首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim We conducted a range‐wide phylogeographic study of a common Australian freshwater fish, the golden perch (Macquaria ambigua), to investigate the relationship between environmental processes and evolutionary history in drainage basins. Location Inland [Lake Eyre (LEB), Murray–Darling (MDB) and Bulloo (BULL)] and coastal basins [Fitzroy (FITZ)] of eastern Australia. Methods A total of 590 samples were collected from across the entire species’ distribution and a section of the mitochondrial DNA control region was sequenced. In order to reconstruct the evolutionary history of M. ambigua a comprehensive suite of phylogeographic analyses was conducted, including nested clade phylogeographic analysis, mismatch analysis and isolation‐with‐migration model simulations. Results Three major lineages corresponding to the major drainage basins, FITZ, MDB and LEB/BULL, were identified (ΦST = 0.92). Lineages from the coastal basin (FITZ) were highly divergent from those of the inland basins (up to 6%). Levels of genetic diversity in the inland basins were relatively low and our analyses indicate that these populations experienced both demographic and range expansions during the Pleistocene. Main conclusions Investigation of the range‐wide phylogeography of M. ambigua has revealed new insights into the biogeography of the Australian arid zone, particularly with regard to evolutionary events chronologically associated with cyclical moist and dry conditions. We propose that M. ambigua originated on the east coast (FITZ) and crossed a major geographic barrier, the Great Dividing Range (GDR), to colonize the inland basins (MDB, LEB and BULL). We infer a series of demographic and range expansion events for M. ambigua consistent with a scenario of moister Pleistocene conditions and increased connectivity of freshwater environments, both within and among drainage basins. Major lineages then diversified following isolation of freshwater environments under increasingly arid climate conditions. We suggest that management priorities for M. ambigua should include the resolution of taxonomic uncertainties and the maintenance of genetic diversity of both stocked populations in the MDB and native populations of the LEB that may be at risk of further isolation and reduced gene flow due to increased aridification under future climate change scenarios.  相似文献   

2.
Rivers provide an excellent system to study interactions between patterns of biodiversity structure and ecological processes. In these environments, gene flow is restricted by the spatial hierarchy and temporal variation of connectivity within the drainage network. In the Australian arid zone, this variability is high and rivers often exist as isolated waterholes connected during unpredictable floods. These conditions cause boom/bust cycles in the population dynamics of taxa, but their influence on spatial genetic diversity is largely unknown. We used a landscape genetics approach to assess the effect of hydrological variability on gene flow, spatial population structure and genetic diversity in an Australian freshwater fish, Macquaria ambigua. Our analysis is based on microsatellite data of 590 samples from 26 locations across the species range. Despite temporal isolation of populations, the species showed surprisingly high rates of dispersal, with population genetic structure only evident among major drainage basins. Within drainages, hydrological variability was a strong predictor of genetic diversity, being positively correlated with spring-time flow volume. We propose that increases in flow volume during spring stimulate recruitment booms and dispersal, boosting population size and genetic diversity. Although it is uncertain how the hydrological regime in arid Australia may change under future climate scenarios, management strategies for arid-zone fishes should mitigate barriers to dispersal and alterations to the natural flow regime to maintain connectivity and the species' evolutionary potential. This study contributes to our understanding of the influence of spatial and temporal heterogeneity on population and landscape processes.  相似文献   

