首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu N  Zhang Y  Chang S  Kan H  Lin L 《PloS one》2012,7(5):e36434
The potential of grazing lands to sequester carbon must be understood to develop effective soil conservation measures and sustain livestock production. Our objective was to evaluate the effects of grazing on soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC) in Typical steppe and Desert steppe ecosystems, which are both important grassland resources for animal grazing and ecological conservation in China, and to derive region-specific soil C changes associated with different stocking rates (ungrazed, UG; lightly grazed, LG; moderately grazed, MG; heavily grazed, HG). This study substantiated that significant higher SOC, TN and MBC appeared with the treatment of LG in typical steppe. From 2004 to 2010, grazing treatments increased soil carbon storage in desert steppe, which was partly due to the grazing history. The higher MBC concentration and MBC/SOC suggest a great potential for carbon sequestration in the desert steppe ecosystem. The greater MBC in desert steppe than typical steppe was mainly the result of higher precipitation and temperature, instead of soil substrate. The change of MBC and the strong positive relationships between MBC and SOC indicated that MBC in the soil was a sensitive index to indicate the dynamics of soil organic carbon in both steppes in Inner Mongolia of China.  相似文献   

2.
放牧是内蒙古荒漠草原主要利用方式之一,研究不同放牧强度下土壤有机碳分布规律对退化草原恢复以及推广精准放牧技术具有重要的指导意义。基于不同放牧强度长期放牧样地(0、0.93、1.82、2.71羊单位hm-2(a/2)-1),采用高样本数量的取样设计并结合地统计学分析方法,研究荒漠草原土壤有机碳及其空间异质性。结果表明:中度放牧会显著降低0-30 cm土层全氮含量(P<0.05),全磷含量随放牧强度增强出现先降低后升高趋势;放牧样地土壤有机碳含量均显著低于对照样地(P<0.05),不同放牧强度处理土壤有机碳含量没有显著差异;土壤有机碳密度受放牧影响在0-20 cm土层出现显著下降(P<0.05),变化趋势同有机碳含量相似,碳氮比在重度放牧区0-10 cm土层显著降低(P<0.05)。土壤有机碳空间异质性和异质性斑块的破碎程度随放牧强度增加而增大;土壤有机碳含量与海拔高度在对照、轻度放牧和中度放牧区均呈极显著负相关(P<0.01),在重度放牧区土壤有机碳含量和海拔无显著相关性;土壤有机碳含量与土壤全氮、全磷含量均呈极显著正相关(P<0.01)。综上所述,放牧降低土壤有机碳含量,提高土壤有机碳空间异质性,土壤有机碳含量的空间变异受海拔和土壤养分含量等因素的共同影响。  相似文献   

3.
Overgrazing significantly affects alpine meadows in ways similar to grasslands in other areas. Fencing to exclude grazers is one of the main management practices used to protect alpine meadows. However, it is not known if fencing can improve soil properties and soil organic carbon storage by restraining grazing in alpine meadows. We studied the long-term (nine-year) effects of fencing on soil properties, soil organic carbon and nitrogen storage compared with continued grazing in an alpine swamp meadow of the Qinghai–Tibetan Plateau, NW China. Our results showed that fencing significantly improved vegetation cover and aboveground biomass. There were significant effects of fencing on pH value, soil bulk density, and soil moisture. Long-term fencing favored the increase of soil total nitrogen, soil organic matter, soil organic carbon, soil microbial biomass carbon and soil carbon storage compared with grazed meadows. Our study suggests that long-term fencing to prevent disturbance could greatly affect soil organic carbon and nitrogen storage with regard to grazed meadows. Therefore, it is apparent from this study that fencing is an effective restoration approach of with regard to the soil’s storage ability for carbon and nitrogen in alpine meadow of the Qinghai–Tibetan Plateau.  相似文献   

