首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The germination response of seeds from fire‐prone vegetation to fire‐related cues such as heat shock and smoke has usually been studied by applying the cues singly. The few studies that have applied the cues in combination have shown that interactions between the cues are possible. Here, the response of seeds from a number of species to combined heat shock and smoke is reported. Heat shock (25, 50, 75 and 100°C) and aerosol smoke (0, 5, 10 and 20 min) were applied factorially to nine species that form soil seed banks in the Sydney region of south‐eastern Australia. These species were from Epacridaceae (four species), Myrtaceae (four species) and Cyperaceae (one species) and ranged from fire‐sensitive obligate seeders to fire‐tolerant facultative resprouters. Germination of Dracophyllum secundum R. Br and Sprengelia monticola (A. Cunn. ex DC.) Druce was low and did not respond to the germination cues. The positive response of Gahnia sieberiana Kunth and Kunzea ambigua (Sm.) Druce to heat shock and smoke was independent and additive. The positive response of Kunzea capitata Rchb. to the interaction between heat shock and smoke was synergistic, and the response of Baeckea diosmifolia Rudge and Baeckea imbricata (Gaertn.) Druce was unitive, with germination increase only occurring following combined heat and smoke application. Epacris coriacea A. Cunn. ex DC. and Epacris obtusifolia Sm. had low levels of dormancy and hence it was not possible to find a fire response. Gahnia sieberiana and K. capitata responded differently to the combination of heat shock and smoke than has previously been reported. Germination of species from habitats that are infrequently burnt was not affected by heat shock or smoke. Low‐intensity fire or patches within fire may be important for seedling recruitment as the 50°C heat shock stimulated germination in four of the five species that responded to the heat cue, and germination of Baeckea imbricata declined within the 100°C heat shock treatment. Germination of one species, Baeckea imbricata, was only stimulated by a specific combination of cues, indicating that regeneration niches may be narrow for some species and that the application of a range of heat and smoke doses is required to find such responses. Of the species positively responding to heat shock and smoke, a requirement for both cues was prevalent, therefore the response to these cues in isolation cannot be relied upon to give a true indication of the fire response of a species.  相似文献   

2.
Abstract Many species found in fire‐prone habitats that possess a soil‐stored seedbank only recruit seedlings in large numbers following a fire. Fire‐related germination cues are presumably used by these seeds as signals that a fire has occurred, and would include the heating that occurs in the soil and the combustion products of burning vegetation, smoke and charcoal. Three Sydney species, Grevillea buxifolia (Sm.) R. Br., Grevillea sericea (Sm.) R. Br. and Grevillea speciosa (Knight) McGillivray, were studied for the interactive effects of these cues on their germination. The germination of all species was found to increase with both smoke and heat treatments. While smoke always had a greater influence than heat, the relationship between the two treatments varied with species. The presence of two fire‐related germination cues should allow these species to take better advantage of the recruitment opportunities of the post‐fire environment.  相似文献   

3.
Invasive plant species are the second most important threat to global biodiversity loss after land‐use change. Invasive species can modify native community composition, deplete species diversity and affect ecosystem processes. The Caatinga is one of the most human‐affected Brazilian ecosystems owing to non‐sustainable use of its natural resources. Prosopis juliflora is an important invasive plant species in the Caatinga ecosystem. Seed germination is a critical stage in plant life cycles and is a major factor in the establishment and success of invasive plant species. Among the factors that affect seed germination and dormancy, coat‐imposed seems to be the most important for P. juliflora. In Prosopis species, the ingestion of fruits by wild and domestic animals may promote and accelerate germination, enhancing the dispersal of seeds and fruits of these species. We investigated the germination capacity of P. juliflora seeds after artificial mechanical and chemical scarification and analyzed the changes in seedling vigor caused by the scarification treatments. Germination rate, germination time (TMG) and germination synchrony (E) differed significantly with the length of the scarification treatments in H2SO4 for both seeds with endocarps and seeds without endocarps (non‐endocarp seeds). Sulfuric acid affected plant survival more strongly than germination rate, particularly in non‐endocarp seeds.  相似文献   