3.
The spatial distribution of genetic diversity is a product of recent and historical ecological processes, as well as anthropogenic activities. A current challenge in population and conservation genetics is to disentangle the relative effects of these processes, as a first step in predicting population response to future environmental change. In this investigation, we compare the influence of contemporary population decline, contemporary ecological marginality and postglacial range shifts. Using classical model comparison procedures and Bayesian methods, we have identified postglacial range shift as the clear determinant of genetic diversity, differentiation and bottlenecks in 29 populations of butternut, Juglans cinerea L., a North American outcrossing forest tree. Although butternut has experienced dramatic 20th century decline because of an introduced fungal pathogen, our analysis indicates that recent population decline has had less genetic impact than postglacial recolonization history. Location within the range edge vs. the range core also failed to account for the observed patterns of diversity and differentiation. Our results suggest that the genetic impact of large-scale recent population losses in forest trees should be considered in the light of Pleistocene-era large-scale range shifts that may have had long-term genetic consequences. The data also suggest that the population dynamics and life history of wind-pollinated forest trees may provide a buffer against steep population declines of short duration, a result having important implications for habitat management efforts, ex situ conservation sampling and population viability analysis.  相似文献   

4.
Climate change will alter precipitation patterns with consequences for soil C cycling. An understanding of how fluctuating soil moisture affects microbial processes is therefore critical to predict responses to future global change. We investigated how long‐term experimental field drought influences microbial tolerance to lower moisture levels (“resistance”) and ability to recover when rewetted after drought (“resilience”), using soils from a heathland which had been subjected to experimental precipitation reduction during the summer for 18 years. We tested whether drought could induce increased resistance, resilience, and changes in the balance between respiration and bacterial growth during perturbation events, by following a two‐tiered approach. We first evaluated the effects of the long‐term summer drought on microbial community functioning to drought and drying–rewetting (D/RW), and second tested the ability to alter resistance and resilience through additional perturbation cycles. A history of summer drought in the field selected for increased resilience but not resistance, suggesting that rewetting after drought, rather than low moisture levels during drought, was the selective pressure shaping the microbial community functions. Laboratory D/RW cycles also selected for communities with a higher resilience rather than increased resistance. The ratio of respiration to bacterial growth during D/RW perturbation was lower for the field drought‐exposed communities and decreased for both field treatments during the D/RW cycles. This suggests that cycles of D/RW also structure microbial communities to respond quickly and efficiently to rewetting after drought. Our findings imply that microbial communities can adapt to changing climatic conditions and that this might slow the rate of soil C loss predicted to be induced by future cyclic drought.  相似文献   

5.
The release of water from deep below the surface of large dams causes significant disturbance to water temperature regimes in downstream river channels with consequent impacts upon aquatic biota and river health. The Murray–Darling Basin (MDB) has a large number of dams, which are known to cause cold water pollution (CWP) in the downstream reaches of the impounded rivers. This study reviews the situation with regard to CWP in the MDB including the location, magnitude and extent of temperature suppression, the impacts upon fish, constraints and progress towards ameliorating the problem.  相似文献   

6.
Symbionts within the family Symbiodiniaceae are important on coral reefs because they provide significant amounts of carbon to many different reef species. The breakdown of this mutualism that occurs as a result of increasingly warmer ocean temperatures is a major threat to coral reef ecosystems globally. Recombination during sexual reproduction and high rates of somatic mutation can lead to increased genetic variation within symbiont species, which may provide the fuel for natural selection and adaptation. However, few studies have asked whether such variation in functional traits exists within these symbionts. We used several genotypes of two closely related species, Breviolum antillogorgium and B. minutum, to examine variation of traits related to symbiosis in response to increases in temperature or nitrogen availability in laboratory cultures. We found significant genetic variation within and among symbiont species in chlorophyll content, photosynthetic efficiency, and growth rate. Two genotypes showed decreases in traits in response to increased temperatures predicted by climate change, but one genotype responded positively. Similarly, some genotypes within a species responded positively to high‐nitrogen environments, such as those expected within hosts or eutrophication associated with global change, while other genotypes in the same species responded negatively, suggesting context‐dependency in the strength of mutualism. Such variation in traits implies that there is potential for natural selection on symbionts in response to temperature and nutrients, which could confer an adaptive advantage to the holobiont.  相似文献   