4.
The effects of grazing intensity on selected soil characteristics in the feather-grass steppes of the autonomous region of Ningxia (northern China) were investigated by a comparison of non-grazed areas (grazing intensity 0), slightly grazed areas (grazing intensity I), moderately grazed areas (II), intensively grazed areas (III) and over-grazed areas (IV). Even in areas used only minimally for grazing activities (I), a serious increase (doubling) in soil hardness was apparent in the upper soil layer. A continual decrease in organic matter in the surface soil can be correlated directly to soil compaction. The content of organic matter in soil of degree IV amounts to only a third of the organic matter found in non-grazed areas. This decrease can be attributed partly to the poor living conditions for soil organisms in compacted soils, but also to a significant reduction in litter. This is because intensive grazing causes reduced vegetation cover leading to litter being blown away by wind or washed away by heavy rainfall. Thus in level III hardly any plant litter remained to be incorporated into the soil as humus. Likewise root density also suffered its largest decrease in areas with a grazing intensity level III. With regard to the content of nitrogen and phosphorous (total and available) hardly any difference between soils of grazing intensity 0 and I was observed, whereas a noticeable decrease was apparent between levels I and II. Available Potassium was similar for all grazing levels. The pH-value of the soil solution is not significantly affected by grazing. We did not observe differences in the soils of the two main types of steppe vegetation (Stipa grandis and Stipa bungeana steppe) in response to grazing. Only the amount of litter in the S. grandis-steppe in non-grazed or slightly grazed areas is noticeably higher than in the S. bungeana steppe.  相似文献   

5.
Effects of Grazing on Restoration of Southern Mixed Prairie Soils   总被引:6,自引:0,他引:6  
A comparative analysis of soils and vegetation from cultivated areas reseeded to native grasses and native prairies that have not been cultivated was conducted to evaluate restoration of southern mixed prairie of the Great Plains over the past 30 to 50 years. Restored sites were within large tracts of native prairie and part of long‐term grazing intensity treatments (heavy, moderate, and ungrazed), allowing evaluation of the effects of grazing intensity on prairie restoration. Our objective was to evaluate restored and native sites subjected to heavy and moderate grazing regimes to determine if soil nutrients from reseeded cultivated land recovered after 30 years of management similar to the surrounding prairie and to identify the interactive influence of different levels of grazing and history of cultivation on plant functional group composition and soils in mixed prairies. For this mixed prairie, soil nitrogen and soil carbon on previously cultivated sites was 30 to 40% lower than in uncultivated native prairies, indicating that soils from restored sites have not recovered over the past 30 to 50 years. In addition, it appears that grazing alters the extent of recovery of these grassland soils as indicated by the significant interaction between grazing intensity and cultivation history for soil nitrogen and soil carbon. Management of livestock grazing is likely a critical factor in determining the potential restoration of mixed prairies. Heavy grazing on restored prairies reduces the rate of soil nutrient and organic matter accumulation. These effects are largely due to changes in composition (reduced tallgrasses), reduced litter accumulation, and high cover of bare ground in heavily grazed restored prairies. However, it is evident from this study that regardless of grazing intensity, restoration of native prairie soils requires many decades and possibly external inputs to adequately restore organic matter, soil carbon, and soil nitrogen.  相似文献   

6.
Heathlands and grasslands occur in montane regions, naturally or due to anthropogenic land-use. These are typically nutrient-poor but exposure to elevated nitrogen deposition and intensive livestock grazing causes large-scale ecological change. We studied the long-term implications of grazing removal on soil and drainage water biogeochemistry and the implications for nitrogen cycling in 50-year replicated grazing exclosures on a montane grassland exposed to high rates of ambient nitrogen deposition. Evidence of ‘ecosystem recovery’ represented by successional change from graminoid to shrub-dominance after cessation of grazing was not reflected in the soil biogeochemistry. Cessation of grazing had a negative impact, with increased soil extractable and soil solution nitrate concentrations; an apparent shift towards a more nitrogen-rich, bacterially dominated microbial community; and the acidification of soils and leachate. The increase in nitrate leaching appears to have been counterbalanced by a decrease in dissolved organic nitrogen leaching, approximately maintaining the overall nitrogen balance of the system, whilst apparently altering ecosystem functioning. High rates of organic matter cycling and inorganic nitrogen uptake in grazed grassland may have sustained ecosystem N limitation under elevated nitrogen deposition. Grazing removal caused long-term over-supply of nitrogen from mineralisation of enriched organic matter, exacerbated by continued high nitrogen deposition, exceeding the uptake demand of heath vegetation and resulting in nitrification and nitrate leaching. This disequilibrium between vegetation and soil following grazing removal has implications for restoration after periods of intensive grazing. Grazing may not simply leave a legacy of nutrient enrichment but its cessation may trigger nitrogen saturation and soil and freshwater eutrophication and acidification which counteract the immediate benefits of natural vegetation recovery. Long term, nitrogen saturation of abandoned grasslands is likely to reduce ecosystem resilience to invasion by nitrophilous species, pathogen attack and vulnerability to environmental pressures such as climate change. We conclude that partial and/or phased reduction in grazing levels may permit the more synchronised recovery of soils and vegetation, thereby avoiding imbalances between nitrogen supply and nitrogen demand and detrimental ecological effects.  相似文献   