4.
Seed germination and seedling establishment patterns have been used to classify species as shade tolerant or intolerant. The main objective of this research was to investigate, under controlled conditions, seed germination of species from different successional positions as well as to follow seed germination and seedling survival under natural shade in the field. The species studied were Solarium granuloso‐leprosum, Trema micrantha, Cecropia pachystachya, Croton piptocalyx, Bauhinia forficata subsp. pruinosa. Senna macranthera, Schizolobium parahyba, Piptadenia gonoacantha, Chorisia speciosa, Pseudobombax grandiflorum, Ficus guaranitica, Esenbeckia leiocarpa, Pachystroma longifolium, Myroxylon peruiferum, and Hymenaea courbaril. Field trials were carried out at Santa Genebra Municipal Reserve, Campinas, SP, Brazil, at the forest edge and in the understory. No significant correlations were detected between successional status and seed size or seed water content. Light‐regulated germination was present only in small‐seeded species. In field experiments, most species, including the light‐sensitive ones, were able to germinate under the canopy, where a low red/far‐red ratio predominates. Most species, mainly those of early‐ and intermediate successional positions, presented low seedling survival rates under shade. Myroxylon peruiferum was the most shade tolerant species, while 5. granuloso‐leprosum, C. speciosa, P. gonoacantha, F. guaranitica, T. micrantha, and 5. parahyba were the most shade intolerant. These latter species showed little or no survival under the shade conditions.  相似文献   

5.
Abstract Invasive species have been hypothesized to out‐compete natives though either a Jack‐of‐all‐trades strategy, where they are able to utilize resources effectively in unfavourable environments, a master‐of‐some, where resource utilization is greater than its competitors in favourable environments, or a combination of the two (Jack‐and‐master). We examined the invasive strategy of Berberis darwinii in New Zealand compared with four co‐occurring native species by examining germination, seedling survival, photosynthetic characteristics and water‐use efficiency of adult plants, in sun and shade environments. Berberis darwinii seeds germinated more in shady sites than the other natives, but survival was low. In contrast, while germination of B. darwinii was the same as the native species in sunny sites, seedling survival after 18 months was nearly twice that of the all native species. The maximum photosynthetic rate of B. darwinii was nearly double that of all native species in the sun, but was similar among all species in the shade. Other photosynthetic traits (quantum yield and stomatal conductance) did not generally differ between B. darwinii and the native species, regardless of light environment. Berberis darwinii had more positive values of δ13C than the four native species, suggesting that it gains more carbon per unit water transpired than the competing native species. These results suggest that the invasion success of B. darwinii may be partially explained by combination of a Jack‐of‐all‐trades scenario of widespread germination with a master‐of‐some scenario through its ability to photosynthesize at higher rates in the sun and, hence, gain a rapid height and biomass advantage over native species in favourable environments.  相似文献   

6.
Abstract

Melaleuca styphelioides is considered as medicinal plant. This study was carried out to evaluate for the first time the phytochemical composition and to compare the antifungal activities of essential oil (EOs), methanol and aqueous extracts of M. styphelioides Sm. leaves against three fungi (Aspergillus niger, Rhizopus nigricans and Penicillium digitatum). A total of 10 components of the EO were identified, with the principal compound being methyl eugenol (87.2%). Results of the phytochemical analysis of leaves extract exhibited the presence of different phytoconstituents (phenolic compounds, flavonoids, tannins and anthocyanins). Volatile and non-volatile extracts were found to express dose-dependent inhibition against all tested fungi. Indeed, the EO oil showed significant inhibition of fungal growth and the IC50 was 2.08?µL/mL for A. niger indicating that M. styphelioides leaf EO was particularly effective against this pathogen. The most susceptible species for the aqueous extract was P. digitatum (IC50= 9.54?mg/mL) whereas R. nigricans was found to be more susceptible to the methanolic extract (IC50= 8.31?mg/mL). Thus, the EO and aqueous as well as methanol extracts of M. styphelioides leaves possess antifungal activity and hence, it can be suggested for use in the food or pharmaceutical industries as an alternative to chemical preservatives.  相似文献   

