首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To describe the spatial and temporal pattern of landscape burning with increasing distance from Aboriginal settlements. Location Central Arnhem Land, a stronghold of traditional Aboriginal culture, in the Australian monsoon tropics. Methods Geographical information system and global positioning system technologies were used to measure spatial and temporal changes in fire patterns over a one decade period in a 100 × 80 km area that included a cluster of Aboriginal settlements and a large uninhabited area. The major vegetation types were mapped and fire activity was assessed by systematic visual interpretation of sequences of cloud‐free Landsat satellite images acquired in the first (May to July) and second (August to October) halves of the 7‐month dry season. Fire activity in the middle and end of one dry season near an Aboriginal settlement was mapped along a 90‐km field traverse. Canopy scorch height was determined by sampling burnt areas beside vehicle tracks. Results Satellite fire mapping was 90% accurate if the satellite pass followed shortly after a fire event, but the reliability decayed dramatically with increasing time since the fire. Thus the satellite mapping provided a conservative index of fire activity that was unable to provide reliable estimates of the spatial extent of individual fires. There was little landscape fire activity in the first half of the dry season, that was mostly restricted to areas immediately surrounding Aboriginal settlements, with burning of both inhabited and uninhabited landscapes concentrated in the second half of the dry season. The mean decadal fire indices for the three dominant vegetation types in the study area were three in the plateau savanna, two in the sandstone and five in the wet savanna. The spatial and temporal variability of Aboriginal burning apparent in the satellite analyses were verified by field traverse surrounding a single settlement. Fires set by Aborigines had low scorch height of tree crowns reflecting low intensity, despite generally occurring late in the dry season. Conclusions Our findings support the idea that Aboriginal burning created a fine‐scale mosaic of burnt and unburnt areas but do not support the widely held view that Aboriginal burning was focused primarily in the first half of the dry season (before July). The frequency and scale of burning by Aborigines appears to be lower compared with European fire regimes characterized by fires of annual or biennial frequencies that burn large areas. The European fire regime appears to have triggered a positive feedback cycle between fire frequency and flammable grass fuels. The widely advocated management objective of burning in the first half of the dry season burning provides one of the few options to control fires once heavy grass fuel loads have become established, however we suggest it is erroneous to characterize such a regime as reflecting traditional Aboriginal burning practices. The preservation of Aboriginal fire management regimes should be a high management priority given the difficulty in breaking the grass‐fire cycle once it has been initiated.  相似文献   

2.
This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south‐west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions.  相似文献   

3.
Abstract This study investigated the effect of three experimental fire regimes on the fecundity, ovule development and seedfall of two common wet-dry tropical savanna eucalypts, Eucalyptus minima and Eucalyptus tetrodonta, in northern Australia. Both species flower early in the dry season and ovule development occurs during the dry season. This coincides with a period of frequent fires. The three fire regimes considered were applied for four years between 1990 and 1994. These regimes were (i) Unburnt, (ii) Early, fires lit early in the dry season, and (iii) Late, fires lit late in the dry season. The treatments were applied to nine catchments (15–20 km2) with each fire regime replicated three times. Fire intensity typically increases as the dry season proceeds. Therefore, early dry season fires generally differ from late dry season fires in both their intensity and their timing in relation to the reproductive phenology of the eucalypts. Late dry season burning significantly reduced the fecundity of both species, whereas Early burning had no significant effect. Ovule success was significantly reduced by the Early burning for both species. The Late burning significantly reduced ovule success in E. tetrodonta, but not in E. miniata. The results suggest that fire intensity and fire timing may both be important determinants of seed supply. Fire intensity may be a determinant of fecundity, whereas fire timing in relation to the reproduction phenology may have a significant impact on ovule survival. Both fire regimes resulted in a substantial reduction in seed supply compared with the Unburnt treatment. This may have a significant impact on seedling regeneration of these tropical savanna eucalypts.  相似文献   

4.
5.
Abstract Fire is a dominant feature of tropical savannas throughout the world, and provides a unique opportunity for habitat management at the landscape scale. We provide the background and methodology for a landscape-scale savanna fire experiment at Kapalga, located in Kakadu National Park in the seasonal tropics of northern Australia. The experiment addresses the limitations of previous savanna fire experiments, including inappropriately small sizes of experimental units, lack of replication, consideration of a narrow range of ecological responses and an absence of detailed measurement of fire behaviour. In contrast to those elsewhere in the world, Australia's savannas are sparsely populated and largely uncleared, with fires lit primarily in a conservation, rather than pastoral, context. Fire management has played an integral role in the traditional lifestyles of Aboriginal people, who have occupied the land for perhaps 50 000 years or more. Currently the dominant fire management paradigm is one of extensive prescribed burning early in the dry season (May-June), in order to limit the extent and severity of fires occurring later in the year. The ecological effects of different fire regimes are hotly debated, but we identify geo-chemical cycling, tree demography, faunal diversity and composition, phenology, and the relative importance of fire intensity, timing and frequency, as critical issues. Experimental units (‘compartments’) at Kapalga are 15–20km2 catchments, centred on seasonal creeks that drain into major rivers. Each compartment has been burnt according to one of four treatments, each replicated at least three times: ‘Early’- fires lit early in the dry season, which is the predominant management regime in the region; ‘Late’- fires lit late in the dry season, as occurs extensively in the region as unmanaged ‘wildfires’; ‘Progressive’- fires lit progressively throughout the dry season, such that different parts of the landscape are burnt as they progressively dry out (believed to approximate traditional Aboriginal burning practices); and ‘Unburnt’- no fires lit, and wildfires excluded. All burning treatments have been applied annually for 5 years, from 1990 to 1994. Six core projects have been conducted within the experimental framework, focusing on nutrients and atmospheric chemistry, temporary streams, vegetation, insects, small mammals, and vertebrate predators. Detailed measurements of fire intensity have been taken to help interpret ecological responses. The Kapalga fire experiment is multidisciplinary, treatments have been applied at a landscape scale with replication, and ecological responses can be related directly to measurements of fire intensity. We are confident that this experiment will yield important insights into the fire ecology of tropical savannas, and will make a valuable contribution to their conservation management.  相似文献   