7.
Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic divergence and test for signatures of evolutionary change driven by long‐term simulated climate change applied to natural grassland at Buxton Climate Change Impacts Laboratory (BCCIL). Experimental climate treatments were applied to grassland plots for 15 years using a replicated and spatially blocked design and included warming, drought and precipitation treatments. We detected significant genetic differentiation between climate change treatments and control plots in two coexisting perennial plant study species (Festuca ovina and Plantago lanceolata). Outlier analyses revealed a consistent signature of selection associated with experimental climate treatments at individual AFLP loci in P. lanceolata, but not in F. ovina. Average background differentiation at putatively neutral AFLP loci was close to zero, and genomewide genetic structure was associated neither with species abundance changes (demography) nor with plant community‐level responses to long‐term climate treatments. Our results demonstrate genetic divergence in response to a suite of climatic environments in reproductively mature populations of two perennial plant species and are consistent with an evolutionary response to climatic selection in P. lanceolata. These genetic changes have occurred in parallel with impacts on plant community structure and may have contributed to the persistence of individual species through 15 years of simulated climate change at BCCIL.  相似文献   

8.
For freshwater systems, climate change‐induced alterations to drought regimes are a considerable threat to already threatened species. This is particularly poignant for kōwaro (or Canterbury mudfish, Neochanna burrowsius), a critically endangered fish largely restricted to drying‐prone waterways on the Canterbury Plains, New Zealand. By comparing three catchment‐wide surveys (2007, 2010, 2015) within the Waianiwaniwa Valley, we assessed the scale and magnitude of population change induced by 2 years of consecutive drought (2014–15), when compared to surveys during wetter conditions (2007, 2010). The droughts triggered a catchment‐wide switch from adult‐dominated populations to populations comprised of juveniles indicated by a significant reduction in median size (~95 mm during the wet to ~60 mm after drought). In comparison, population abundances were highly variable, indicated by no significant change in catch‐per‐unit‐effort. The large variation in catch rates and connection of median size to reproductive potential mean median size will be useful to measure in monitoring to infer potential changes to population resilience, particularly during extreme events. Furthermore, because N. burrowsius could be regarded as extremophile fish, already restricted to harsh habitats, they are likely to become increasingly threatened by climate change. Thus, tools that allow for insightful comparisons between populations, such as a population resilience framework based on both abundance and body size distribution, will be increasingly important for pragmatic decision‐making for targeted conservation measures.  相似文献   

9.
Understanding the environmental parameters that drive adaptation among populations is important in predicting how species may respond to global climatic changes and how gene pools might be managed to conserve adaptive genetic diversity. Here, we used Bayesian FST outlier tests and allele–climate association analyses to reveal two Eucalyptus EST‐SSR loci as strong candidates for diversifying selection in natural populations of a southwestern Australian forest tree, Eucalyptus gomphocephala (Myrtaceae). The Eucalyptus homolog of a CONSTANS‐like gene was an FST outlier, and allelic variation showed significant latitudinal clinal associations with annual and winter solar radiation, potential evaporation, summer precipitation and aridity. A second FST outlier locus, homologous to quinone oxidoreductase, was significantly associated with measures of temperature range, high summer temperature and summer solar radiation, with important implications for predicting the effect of temperature on natural populations in the context of climate change. We complemented these data with investigations into neutral population genetic structure and diversity throughout the species range. This study provides an investigation into selection signatures at gene‐homologous EST‐SSRs in natural Eucalyptus populations, and contributes to our understanding of the relationship between climate and adaptive genetic variation, informing the conservation of both putatively neutral and adaptive components of genetic diversity.  相似文献   