7.
Summary When grassland is grazed by livestock, the structure of the sward changes in a patchy manner. With continuous selective grazing there is a mosaic of short and tall patches but as grazing intensifies the area of short‐grazed patch increases until the paddock has a lawn‐like appearance. This mosaic of patch structures can be stable, as short patches tend to attract repeated grazing and tall patches tend to be avoided. Because heavy grazing can detrimentally affect soil and water functions in grassland (ultimately resulting in erosion), we aimed to assess how well the physical structure of the sward reflects soil surface condition. We described four grassland patch structures that were assumed to reflect different levels of present grazing, and to some extent, past grazing pressure. We assessed patch structure and two other grass‐related variables (basal area of a ‘large tussock’ functional group and basal area of all perennial grass) as possible indicators of soil surface condition. Three indices of condition were measured in the field. The infiltration and nutrient cycling index declined progressively across patch structures, consistent with increasing grazing pressure. The stability index was found to be reduced only for the most heavily grazed grass structure (short patches). We found the ‘large tussock’ grass functional group to be a more sensitive indicator of soil surface condition than the group consisting of all perennial grasses. We found no evidence of sudden soil surface condition decline beyond a certain level of grass basal area, that is, there was no evidence of thresholds, rather, incremental loss of condition accompanied grass decline. We are thus not able to further refine an earlier proposed management recommendation ‘Graze conservatively to maintain dominance of large and medium tussock grasses over 60–70% of the native pastures’, except to suggest the use of short patches as a more practical indicator, rephrasing the recommendation as ‘Graze conservatively to allow a maximum of 30% short‐grazed patches in native pastures’.  相似文献   

8.
倒木是森林生态系统中重要的结构性和功能性成分,但分解过程十分缓慢,目前有关土壤生物学特性对其分解影响机制的研究甚少。通过分析环境因子对选择天宝岩国家级自然保护区长苞铁杉林内倒木接触处土壤酶活性的影响,探讨酶活性对倒木分解机制、土壤进程的影响及特定酶活性的时空分布格局。研究结果表明:天宝岩长苞铁杉林内倒木接触处土壤酶活性的变异系数属中高等变异程度,纤维素分解酶活性受环境影响最大,蛋白酶受影响最小;倒木的覆盖有利于提高土壤酶活性,尤其是显著地提高了纤维素酶活性,蛋白酶及脲酶活性随腐烂等级升高而降低,纤维酶活性呈升高趋势;在所有环境因子中,土壤基质环境对土壤酶活性的解释量最大,表明化学基质环境对土壤酶活性的影响不容忽视,土壤酶活性随土壤SOC、TN含量的增加而升高,随海拔升高而降低,越往南坡,土壤酶活性越高。研究揭示倒木分解与土壤酶活性之间相互促进、相互制约,倒木的存在对驱动森林生态系统的碳循环有重要意义。  相似文献   