6.
Kennedy  A.D.  Potgieter  A.L.F. 《Plant Ecology》2003,167(2):179-192
Wildfires may be started naturally by lightning or artificially by humans. In the savanna regions of southern Africa, lightning fires tend to occur at the start of the wet season, during October and November, while anthropogenic fires are usually started during the dry season, between July and August. A long-term field manipulation experiment initiated in the Kruger National Park in 1952 was used to explore whether this seasonal divergence affects tree abundance, spatial pattern, size and architecture. After 44 years of prescribed burning treatments that simulated the seasonal incidence of lightning and anthropogenic fires, mean densities of the locally-dominant shrub, Colophospermum mopane, were 638 and 500 trees ha–1 respectively. Trees in burnt plots had aggregated distributions while trees in unburnt plots had random distributions. Significant differences (p < 0.001) were recorded in a range of morphological parameters including tree height, canopy diameter, mean stem circumference and number of stems. The incidence of resprouting also differed significantly between treatments, with burnt trees containing a high proportion of coppiced stems. The differences in tree size and architecture between the mid-dry season and early-wet season burning plots suggest that anthropogenic fires applied during July and August cannot substitute for a natural lightning fire regime. Anthropogenic fire yields a landscape that is shorter, more scrubby and populated by numerous coppiced shrubs than the landscape generated by natural lightning fire conditions.  相似文献   

7.
Pattern analysis of stems > 10 cm d.b.h. on 514 one-tenth ha quadrats showed that Callitris intratropica has a clumped distribution throughout the more uniformly distributed Eucalyptus forests at Murgenella in Northwest Arnhem Land. Callitris clumps are typically located on sites with sandy soils. Eucalypts occur within Callitris clumps. Fire suppression over the past 18 years has allowed some C. intratropica to establish on Eucalyptus forest sites with fine textured soils It is argued that distribution of Callitris preceding fire management was controlled by the interactive effects of fire, soils and understorey vegetation. High grass fuel loads (and thus intense fires), and competition are thought to have previously limited establishment of C intratropica on fine textured soils. Early dry season burning by Aboriginals may also have been important in limiting fire intensities and accumulation of fuel in Callitris stands. Dry electrical storms commonly cause fires prior to the summer rains. Such wildfires did not completely kill stands of Callitris saplings or trees at Murgenella. Survivors were found to be significantly bigger and to have thicker bark than the dead stems. Sapling size is related to age and density, thus fire may be an important mechanism in thinning heavily stocked stands. The continuous regeneration of Callitris and Eucalyptus is in marked contrast to the inhibition of Pinus caribaea recruitment following fire protection in the monsoonal neotropics. The lack of seral tree species in northern Australia suggests an equilibrium between forest distribution and the physical environment.  相似文献   

8.
Abstract: Eucalyptus tereticornis seedlings occurring on the edges of grassy balds on the Bunya Mountains were burnt by four separate fires. From the results, a logistic model demonstrated that lignotuber size was positively related and fire temperature negatively related to survivorship. While mortality was high for young seedlings there was no mortality of 5‐year old survivors from these trials subject to repeat burning. The model predicted that burning every 2 years will not substantially limit seedling establishment. This prediction was strengthened by results verifying that management fires on the grassy balds are generally of low intensity. Fire intensity is weakly related to a Fire Danger Index, indicating that the timing of burning in relation to weather conditions will not substantially enhance opportunities for more intense fires. Thus, even with biennial burning under optimal conditions eucalypt forest will replace grassy balds where they adjoin. Regular burning by aborigines may have maintained grassy bald‐rainforest boundaries, but not boundaries with eucalypt forest. Seed dispersal and migration barriers may have limited the expansion of eucalypt forest. It is concluded that under current conditions the long‐term preservation of the grassy balds is only possible where they are entirely surrounded by rainforest and are regularly burnt.  相似文献   