10.
黄淮海地区干旱变化特征及其对气候变化的响应   总被引:13,自引:0,他引:13  
徐建文  居辉  刘勤  杨建莹 《生态学报》2014,34(2):460-470
为了探究气候变化背景下黄淮海地区的干旱特征,基于黄淮海平原34个气象站点的1961—2012年气象数据,使用相对湿润指数探讨分析了近50年黄淮海地区冬小麦生长季及4个季节干旱的时空变化及其对气候变化的响应。结果表明:(1)在整个分析期内(1961—2011)冬小麦生长季干旱减轻,但是在近20年干旱有了加重的趋势,且干旱加重的趋势是一种突变现象。(2)黄淮海地区1961年以来,春季、冬季以及冬小麦生长季内均表现为不同程度的干旱,干旱频率都达到90%以上,其中春、冬两季最为干旱,3个时段整个黄淮海中北部地区都为高频干旱区域,且4个季节及冬小麦生长季干旱程度与干旱频率的区域分布均表现为由南向北递增的趋势。(3)黄淮海地区的干旱特征对降水、太阳辐射和相对湿度这3个气候要素的变化最为敏感。  相似文献   

11.
Precipitation patterns are changing across the globe causing more severe and frequent drought for many forest ecosystems. Although research has focused on the resistance of tree populations and communities to these novel precipitation regimes, resilience of forests is also contingent on recovery following drought, which remains poorly understood, especially in aseasonal tropical forests. We used rainfall exclusion shelters to manipulate the interannual frequency of drought for diverse seedling communities in a tropical forest and assessed resistance, recovery and resilience of seedling growth and mortality relative to everwet conditions. We found seedlings exposed to recurrent periods of drought altered their growth rates throughout the year relative to seedlings in everwet conditions. During drought periods, seedlings grew slower than seedlings in everwet conditions (i.e., resistance phase) while compensating with faster growth after drought (i.e., recovery phase). However, the response to frequent drought was species dependent as some species grew significantly slower with frequent drought relative to everwet conditions while others grew faster with frequent drought due to overcompensating growth during the recovery phase. In contrast, mortality was unrelated to rainfall conditions and instead correlated with differences in light. Intra‐annual plasticity of growth and increased annual growth of some species led to an overall maintenance of growth rates of tropical seedling communities in response to more frequent drought. These results suggest these communities can potentially adapt to predicted climate change scenarios and that plasticity in the growth of species, and not solely changes in mortality rates among species, may contribute to shifts in community composition under drought.  相似文献   

12.
Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision‐making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (= ?0.77; < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence.  相似文献   

13.
We used 179 tree ring chronologies of Douglas‐fir [Pseudotsuga menziesii (Mirb.) Franco] from the International Tree‐Ring Data Bank to study radial growth response to historical climate variability. For the coastal variety of Douglas‐fir, we found positive correlations of ring width with summer precipitation and temperature of the preceding winter, indicating that growth of coastal populations was limited by summer dryness and that photosynthesis in winter contributed to growth. For the interior variety, low precipitation and high growing season temperatures limited growth. Based on these relationships, we chose a simple heat moisture index (growing season temperature divided by precipitation of the preceding winter and current growing season) to predict growth response for the interior variety. For 105 tree ring chronologies or 81% of the interior samples, we found significant linear correlations with this heat moisture index, and moving correlation functions showed that the response was stable over time (1901–1980). We proceeded to use those relationships to predict regional growth response under 18 climate change scenarios for the 2020s, 2050s, and 2080s with unexpected results: for comparable changes in heat moisture index, the most southern and outlying populations of Douglas‐fir in Mexico showed the least reduction in productivity. Moderate growth reductions were found in the southern United States, and strongly negative response in the central Rocky Mountains. Growth reductions were further more pronounced for high than for low elevation populations. Based on regional differences in the slope of the growth–climate relationship, we propose that southern populations are better adapted to drought conditions and could therefore contain valuable genotypes for reforestation under climate change. The results support the view that climate change may impact species not just at the trailing edges but throughout their range due to genetic adaptation of populations to local environments.  相似文献   