7.
Fire is a non-selective disturbance that impacts equally plant species that could be selected differentially by livestock. Post-fire recruitment dynamics is an important ecological process that has been barely studied in Patagonian grass species. This work analyzes the effect of fire on seed germination, seedling growth, and survival of Pappostipa speciosa (ex Stipa speciosa) and Festuca pallescens, two dominant perennial grasses from NW Patagonia that differ in palatability. We hypothesized that physical and chemical factors derived from fire differentially affect recruitment of these species. We performed experiments in the field and under laboratory and greenhouse conditions to study the integral effect of fire and of related abiotic factors (i.e., smoke, heat, charcoal, and ash) on different phases of recruitment of both species. Experimental burning promoted P. speciosa emergence over time, but they did not affect F. pallescens total emergence. Experimental burning decreased P. speciosa seedling growth (i.e., few leaves and small size), but they did not affect seedling survival. Smoke from laboratory experiments stimulated P. speciosa germination. Exposing F. pallescens seeds to 120°C decreased germination and seedling growth. Fire might act as a selective force on recruitment of both species, as well as changing competitive interactions during postfire regeneration. The effect of fire on the recruitment dynamics of the studied species depended strongly on both intrinsic species characteristics and meteorological conditions.  相似文献   

8.
Regeneration and expansion of Aristida beyrichiana and Aristida stricta (wiregrass) populations in remaining fire‐maintained Pinus palustris (longleaf pine) stands of the southeastern United States has become an objective of land managers. Although growing‐season fire is required for successful wiregrass seed production, studies examining naturally occurring wiregrass seedling dynamics are few. This study investigates how seedling survivorship is affected by season of burn, seedling size, time since germination, and proximity to adult plants. Restoration at this research site was begun in 1992 with the planting of containerized longleaf pine and wiregrass seedlings. Study plots were established in November 1997 after a growing‐season prescribed fire (June 1996) that resulted in successful seed production and seedling recruitment. Burn treatment plots included (1) no burn (control), (2) fire in the dormant season of the first year after germination (March 1998), (3) fire in the growing season of the first year after germination (August 1998), and (4) fire in the growing season of the second year after germination (July 1999). Seedling mortality increased with growing season burning and close proximity to planted adults. Natural seedling recruitment continued into the second year after initial seed‐drop in all plots, which verifies that wiregrass seed banking occurs for a minimum of 2 years after seed drop. Where wiregrass management objectives include population expansion, seedling recruits should be allowed 1 to 2 years post‐germination without growing season fire for successful establishment.  相似文献   

9.
Soil seed banks play a major role in the post-fire regeneration of Mediterranean shrublands. They vary throughout the year in species composition, abundance, and readiness to germinate. After fire, germination occurs mainly during the following fall to spring. Time of germination can determine recruitment success. It is unclear what factors control post-fire germination and its timing. We tested the effects of season and fire on the readily germinable soil seed bank of a seeder-dominated shrubland. Plots were burned early and late in the summer season (ES, LS). Soil samples were collected before and after fire, and germinated in a chamber simulating successively autumn, winter, and spring conditions. Samples were kept moistened at all times. Fire intensity was similar between ES and LS. Several species of Cistus and herbs, mostly annuals, were dominant. Most germination occurred during the simulated-autumn period, with little subsequent germination during the following two periods. Germination speed (T 50) during simulated-autumn was similar for shrubs and herbs, and independent of season or fire. Germination was lower for two shrubs (Rosmarinus officinalis, Cistus salvifolius) and higher for herbaceous dicots in LS than in ES soils. Fire reduced monocots and enhanced Cistus. Germination period significantly interacted with fire and season in some groups or species, altering the simulated-autumn germination peak. We demonstrate that the seed bank can germinate swiftly under simulated-autumn conditions. Hence, water availability is the main controlling factor of germination. Fire season differentially affected some species or groups, and could affect the post-fire regeneration.  相似文献   

10.
Most obligate seeder species build up a soil seed bank that is associated with massive seed germination in the year immediately after a fire. These species are also shade‐intolerant and disappear when vegetation cover closes, creating unsuitable conditions for seedling recruitment. The only way for these plants to expand their populations is when habitats suitable for seedling recruitment arise (i.e. in years immediately after a fire). However, short primary seed dispersal of obligate seeders does not allow these plants to colonise the suitable habitats, and these habitats can only be colonised by secondary seed dispersion. We hypothesised that Fumana ericoides, an obligate‐seeding small shrub, not only establishes abundantly in the first year after fire, but also expands its local range in the following years due to secondary dispersal by ants while suitable habitats are still available. We tested this hypothesis using experimental studies and a simulation model of potential population expansion in a recently burned area. Results showed that F. ericoides not only established prolifically in the year immediately after fire, but was also able to recruit new individuals and expand its population in the years following the fire, despite a low germination rate and short primary seed dispersal. Ant‐mediated seed dispersal and availability of suitable habitats were key factors in this phenomenon: ants redistributed seeds in suitable habitats while they were available, which accelerated the expansion of F. ericoides because new plants established far away from the core population.  相似文献   

