom of the brain surface. Scaling relations are developed by keeping the electric field intensity in the brain tissue the same at two different frequencies. Scaling relations inside, as well as outside, the brain surface are given. The scaling relation distribution is calculated as a function of position, and compared to the scaling relations obtained in the concentric spherical model. It is shown that the off-center spherical model yields scaling ratios in the brain tissue that lie between the extreme values predicted by the concentric and isolated spherical models.  相似文献   

8.
Specific absorption rate (SAR) was measured in models of the human head exposed to hand-held portable radios ("transceivers") transmitting at frequencies in the 800-MHz band. An isotropic implantable electric-field probe was used to measure internal fields induced in the head models, and SARs were determined by calculation. As well as determining representative values and distributions for SARs under various conditions, it was shown that antenna type and orientation with respect to the head are important factors affecting energy absorption.  相似文献   

9.
This paper investigates the minimum distance for a human body in the near field of a cellular telephone base station antenna for which there is compliance with the IEEE or ICNIRP threshold values for radio frequency electromagnetic energy absorption in the human body. First, local maximum specific absorption rates (SARs), measured and averaged over volumes equivalent to 1 and to 10 g tissue within the trunk region of a physical, liquid filled shell phantom facing and irradiated by a typical GSM 900 base station antenna, were compared to corresponding calculated SAR values. The calculation used a homogeneous Visible Human body model in front of a simulated base station antenna of the same type. Both real and simulated base station antennas operated at 935 MHz. Antenna-body distances were between 1 and 65 cm. The agreement between measurements and calculations was excellent. This gave confidence in the subsequent calculated SAR values for the heterogeneous Visible Human model, for which each tissue was assigned the currently accepted values for permittivity and conductivity at 935 MHz. Calculated SAR values within the trunk of the body were found to be about double those for the homogeneous case. When the IEEE standard and the ICNIRP guidelines are both to be complied with, the local SAR averaged over 1 g tissue was found to be the determining parameter. Emitted power values from the antenna that produced the maximum SAR value over 1 g specified in the IEEE standard at the base station are less than those needed to reach the ICNIRP threshold specified for the local SAR averaged over 10 g. For the GSM base station antenna investigated here operating at 935 MHz with 40 W emitted power, the model indicates that the human body should not be closer to the antenna than 18 cm for controlled environment exposure, or about 95 cm for uncontrolled environment exposure. These safe distance limits are for SARs averaged over 1 g tissue. The corresponding safety distance limits under the ICNIRP guidelines for SAR taken over 10 g tissue are 5 cm for occupational exposure and about 75 cm for general-public exposure.  相似文献   

10.
Temperature increases due to absorption of 1.2 GHz, CW, 70 mW/cm2, radio frequency (RF) energy, were measured in 3.3-cm-radius homogeneous muscle-equivalent spheres, M. mulatta cadaver heads (both detached from and attached to the body) and living, anesthetized M. mulatta heads. Temperatures were measured with a Vitek, Model 101 Electrothermia Monitor and temperature distributions were compared to theoretical predictions from a thermal-response model of a simulated cranial structure. The results show that the thermal response model accurately predicts the temperature distribution in muscle-equivalent spheres, the distribution of temperature in detached M. mulatta heads when exposed from the back of the head, and the distribution of temperature in attached M. mulatta cadaver heads for animals oriented with body parallel to the H-field. The temperature distribution in the detached M. mulatta heads varies markedly with exposure orientation, ie, facing forward, backward, or to the side. The orientation of the M. mulatta cadaver body significantly affects the temperature distribution in the head - with H-field orientation showing high, nonuniform values, and E-field orientation showing low, uniform values. In live animals blood flow produces a significant short-term effect on the temperature distribution in the midbrain, but not the cortex. Midbrain temperatures are both significantly higher and lower than the comparable cadaver measurements, depending on location.  相似文献   