14.
In many cases, understanding species’ responses to climate change requires understanding variation among individuals in response to such change. For species with strong symbiotic relationships, such as many coral reef species, genetic variation in symbiont responses to temperature may affect the response to increased ocean temperatures. To assess variation among symbiont genotypes, we examined the population dynamics and physiological responses of genotypes of Breviolum antillogorgium in response to increased temperature. We found broad temperature tolerance across genotypes, with all genotypes showing positive growth at 26, 30, and 32°C. Genotypes differed in the magnitude of the response of growth rate and carrying capacity to increasing temperature, suggesting that natural selection could favor different genotypes at different temperatures. However, the historical temperature at which genotypes were reared (26 or 30°C) was not a good predictor of contemporary temperature response. We found increased photosynthetic rates and decreased respiration rates with increasing contemporary temperature, and differences in physiology among genotypes, but found no significant differences in the response of these traits to temperature among genotypes. In species with such broad thermal tolerance, selection experiments on symbionts outside of the host may not yield results sufficient for evolutionary rescue from climate change.  相似文献   

15.
Correlates between genetic diversity at intra- and interpopulation levels and the species diversity in plant communities are rarely investigated. Such correlates may give insights into the effect of local selective forces across different communities on the genetic diversity of local plant populations. This study has employed amplified fragment length polymorphism to assess the genetic diversity within and between 10 populations of Ranunculus acris in relation to the species diversity (richness and evenness) of grassland communities of two different habitat types, 'seminatural' and 'agriculturally improved', located in central Germany. Within-population genetic diversity estimated by Nei's unbiased gene diversity (HE) was high (0.258-0.334), and was not correlated with species richness (Pearson's r = -0.17; P = 0.64) or species evenness (Pearson's r = 0.15; P = 0.68) of the plant communities. However, the genetic differentiation between R. acris populations was significantly correlated with the difference in species evenness (Mantel's r = 0.62, P = 0.02), but not with difference in species richness of plant communities (r = -0.17, P = 0.22). Moreover, we also found that populations of R. acris from the 'seminatural' habitat were genetically different (amova, P < 0.05) from those in 'agriculturally improved' habitats, suggesting that gene flow between these habitat types is limited. The results reported in this study may indicate that habitat characteristics influence the genetic diversity of plant species.  相似文献   

16.
We hypothesized that population diversities of partners in nitrogen‐fixing rhizobium–legume symbiosis can be matched for “interplaying” genes. We tested this hypothesis using data on nucleotide polymorphism of symbiotic genes encoding two components of the plant–bacteria signaling system: (a) the rhizobial nodA acyltransferase involved in the fatty acid tail decoration of the Nod factor (signaling molecule); (b) the plant NFR5 receptor required for Nod factor binding. We collected three wild‐growing legume species together with soil samples adjacent to the roots from one large 25‐year fallow: Vicia sativa, Lathyrus pratensis, and Trifolium hybridum nodulated by one of the two Rhizobium leguminosarum biovars (viciae and trifolii). For each plant species, we prepared three pools for DNA extraction and further sequencing: the plant pool (30 plant indiv.), the nodule pool (90 nodules), and the soil pool (30 samples). We observed the following statistically significant conclusions: (a) a monotonic relationship between the diversity in the plant NFR5 gene pools and the nodule rhizobial nodA gene pools; (b) higher topological similarity of the NFR5 gene tree with the nodA gene tree of the nodule pool, than with the nodA gene tree of the soil pool. Both nonsynonymous diversity and Tajima's D were increased in the nodule pools compared with the soil pools, consistent with relaxation of negative selection and/or admixture of balancing selection. We propose that the observed genetic concordance between NFR5 gene pools and nodule nodA gene pools arises from the selection of particular genotypes of the nodA gene by the host plant.  相似文献   