11.
Abstract Seed germination is dependent on the interaction between the dormancy state of a seed and the presence of favourable environmental conditions. Thus, the spectacular pulse of seedling recruitment in many Australian vegetation communities following disturbances such as fire can be attributed to changes in microsite conditions and/or the dormancy‐breaking effect of the disturbance on accumulated seed banks. Grevillea rivularis is a threatened species endemic to the area immediately above Carrington Falls in the NSW Southern Highlands. Most of the population is confined to the riparian vegetation zone in woodland and heath, and is therefore subject to periodic disturbance from fire and flood. For this species, a pulse of seedling recruitment has been recorded after fire, flood and mechanical soil disturbance. The aims of this study were to examine the density and vertical distribution of the soil‐stored seed bank and to investigate the role of heat and scarification as cues for germination of fresh and soil‐stored seed. There was a large seed bank under the canopies of established individuals (194 ± 73 seeds m?2) and most seeds were found in the 0–2 cm and leaf‐litter layers of the soil profile. The germination response of soil‐stored and fresh seed was examined using a hierarchical series of laboratory experiments. Seeds of G. rivularis showed marked dormancy polymorphism. Thirty‐six percent of soil‐stored seed germinated without treatment, whereas no untreated fresh seeds germinated. Scarification or heating caused significant germination of dormant soil‐stored seed, but only scarification resulted in germination of dormant fresh seeds. These results highlight important differences in the dormancy state of soil‐stored and fresh seed. Thus, being a riparian species in a fire‐prone environment, the dormancy mechanisms in seeds of G. rivularis suit this species to disturbance by both fire and flood.  相似文献   

12.
SUMMARY.
  • 1 Germination experiments demonstrated that the innate dormancy of the seeds of Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze could be overcome by a cold treatment. Light stimulated the germination of the three species. Hypoxic conditions stimulated the germination of Nymphaea alba and Nuphar lutea seeds but the seeds of Nymphoides peltata did not germinate under these conditions.
  • 2 Experimental seed banks of Nymphaea alba, Nuphar lutea and Nymphoides peltata were laid out in three water bodies, varying in pH and alkalinity. Germination patterns indicated that Nymphaea alba and Nuphar lutea produce transient seed banks, but that Nymphoides peliata produces a persistent seed bank. Sampling of natural seed banks and subsequent germination tests were in concordance with the results of the seed bank experiment.
  • 3 The experimental above-ground seed banks of Nymphaea alba, Nuphar lutea and Nymphoides peltata showed similar germination patterns in the three selected water bodies, despite the differences in pH and alkalinity between them. However, the distribution of Nymphoides peliata is restricted to well-buffered waters, so that its absence from soft and acid water bodies must be due to post-germination mechanisms and/or processes.
  • 4 In aquatic systems where Nymphoides peltata co-exists with the other nymphaeid species studied, it is largely restricted to a bell between the helophytes and the vegetation at deeper sites. The deeper sites were dominated by Nuphar lutea and Nymphaea alba. Germination requirements and seedling emergence from buried seeds of Nymphaea alba, Nuphar lutea and Nymphoides peliata play an important role in the establishment of the zonation pattern of these nymphaeid macrophytes.
  相似文献   