9.
丁小慧  宫立  王东波  伍星  刘国华 《生态学报》2012,32(15):4722-4730
放牧通过畜体采食、践踏和排泄物归还影响草地群落组成、植物形态和土壤养分,植物通过改变养分利用策略适应环境变化。通过分析呼伦贝尔草原放牧和围封样地中的群落植物和土壤的碳氮磷养分及化学计量比,探讨放牧对生态系统化学计量学特征和养分循环速率的影响机制。结果如下:(1)群落尺度上,放牧和围封草地植物叶片C、N和P的含量没有显著差异;但是在种群尺度上,放牧草地植物叶片N含量显著高于围封草地;(2)放牧草地土壤全C、全N、有机C、速效P含量,低于围封草地,硝态N含量高于围封草地;土壤全P和铵态N指标没有显著差异;(3)放牧草地植物C∶N比显著低于围封草地,植物残体分解速率较快,提高了生态系统养分循环速率。  相似文献   

10.
Derner  J.D.  Briske  D.D.  Boutton  T.W. 《Plant and Soil》1997,191(2):147-156
An experiment was conducted to evaluate the influence of long-term (>25 yrs) grazing on soil organic carbon (SOC) and total soil nitrogen (N) accumulation beneath individual plants of three perennial grasses along an environmental gradient in the North American Great Plains. The zone of maximum SOC and N accumulation was restricted vertically to the upper soil depth (0-5 cm) and horizontally within the basal area occupied by individual caespitose grasses, which contributed to fine-scale patterning of soil heterogeneity. Long-term grazing mediated SOC and N accumulation in the tall-, mid- and shortgrass communities, but the responses were community specific. SOC and N were lower beneath Schizachyrium scoparium plants in long-term grazed sites of the tall- and midgrass communities, but higher beneath Bouteloua gracilis plants in the long-term grazed site of the shortgrass community. SOC, but not N, was greater in soils beneath compared to between S. scoparium plants in an abandoned field seeded in 1941, indicating that this caespitose grass accumulated SOC more rapidly than N. SOC and N were greater in the 0-5 cm soil depth beneath a caespitose grass (S. scoparium) compared to a rhizomatous grass (Panicum virgatum) in the tallgrass community, with no significant accumulation of either SOC or N beneath P. virgatum plants. Grazing appears to indirectly mediate nutrient accumulation beneath caespitose grasses along the environmental gradient by modifying the size class distribution of plants. Populations with a greater proportion of large plants have a greater potential for biomass incorporation into soils and may more effectively capture redistributed organic matter from between plant locations. Contrasting plant responses to grazing at various locations along the environmental gradient conform to the predictions of the generalized grazing model, as the selection pressures of grazing and aridity may have also influenced the ability of caespitose grasses to accumulate nutrients in soils beneath them by mediating grazing resistance, competitive ability and population structure.  相似文献   

11.
Question: What are the changes in vegetation structure, soil attributes and mesofauna associated with grazing in mesic grasslands? Location: Southern Campos of the Río de la Plata grasslands, in south‐central Uruguay. Methods: We surveyed seven continuously grazed and ungrazed paired plots. Plant and litter cover were recorded on three 5‐m interception lines placed parallel to the fence in each plot. We extracted soil fauna from a 10 cm deep composite sample and analysed the oribatids. Soil attributes included bulk density, water content, organic carbon (in particulate and mineral associated organic matter) and nitrogen content and root biomass at different depths. Changes in floristic, Plant Functional Types and mesofauna composition were analysed by Non‐metric Multidimensional Scaling. Results: Species number was lower in ungrazed than in grazed plots. Of 105 species in grazed plots only three were exotics. Shrub and litter cover were significantly higher inside the exclosures, while the cover of Cyperaceae‐Juncaceae was lower. Grazing treatments differed significantly in plant and oribatid species composition. Grazing exclusion significantly reduced soil bulk density and increased soil water content. Carbon content in particulate organic matter was lower in the upper soil of ungrazed sites, but deeper in the profile, grazing exclosures had 8% more carbon in the mineral associated organic matter. Conclusions Our results generally agree with previous studies but deviate from the results of previous analyses in (1) the increase of shrub cover in ungrazed sites; (2) the redistribution of the soil organic carbon in the profile and (3) the low invasibility of the prairies regardless of grazing regime.  相似文献   