17.
18.
Positive species–genetic diversity correlations (SGDCs) are often thought to result from the parallel influence of neutral processes on genetic and species diversity. Yet, confounding effects of non‐neutral mechanisms have not been explored. Here, we investigate the impact of non‐neutral genetic diversity on SGDCs in high Andean wetlands. We compare correlations between plant species diversity and genetic diversity (GD) calculated with and without loci potentially under selection (outlier loci). The study system includes 2188 specimens from five species (three common aquatic macroinvertebrate and two dominant plant species) that were genotyped for 396 amplified fragment length polymorphism loci. We also appraise the importance of neutral processes on SGDCs by investigating the influence of habitat fragmentation features. Significant positive SGDCs were detected for all five species (mean SGDC = 0.52 ± 0.05). While only a few outlier loci were detected in each species, they resulted in significant decreases in GD and in SGDCs. This supports the hypothesis that neutral processes drive species–genetic diversity relationships in high Andean wetlands. Unexpectedly, the effects on genetic diversity GD of the habitat fragmentation characteristics in this study increased with the presence of outlier loci in two species. Overall, our results reveal pitfalls in using habitat features to infer processes driving SGDCs and show that a few loci potentially under selection are enough to cause a significant downward bias in SGDC. Investigating confounding effects of outlier loci thus represents a useful approach to evidence the contribution of neutral processes on species–genetic diversity relationships.  相似文献   

19.
Coral reefs are under extreme threat due to a number of stressors, but temperature increases due to changing climate are the most severe. Rising ocean temperatures coupled with local extremes lead to extensive bleaching, where the coral‐algal symbiosis breaks down and corals may die, compromising the structure and function of reefs. Although the symbiotic nature of the coral colony has historically been a focus of research on coral resilience, the host itself is a foundational component in the response to thermal stress. Fixed effects in the coral host set trait baselines through evolutionary processes, acting on many loci of small effect to create mosaics of thermal tolerance across latitudes and individual coral reefs. These genomic differences can be strongly heritable, producing wide variation among clones of different genotypes or families of a specific larval cross. Phenotypic plasticity is overlaid on these baselines and a growing body of knowledge demonstrates the potential for acclimatization of reef‐building corals through a variety of mechanisms that promote resilience and stress tolerance. The long‐term persistence of coral reefs will require many of these mechanisms to adjust to warmer temperatures within a generation, bridging the gap to reproductive events that allow recombination of standing diversity and adaptive change. Business‐as‐usual climate scenarios will probably lead to the loss of some coral populations or species in the future, so the interaction between intragenerational effects and evolutionary pressure is critical for the survival of reefs.  相似文献   

20.
Drought duration and intensity are expected to increase with global climate change. How changes in water availability and temperature affect the combined plant–soil–microorganism response remains uncertain. We excavated soil monoliths from a beech (Fagus sylvatica L.) forest, thus keeping the understory plant–microbe communities intact, imposed an extreme climate event, consisting of drought and/or a single heat‐pulse event, and followed microbial community dynamics over a time period of 28 days. During the treatment, we labeled the canopy with 13CO2 with the goal of (i) determining the strength of plant–microbe carbon linkages under control, drought, heat and heat–drought treatments and (ii) characterizing microbial groups that are tightly linked to the plant–soil carbon continuum based on 13C‐labeled PLFAs. Additionally, we used 16S rRNA sequencing of bacteria from the Ah horizon to determine the short‐term changes in the active microbial community. The treatments did not sever within‐plant transport over the experiment, and carbon sinks belowground were still active. Based on the relative distribution of labeled carbon to roots and microbial PLFAs, we determined that soil microbes appear to have a stronger carbon sink strength during environmental stress. High‐throughput sequencing of the 16S rRNA revealed multiple trajectories in microbial community shifts within the different treatments. Heat in combination with drought had a clear negative effect on microbial diversity and resulted in a distinct shift in the microbial community structure that also corresponded to the lowest level of label found in the PLFAs. Hence, the strongest changes in microbial abundances occurred in the heat–drought treatment where plants were most severely affected. Our study suggests that many of the shifts in the microbial communities that we might expect from extreme environmental stress will result from the plant–soil–microbial dynamics rather than from direct effects of drought and heat on soil microbes alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号