13.
The fire avoidance hypothesis proposes that a benefit of seed dispersal by ants (myrmecochory) is to protect seeds from being killed during fire and to facilitate post‐fire germination of seeds that require heat shock to break their physical dormancy. The aim of this study was to quantify the effect of fire and seed burial by a predominant seed‐dispersing ant, Rhytidoponera metallica (subfamily: Ectatomminae) on germination levels of three ant‐dispersed legume species (Pultenaea daphnoides, Acacia myrtifolia and Acacia pycnantha). Experimental burial of seeds within aluminium cans at a site prior to being burnt and at an adjacent unburnt site showed that fire increased germination levels, particularly for seeds buried at 1‐ and 2‐cm deep and that overall, germination levels differed among the three plant species. To quantify seed burial depths and post‐fire germination levels facilitated by R. metallica ants, seeds were fed to colonies prior to fire at the burnt and unburnt sites. Of the seeds buried within nests that were recovered, between 45% and 75% occurred within the upper 6 cm of the soil profile, although unexpectedly, greater percentages of seeds were recovered from the upper 0–2 cm of nests in the unburnt site compared with nests in the burnt site. Germination levels of buried seeds associated with R. metallica nests ranged from 21.2% to 29.5% in the burnt site compared with 3.1–14.8% in the unburnt site. While increased seed germination levels were associated with R. metallica nests following fire, most seeds were buried at depths below those where optimal temperatures for breaking seed dormancy occurred during the fire. We suggest that R. metallica ants may provide fire avoidance benefits to myrmecochorous seeds by burying them at a range of depths within a potential germination zone defined by intra‐ and inter‐fire variation in levels of soil heating.  相似文献   

14.
In grassy ecosystems of south‐eastern Australia, fire maintains richness of native forbs. It is commonly thought that fire promotes regeneration indirectly by reducing competition for light and providing gaps for recruitment, rather than directly stimulating germination. However, physiological dormancy and morphophysiological dormancy are common, and few studies have explored responses to fire‐cues among dormant or hard‐to‐germinate forbs. Recent studies from other fire‐prone ecosystems suggest that in some cases, fire‐cues may not alleviate physiological or morphophysiological dormancy, but instead promote germination in combination with treatments which alleviate dormancy. We experimentally tested the prevailing hypothesis that perennial forbs common in south‐eastern Australian grassy ecosystems do not germinate in direct response to fire. Responses to fire‐cues both inherently and in combination with treatments which alleviate dormancy were investigated for seven species. Two fire‐cues (smoke and heat) plus a treatment of both heat + smoke were applied to fresh seed at three temperatures (35/25°C, 30/20°C and 25/15°C). Following this, the effect of fire‐cues on seed that had undergone warm stratification, cold stratification and dry‐after‐ripening was investigated. Three species — Arthropodium strictum, Cheiranthera cyanea and Dianella revoluta — responded to fire‐cues inherently, although germination in C. cyanea was low. High germination of D. revoluta was found when fire‐cues were combined with warm stratification. Fire‐cues had no effect on germination of Brunonia australis, Burchardia umbellata and Eryngium ovinum. Germination of Stypandra glauca was zero following all treatment combinations. Our finding that fire‐cues promote germination of three of the seven study species did not provide sufficient evidence to reject the current hypothesis that germination of perennial forbs is not typically promoted by fire‐cues. However, this study highlights the important direct role fire‐cues can play in promoting germination of some perennial forbs both inherently and in combination with treatments used to alleviate physiological dormancy.  相似文献   

15.
Germination and seedling emergence studies were made on seeds harvested from four different umbel positions of three cultivars of celery (Apium graveolens L.). Although heavier seeds were produced from primary umbels than from other umbels, these were less viable as measured by the germination percentage at I8°C in the light. However, germination of viable seeds from quaternary umbels was lower than that of seeds from primary umbels at 18°C in the dark when incubated with GA4, (2 × 10 ?4M) and seed from secondary and tertiary umbels tended to be intermediate in response. All viable seeds germinated when N6-benzyladenine (10?2M) was used in combination with GA4. Seeds from quaternary umbels of two of the cultivars had a lower high-temperature limit for germination in the dark than did seeds from other umbels. In glasshouse experiments the emergence of viable ‘quaternary’ seeds of these cultivars was higher than that of ‘primary’ seeds. Under these conditions the time to 50% of the final emergence as determined after 42 days was similar for seeds from all umbel positions within each cultivar. In two varieties seedling weights were greater from seeds of primary as compared to quaternary umbels, and in general, the largest seedlings arose from the heaviest seeds and the smallest from the lightest seeds in all three cultivars.  相似文献   