11.
Dosimetric measurements were made in a muscle-equivalent model of an adult rhesus monkey subjected to far-field irradiation at 1.29 GHz. Profiles of microwave-induced heating in the model were obtained at eight locations, and a gradient-layer whole-body calorimeter was used to measure total absorbed energy. Average specific absorption rate (SAR) was calculated both from the calorimeter experiments and from the local temperature measurements. Thermographic imaging techniques were used to qualitatively show the microwave-induced surface heating patterns. For this model the calculated average SAR was 0.155 (W/kg)/(mW/cm2) which, at 1.29 GHs, makes the absorption cross section 84% of the geometric shadow cross section. The SAR is about three times that predicted for a prolate spheroidal model of similar mass. A disproportionally high absorption occured in the legs of the model positioned parallel to the E-polarization because of what is believed to be partial-body resonance.  相似文献   

12.
Measurements of the flux density and spectra of magnetic fields (MFs) generated by several types of electric bed heaters (EBH) were made in order to characterize the MFs to which the fetus may be exposed in utero from the mother's use of these devices. Data on MFs were gathered from more than 1,300 in-home and laboratory spot measurements. In-home measurements taken at seven different positions 10 cm from the EBHs determined that the mean flux density at the estimated position of the fetus relative to the device was 0.45 μT (4.5 mG) for electric blankets and 0.20 μT (2.0 mG) for electrically heated water beds. A rate-of-change (RC) metric applied to the nighttime segment of 24 h EMDEX-C personal-dosimeter measurements, which were taken next to the bed of volunteers, yielded an approximate fourfold to sixfold higher value for electric blanket users compared to water-bed heater users. These same data records yielded an approximate twofold difference for the same measurements when evaluated by the time-weighted-average (TWA) MF exposure metric. Performance of exposure meters was checked against standard fields generated in the laboratory, and studies of sources of variance in the in-home measurement protocols were carried out. Spectral measurements showed that the EBH's measured produced no appreciable high-frequency MFs. Data gathered during this work will be used in interpreting results from a component of the California Pregnancy Outcome Study, which evaluates the use of EBHs as a possible risk factor in miscarriage. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Electric fields induced in a conductive body by the magnetic field of a current-carrying wire were analyzed theoretically and experimentally to assess the dosimetric importance of highly nonuniform, field-exposure conditions. Experimentation revealed that a 60-Hz magnetic field was inversely proportional to the radius of a wire bundle carrying 100 A within a 0.5-m2 test area. A miniaturized electric field probe was used to measure the electric fields induced in 5-cm-deep, saline-filled models. In the theoretical analysis, numerical estimates of induced fields were made by a spreadsheet method. The theoretical calculations and the measured values of induced electric fields were generally in good agreement. The induced fields were in a plane perpendicular to a vertically incident magnetic field; the maximally induced fields were in areas nearest the wire bundle. The strength of the induced field increased with model size: from 96 microV/cm in a 10 x 10 cm model to 176 microV/cm in a 40 x 40 cm model. The strength of the field induced in a 20 x 20 cm model decreased with increasing model-to-wire spacing: from 132 microV/cm for a 1-cm spacing (2-mT maximum, incident field) to 50 microV/cm for a 6-cm spacing (0.33-mT maximum). The results indicate that increases in local values of nonuniformly incident fields produce relatively small increases in induced electric fields. This finding may be important in dosimetric consideration of circumstances, such as use of electric blankets, in which fields of low average strength are accompanied by intense local fields.  相似文献   

14.
A commercially available spreadsheet program is used on a microcomputer to calculate the induced current density and electric field patterns produced in a nonhomogeneous, anisotropic model of tissue by a localized, low-frequency magnetic field source. Specific application is made to coils used to promote the healing of bone fractures in limbs. The variation of the conductivity of the fracture gap during healing causes the induced current density pattern to change correspondingly, whereas the induced electric field remains relatively unchanged. Use of more simplified, isotropic models for the bone and for the soft tissue leads to results that differ significantly from those obtained from the full model. The magnetic field beyond the region of the coils contributes little to the induced currents in the fracture gap if the gap is located near the center of the coils. © 1994 Wiley-Liss, Inc.  相似文献   