12.
Lately there has been a shift in Sweden from grazing species‐rich semi‐natural grasslands towards grazing ex‐arable fields in the modern agricultural landscape. Grazing ex‐arable fields contain a fraction of the plant species richness confined to semi‐natural grasslands. Still, they have been suggested as potential target sites for re‐creation of semi‐natural grasslands. We asked to what extent does fine‐scale variation in soil conditions, management history and site location effect local plant diversity in grazed ex‐arable fields. We examined local soil conditions such as texture, pH, organic carbon, nitrogen (N) and extractable phosphate (P) and effects on plant richness in ten pairs of grazed ex‐fields and neighbouring semi‐natural grasslands in different rural landscapes. Each grassland pair where in the same paddock. A multivariate test showed that site location and land use history explained more of differences in species richness than local soil property variables. Plant species richness was positively associated to grazed ex‐fields with low pH, low N and P levels. Sites with high plant richness in semi‐natural grasslands also had more species in the adjacent grazed ex‐fields, compared to sites neighbouring less species‐rich semi‐natural grasslands. Although both soil properties and species richness were different in grazed ex‐fields compared to semi‐natural grassland, the site location within a landscape, and vicinity to species‐rich grasslands, can override effects of soil properties. In conclusion, if properly located, ex‐arable fields may be an important habitat to maintain plant diversity at larger spatio‐temporal scales and should considered as potential sites for grassland restoration.  相似文献   

13.
顿沙沙  曹继容  贾秀  庞爽 《生态学杂志》2017,28(10):3235-3242
依托内蒙古典型草原的长期野外放牧控制试验,探讨了放牧和刈割对土壤有机碳、全氮、可提取碳和氮、微生物生物量碳和氮的影响.结果表明: 放牧使可提取有机碳降低11.4%~37.1%,而刈割使可提取有机碳升高5.8%.放牧和刈割分别使可提取氮升高10%~340%和10%~240%.放牧强度不高于6.0 sheep·hm-2的条件下有利于维持甚至增加微生物生物量碳,而重度放牧(7.5和9.0 sheep·hm-2)则减少微生物生物量碳.刈割处理下微生物生物量碳和氮分别升高31.0%和9.8%.通径分析表明,放牧处理下微生物生物量碳的主要影响因素是有机碳、可提取全氮和全氮,其中直接影响因素是有机碳和可提取全氮;微生物生物量氮的主要影响因素是土壤pH、可提取有机碳、有机碳和可提取全氮,其中直接影响因素是有机碳和可提取全氮.刈割及轻度和中度放牧有利于维持或改善土壤功能,重度放牧将引起土壤退化.  相似文献   

14.
A model of nitrogen flows in grassland   总被引:7,自引:3,他引:4  
Abstract. The model comprises three submodels, which together give an integrated picture of nitrogen pools and fluxes in grassland under grazing or cutting. The first submodel represents the interaction of the grazing animal with the sward through intake and the production of excreta: the second is concerned with the growth of the vegetative grass crop and its response to light, temperature and nitrogen; these two submodels are interfaced with a submodel of soil carbon and nitrogen pools and processes, including dead shoot and root material, dead and live soil organic matter, and three pools representing mineral nitrogen. No account is taken of water, which is assumed to be non-limiting, or the possible effects of soil pH and soil aeration. The model is used to simulate a range of management strategies as applied to stocking density and fertilizer application, examining both steady-state and non-steady-state conditions. The model highlights the long time scales associated with grassland systems, the role of the grazing animal in modifying carbon and nitrogen flows, and the importance of soil conditions to grassland productivity and fertilizer response. The productivity of grazed swards may be greater or less than that of cut swards depending on stocking density and fertilizer application, although nitrogen recovery (as calculated here) is always lower in grazed swards. The model is able to stimulate mineralization and immobilization, and place these in the context of plant processes and the grazing animal.  相似文献   