16.
Cruz  Alberto  Pérez  Beatriz  Velasco  Angel  Moreno  José M. 《Plant Ecology》2003,169(1):93-103
In Mediterranean ecosystems, as well as in other fire prone ones, seedling establishment by some species is particularly favorable right after fire. It has been well established that many plants from these ecosystems have enhanced germination after exposing their seeds to heat or to chemicals related to the passage of fire. Less known it is how variable is this germination response among seeds from different sources (populations, individuals within a population, or parts of the plant within an individual) and whether such differences persist after exposing the seeds to germination-triggering, fire-related cues. In this work we studied the germination response to several fire-related factors of the Mediterranean, lignotuberous shrub Erica australis. This species produces a very combustible fuel, and resprouts vigorously after fire, but conditions for seedling establishment are poorly known. The objective of this study was to evaluate how variable was the germination response of this species among seeds from different sources, and whether this variability changed after exposing the seeds to fire-related factors. Seeds from three different sites, from different individuals at each site, and from different branches within each individual were set to germinate under control conditions or after exposing them to heat or to additions of nitrogenous compounds. Germination was highly variable among populations, individuals within populations or branches within individuals. Exposure to moderate heat promoted germination, but high temperatures were lethal. Differences at the various provenance levels were, however, also observed after heat exposure. Germination of seeds exposed to nitrogenous compounds increased, but differences among populations were always significant. These results indicate that the germination of Erica australis may be linked to disturbances, but it does not seem to be particularly related to passage of fire. On the contrary, this type of response appears more common in plants from heterogeneously disturbed environments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Germination occurs usually in response to multiple environmental cues. Seeds with the ecophysiological ability to simultaneously sense the previous presence of fire and appropriate levels of temperature, light and soil nitrate could restrict germination to postfire, winter and competition-free microhabitats, where the potential for seedling survival is enhanced. Germination responses of 16 species with a range of life forms, fire responses and seed weights were determined under controlled conditions of 15°C temperature, a 12 h light cycle, exposure to 1 g L?1 nitrate solution, and six conditions of light quality (white, blue, yellow, red, far-red light and darkness). Germination in Oenothera stricta, a weedy naturalized ephemeral, and two small-seeded indigenous Asteraceae species of mulga woodlands, Leucochrysum fitzgibbonii and Craspedia sp., were enhanced by white, yellow or red light compared with germination achieved in the dark, or under far-red or blue light. In red light, KNO3 further enhanced germination of these positively photoblastic species. The germination response of Trachyandra divaricata, a naturalized herb of sandy, seaside locations, and several native jarrah forest legumes (four Acacia species, Bossiaea aquifolium, Gompholobium marginatum and Sphaerolobium vimineum) proved to be negatively photoblastic. Of these seven negatively photoblastic herb and shrub species, exposure to KNO3 overcame the inhibition of light only in the resprouter species, Acacia lateriticola. In the serotinous, negatively photoblastic tree species, Corymbia calophylla and Eucalyptus marginata, KNO3 seemed to be required before the negative response to light exposure was recorded. A dose–curve experiment on two positively photoblastic and three negatively photoblastic species indicated that although KNO3 exposure affected germination in all species, different concentrations of KNO3 (0, 0.5, 1, 2, and 5 g L?1) produced different levels of response. Detailed studies with additions of KNO3 (1 g L?1) and the growth hormone, gibberellic acid (GA3; 50 mg L?1), showed that increased germination percentages of the positively photoblastic species, Oenothera stricta, occurred in the light, but blocking endogenous gibberellic synthesis with paclobutrazol, or adding exogenous GA3 or KNO3 had no effect on the light-induced germination levels. In the negatively photoblastic species Trachyandra divaricata, additions of KNO3 and GA3 had no influence on the germination inhibition induced by exposure to light nor did blocking endogenous GA synthesis. The 16 species growing naturally in Western Australia, Australia show a range of germination responses to environmental conditions, but depending on their natural habitat, the ecophysiology of each species appears to be optimized for subsequent seedling survival.  相似文献   