15.
In this article, the general public daily exposure to broadcast signals and Global System for Mobile Communications (GSM) or Universal Mobile Telecommunications System (UMTS) mobile telephone signals in indoor areas is investigated. Temporal variations and traffic distributions during a day at different indoor sites in urban and rural zones are presented. The goal is to analyze the real exposure compared to the maximum assessment imposed by radio protection standards and to characterize the ratio between daily and maximum theoretical values. Hence, a realistic maximum is proposed based on the statistical analysis performed using measurements. Broadcast signals remain constant over the day so they are best fitted with a Normal distribution while the mobile telephone signals depend on the traffic demand during the day so they fit a three‐Gaussian distribution model. A general mask is also constructed for underlining the maximum equivalent active traffic for different periods in the day. Also, relations between the mean values over 24 h, the realistic maximal values (at 99%) and the maximal theoretical values are presented. The realistic maximum is also presented with a sliding time average of 6 min applied to the measurements in accordance with international standards. An extrapolation factor is given for the different systems to easily assess the maximum values starting from an instantaneous measurement. The extrapolation factor is also given for a broadband measurement to estimate the maximum potential exposure during the day. Bioelectromagnetics 33:288–297, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
A commercially available spreadsheet program is used on a microcomputer to calculate the electric field/current density distributions induced in irregularly shaped, inhomogeneous objects by low-frequency magnetic fields. A finite-difference method is applied to an impedance grid that represents the object being modeled. This approach is validated by comparison with 1) the analytical results of an eccentric cylinder model and 2) measurements made on a square dish containing a saline solution and square, insulating inclusions. Application of the method is also made to a culture dish with a layer of sediment exposed to a horizontal magnetic field. © 1993 Wiley-Liss, Inc.  相似文献   

17.
In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft.  相似文献   

18.

Aim

The purpose of the study was to examine the energy dependence of Gafchromic EBT radiochromic dosimetry films, in order to assess their potential use in intensity-modulated radiotherapy (IMRT) verifications.

Materials and methods

The film samples were irradiated with doses from 0.1 to 12 Gy using photon beams from the energy range 1.25 MeV to 25 MV and the film response was measured using a flat-bed scanner. The samples were scanned and the film responses for different beam energies were compared.

Results

A high uncertainty in readout of the film response was observed for samples irradiated with doses lower than 1 Gy. The relative difference exceeds 20% for doses lower than 1 Gy while for doses over 1 Gy the measured film response differs by less than 5% for the whole examined energy range. The achieved uncertainty of the experimental procedure does not reveal any energy dependence of Gafchromic EBT film response in the investigated energy range.

Conclusions

Gafchromic EBT film does not show any energy dependence in the conditions typical for IMRT but the doses measured for pre-treatment plan verifications should exceed 1 Gy.  相似文献   

19.
Results are presented from numerical calculations of the near fields of ICRH antennas in the quasisteady current approximation in two-dimensional geometry. The distributions of the vacuum electric and magnetic fields as well as of the surface current density in the antenna elements and inside the tokamak chamber are obtained. The electrotechnical characteristics of the antennas are analyzed numerically as functions of their geometric parameters.  相似文献   

20.
Sixty-Hz magnetic field exposures were measured for 45 adult residents of Maine. Thirty of the subjects resided near rights-of-way (ROWs) with either 345- and 115-kV transmission lines, or ROWs with only 115-kV transmission lines; fifteen resided far from any transmission lines. Personal exposure data for a single 24-hour period was acquired with the EMDEX. The EMDEX's event-marker button was used to partition exposures into Home and Away components. Also, three area measurements were taken for each subject during the personal exposure measurement period: 1) 24-hr fixed-site bedroom measurement with a second EMDEX; 2) Spot measurements in at least three rooms of every residence; and 3) Spot measurements outside each residence. Residence near transmission lines highly loaded during the measurement period was associated with increased Home and Total exposure relative to a far-away population. Average exposure level while away from home was uniform (at about 2 mG) throughout the study population. On a quantitative level, Home exposure was correlated equivalently with Spot-In (r = .70) and the 24-hr fixed site measurement (r = .68). Correlations of area measurements with Total exposure were weaker because of the dilution effect of Away exposure (r = .64 for Spot-In; r = .61 for 24-h Bedroom). Away and Home exposures were not correlated (r = .14), which reinforced our confidence that the participants used the EMDEX correctly. The data suggest the need for caution before inferences are drawn about total personal exposure from area measurements. The study demonstrates the feasibility of obtaining valid measures of magnetic-field exposure with the personal exposure monitors that have been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号