15.
Nitrogen dynamics in an Alaskan salt marsh following spring use by geese   总被引:1,自引:0,他引:1  
Lesser snow geese (Anser caerulescens caerulescens) and Canada geese (Branta canadensis) use several salt marshes in Cook Inlet, Alaska, as stopover areas for brief periods during spring migration. We investigated the effects of geese on nitrogen cycling processes in Susitna Flats, one of the marshes. We compared net nitrogen mineralization, organic nitrogen pools and production in buried bags, nitrogen fixation by cyanobacteria, and soil and litter characteristics on grazed plots versus paired plots that had been exclosed from grazing for 3 years. Grazed areas had higher rates of net nitrogen mineralization in the spring and there was no effect of grazing on organic nitrogen availability. The increased mineralization rates in grazed plots could not be accounted for by alteration of litter quality, litter quantity, microclimate, or root biomass, which were not different between grazed and exclosed plots. In addition, fecal input was very slight in the year that we studied nitrogen cycling. We propose that trampling had two effects that could account for greater nitrogen availability in grazed areas: litter incorporation into soil, resulting in increased rates of decomposition and mineralization of litter material, and greater rates of nitrogen fixation by cyanobacteria on bare, trampled soils. A path analysis indicated that litter incorporation by trampling played a primary role in the nitrogen dynamics of the system, with nitrogen fixation secondary, and that fecal input was of little importance.  相似文献   

16.
Grasslands in northern China and the Qinghai-Tibetan plateau are particularly important to both ecosystem functioning and pastoral livelihoods. Although there are numerous degradation studies on the effect of livestock grazing across the region, they are largely only published in Chinese, and most focus on single sites. Based on case studies from 100 sites, covering a mean annual precipitation gradient of 95–744 mm, we present a comprehensive, internationally accessible review on the impact of livestock grazing on vegetation and soils. We compared ungrazed or slightly grazed sites with moderately and heavily grazed sites by evaluating changes in two indicator groups: vegetation (plant species richness, vegetation cover, aboveground biomass, belowground biomass and root/shoot ratio) and soil (pH, bulk density, organic C, total N, total P and available P). Most indicators declined with intensified grazing, while soil pH, bulk density and belowground biomass increased. Available P showed no clear response. Variables within indicator groups were mostly linearly correlated at a given grazing intensity. Relative grazing effects on different indicators varied along specific abiotic gradients. Grazing responses of plant species richness, aboveground biomass, soil bulk density, total N and available P interacted with precipitation patterns, while grazing effects on belowground biomass were influenced by temperature. Elevation had impact on grazing responses of aboveground biomass and soil organic carbon. Complex grazing effects reflect both methodological inconsistency and ecological complexity. Further assessments should consider specific characteristics of different indicators in the context of the local environment.  相似文献   

17.

Aims

Few studies have focused on changes in the physical and chemical properties of soils that are induced by grazing at high altitudes. Our aim was to identify potential responses of soil to grazing pressure on the semiarid steppe of the northern Tibetan Plateau and their probable causes.

Methods

Fractal geometry to describe soil structure, soil dynamics, and physical processes within soil is becoming an increasingly useful tool that allows a better understanding of the performance of soil systems. In this study, we sampled four experimental areas in the northern part of the Tibetan Plateau under different grazing intensities: ungrazed, lightly grazed, moderately grazed and heavily grazed plots. Fractal methods were applied to characterise particle-size distributions and pore patterns of soils under different grazing intensities.

Results

Our results reveal a highly significant decrease in the fractal dimensions of particle size distributions (D 1 ) and the fractal dimensions of all pores (D 2 ) with increasing grazing intensity. Soil organic carbon (SOC), total N and total P concentrations increased significantly with decreasing grazing intensity. We did not find differences in soil pH in response to grazing.

Conclusions

Grazing induced a significant deterioration of the physical and chemical topsoil properties in the semiarid steppe of the northern Tibetan Plateau. Fractal dimensions can be a useful parameter for quantifying soil degradation due to human activities.  相似文献   