18.
Valuable timber tree species frequently show poor regeneration after selective logging in tropical forests. Small size of logging gaps, lack of soil disturbance, and limited seed availability have each been blamed for observed regeneration failures. We investigated seed germination and seedling performance using a split‐plot factorial design involving light availability and litter removal for six Central African timber tree species, hypothesizing that canopy gaps and litter removal would improve seedling establishment, and that less shade‐tolerant species would show stronger responses to both factors. Contrary to our expectations, significantly more germinants established on intact litter than on exposed mineral soil 3 mo after seeding. After 18 mo, seedling survival, height and diameter growth, leaf area, and rooting depth were all much higher in gap plots than in the understory for all species, with the exception of Gilbertiodendron dewevrei, a highly shade‐tolerant species whose survival was higher in the understory. Leaf production was negatively influenced by litter removal in the least shade‐tolerant species, Nauclea diderrichii, with weak or positive effects in other species. G. dewevrei, while displaying a low‐light threshold for growth, exhibited a surprisingly high growth response to increasing light comparable to more shade‐intolerant species, a response that may help explain its local competitive dominance in the region. Due to the rapid closure of small gaps, we suggest that shade‐intolerant species such as N. diderrichii, Khaya anthotheca, and Entandrophragma utile might benefit from more intensive silvicultural practices that create larger canopy gaps.  相似文献   

19.
The effects of fire on the vegetation vary across continents. However, in Neotropical fire‐prone grasslands, the relationship between fire and seed germination is still poorly understood, while their regeneration, especially after strong anthropogenic disturbance, is challenging for their conservation. In the present study, we assessed diversity of germination strategies in 15 dominant herbaceous species from Neotropical altitudinal grasslands (locally known as campos rupestres). We exposed seeds to several fire‐related treatments. We also compared germination between regularly and post‐fire fruiting species. Finally, we investigated the diversity of dormancy classes aiming at better understanding the biogeography and phylogeny of seed dormancy. Germination strategies varied among families. Velloziaceae and Xyridaceae produced non‐dormant, fast‐germinating seeds. Cyperaceae and Poaceae showed an extremely low or null germination due to a high proportion of unviable or embryo‐less seeds. The seeds of campo rupestre grasslands are fire resistant, but there is no evidence that fire triggers germination in this fire‐prone ecosystem. Although heat and charred wood did not promote germination, smoke enhanced germination in one grass species and decreased the mean germination time and improved synchrony in Xyridaceae and Velloziaceae. Fire had a positive effect on post‐fire regeneration by stimulating fruit set in some Cyperaceae and Poaceae species. These species produced faster germinating seeds with higher germination percentage and synchrony compared to regularly fruiting Cyperaceae and Poaceae species. This strategy of dispersion and regeneration seems to be an alternative to the production of seeds with germination triggered by fire. Physiological dormancy is reported for the first time in several clades of Neotropical plants. Our data help advance the knowledge on the role of fire in the regeneration of Neotropical grasslands.  相似文献   

20.
Fire is a key ecological factor affecting plant dynamics. In the last few decades, fire occurrence in the Chaco region has increased noticeably, challenging the adaptive capacity of plants to regenerate after a fire. Broad‐leaved forb species have been much less studied than woody and graminoids, although they are an important component of fire dynamics. Here we analysed the germination response to heat shock of 70 and 110°C, smoke and their combination in 10 broad‐leaved herbaceous species frequently occurring in the Chaco Serrano of Córdoba province, central Argentina, including five annual (Bidens subalternans, Conyza bonariensis, Schkuhria pinnata, Tagetes minuta and Zinnia peruviana) and five perennial species (Borreria eryngioides, Sida rhombifolia, Solidago chilensis, Taraxacum officinale and Verbena litoralis). We also compared the response of annual versus perennial species. Six species had highest germination when treated with heat and smoke combined, whereas two had lowest germination under this treatment, indicating synergistic and antagonistic interaction of these factors respectively. Most of the species tolerated heat shock (i.e. germination was similar to that in control treatment), whereas others had higher germination in response to heat shock, especially under the moderate 70°C treatment. Germination was higher than control (i.e. no heat and no smoke) after smoke treatment in four species. Perennial species showed higher average germination than annuals in both heat treatments and in the control. Annual species had higher average germination for all treatments involving smoke. The high variability observed at the species level, and the limited number of species studied calls for precaution in interpreting and extrapolating results. Nevertheless, our study shows a general positive response of both perennial and annual species to fire cues, suggesting an advantage of these species for colonizing post‐fire environments, and being favoured under scenarios of increasingly frequent low‐to‐medium intensity fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号