18.
放牧是天然草地的主要利用方式之一,不同放牧强度可能通过影响家畜的选择性采食、凋落物输入和微生物的组成及结构等影响草地土壤化学计量特征。本研究通过在华北农牧交错带典型草地一个连续3年(2017—2019年)的生长季放牧试验,测定了土壤全碳(TC)、全氮(TN)、可溶性有机碳(DOC)和可溶性氮(DN)含量,以及土壤微生物生物量碳(MBC)和微生物生物量氮(MBN),分析这些参数间的化学计量特征,研究放牧强度对该地区草地土壤计量化学特征的影响。结果表明: 连续3年不同强度的放牧(1、2、4 sheep·0.2 hm-2)对土壤TC含量没有显著影响,2019年中度放牧显著降低了10~20 cm土层中TN含量,轻度、中度和重度放牧显著提高10~20 cm层土壤的C/N。连续3年不同强度的放牧对土壤DOC、DN含量以及DOC/DN均没有显著影响,而DOC和DN含量在2019年呈现出随放牧强度增加而减少的趋势,表明持续高强度的放牧可能会引起土壤可溶性养分减少。随着放牧年限的增长,轻度放牧显著增加了土壤MBC,重度放牧显著降低了土壤MBC,而土壤MBN及MBC/MBN在不同放牧强度下变化不显著。  相似文献   

19.

Background & aims

Herbivore-driven changes to soil properties can influence the decomposition rate of organic material and therefore soil carbon cycling within grassland ecosystems. We investigated how aboveground foraging mammalian and invertebrate herbivores affect mineral soil decomposition rates and associated soil properties in two subalpine vegetation types (short-grass and tall-grass) with different grazing histories.

Methods

Using exclosures with differing mesh sizes, we progressively excluded large, medium and small mammals and invertebrates from the two vegetation types in the Swiss National Park (SNP). Mineral soil decomposition rates were assessed using the cotton cloth (standard substrate) method between May and September 2010.

Results

Decomposition displayed strong spatio-temporal variability, best explained by soil temperature. Exclusion of large mammals increased decomposition rates, but further exclusion reduced decomposition rates again in the lightly grazed (tall-grass) vegetation. No difference among treatments was found in the heavily grazed (short-grass) vegetation. Heavily grazed areas had higher decomposition rates than the lightly grazed areas because of higher soil temperatures. Microbial biomass carbon and soil C:N ratio were also linked to spatio-temporal decomposition patterns, but not to grazing history.

Conclusions

Despite altering some of the environmental controls of decomposition, cellulose decomposition rates in the SNP’s subalpine grasslands appear to be mostly resistant to short-term herbivore exclusion.  相似文献   

20.
Priming is an increase in soil organic carbon decomposition following input of labile organic carbon. In temperate soils where biological activity is limited commonly by nitrogen availability, priming is expected to occur through microbial acquisition of nitrogen from organic matter or stimulated activity of recalcitrant-carbon degrading microorganisms. However, these priming mechanisms have not yet been assessed in strongly weathered tropical forest soils where biological activity is often limited by the availability of phosphorus. We examined whether microbial nutrient limitation or community dynamics drive priming in three lowland tropical forest soils of contrasting fertility (‘low’, ‘mid’ and ‘high’) by applying C4-sucrose (alone or in combination with nutrients; nitrogen, phosphorus and potassium) and measuring (1) the δ13C-signatures in respired CO2 and in phospholipid fatty acid (PLFA) biomarkers, and (2) the activities of enzymes involved in nitrogen (N-acetyl β-glucosaminidase), phosphorus (phosphomonoesterase) and carbon (β-glucosidase, cellobiohydrolase, xylanase, phenol oxidase) acquisition from organic compounds. Priming was constrained in part by nutrient availability, because priming was greater when sucrose was added alone compared to when added with nutrients. However, the greatest priming with sucrose addition alone was detected in the medium fertility soil. Priming occurred in parallel with stimulated activity of phosphomonoesterase and phenol oxidase (but not N-acetyl β-glucosaminidase); when sucrose was added with nutrients there were lower activities of phosphomonoesterase and phenol oxidase. There was no evidence according to PLFA δ13C-incorporation that priming was caused by specific groups of recalcitrant-carbon degrading microorganisms. We conclude that priming occurred in the intermediate fertility soil following microbial mineralization of organic nutrients (phosphorus in particular) and suggest that priming was constrained in the high fertility soil by high nutrient availability and in the low fertility soil by the low concentration of soil organic matter amenable to priming. This first study of priming mechanisms in tropical forest soils indicates that input of labile carbon can result in priming by microbial mineralization of organic nutrients, which has important implications for understanding the fate of organic carbon in tropical forest soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号