9.
Native bushland fragmented by urbanization often experiences increased cover of flammable weeds, reduced biomass turnover and an absence of fuel management combined with increased ignitions. Depending on species’ mobility and dispersal traits, and the extent of burns within urban remnants, such fires may reduce individual survival rates or limit natural recolonization. We monitored the survival of mygalomorph spiders for a year following high‐intensity and low‐intensity fires in Banksia woodland remnants in urban Perth. Of the 257 burrows found, 115 spiders were confirmed to initially survive after intense wildfire, but none were confirmed alive after 12 months. In sharp contrast, only one spider from 103 observed burrows was confirmed dead after a low‐intensity prescribed fire. As there were instances of our monitored mygalomorphs relocating a short distance following only low intensity fires, we also tested whether predation rates were higher in burnt than unburnt areas. Higher rates of predation were found in burnt areas, but this was strongly influenced by both site and predator type. We recommend further consideration of low‐intensity prescribed fire as well as alternative fuel management approaches in urban remnants to better conserve mygalomorph spider populations and other taxa with limited dispersal and/or mobility capabilities.  相似文献   

10.
A review of the occurrence of wild fires in Sengwa Wildlife Research Area (SWRA), Zimbabwe, is presented for the period 1965–1993. The effectiveness and desirability of early burning of peripheral areas introduced in 1979 are evaluated. More than 75% of wild fires occurred between July and October, 48.6% of which originated from communal lands. Early burning of peripheral areas led to significant reductions in extent of areas burnt, from annual mean areas of 115 km2 (1965–1978) to 11 km2 (1979–1993) because of effective control of fires, which originated from communal lands. Some areas did not burn at all after 1979, and the overall probability of burning dropped from 0.484 to 0.187. Whilst it may be desirable to keep fires out of SWRA in the short term, fuel build‐ups increase the fire hazard resulting in negative consequences on biodiversity in the long term. Consideration should be given to combine peripheral burning with low‐intensity prescribed burning of selected blocks to keep a semblance of natural fire regimes to ensure the maintenance of biodiversity while simultaneously reducing the fire‐hazard. An integrated fire management plan should be put in place for SWRA.  相似文献   

11.
This paper evaluates the history of fire management in the Bontebok National Park (3435 ha) over a period of almost four decades. A GIS database was compiled of all fires between 1972 and 2009 and the fire regime was analysed in terms of the frequency, season, size and cause of fires. Since the early 1970s, short interval burning was implemented to promote grazing for bontebok, but from 2004 the fire interval was lengthened to favour plant species diversity, an increasingly urgent conservation priority for the park. In total, 43 fires were recorded, ranging in size from 9 to 1007 ha, collectively spanning 14 013 ha. The majority of fires were large (100–500 ha), with fires of >100 ha accounting for 96% of the area burnt. The overall mean fire return period (FRP) for the park was 7.2 years, which is short judged by fynbos standards. FRPs under the old and new management regimes were 6.7 and 10.9 years respectively. Under the old regime, FRPs in renosterveld and fynbos were 5.8 and 8.0 years respectively. Large parts of the park repeatedly experienced fires at immature vegetation ages resulting in the elimination of slow-maturing seed-regenerating plant species such as Protea repens. Post-fire age distribution was highly skewed towards young vegetation, with 75% of fire-prone vegetation burning at post-fire ages of ≤7 years, and <10% of fire-prone vegetation surviving beyond 10 years of age. Prescribed and accidental fires respectively accounted for 70% and 30% of the total area burnt. Prescribed burning was mostly done in March–April, and only 8% of the total area burnt, burnt outside of the ecologically acceptable fire season. This study identified areas which have been subject to ecologically appropriate and inappropriate fire return intervals, providing a basis for informed future management and research.  相似文献   

12.
Prescribed burning is an important management tool in many parts of the world. While natural fires generally occur during the driest and warmest period of the year, prescribed burning is often timed out‐of‐season, when there is higher soil moisture and lower biomass combustibility. However, fire season may influence seedling recruitment after fire, e.g. through the effect of seed hydration status on fire tolerance. In non‐fire‐prone temperate regions, anthropogenic fire may occur exclusively in periods outside the growing season with higher soil moisture, which may have negative consequences on seedling recruitment. Fire tolerance of moist and dry seeds of 16 temperate European herbaceous species belonging to four families was assessed using heat treatment of 100 °C for 5 min and subsequent germination trials. Moist seeds of Asteraceae, Poaceae and Brassicaceae had a predominantly negative reaction to the heat treatment, while those of Fabaceae tolerated it or germination was even enhanced. The reaction of dry seeds was completely different, with positive responses in three species of the Fabaceae and fire tolerance in species of other families. Our results point out that hydration status may significantly influence the post‐fire germination of seeds. Dry seeds were found to tolerate high heat, while moist seeds were harmed in more than half of the species. This implies that if prescribed burning is applied in temperate grasslands of Europe, it should be timed to dry periods of the dormant season in order to protect seeds from negative effects of fire.  相似文献   

13.
Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of natural lightning ignitions should be useful as a basis for ecological fire management of humid savanna-grassland landscapes worldwide.  相似文献   

14.
15.
Fire is a key driver in savannah systems and widely used as a land management tool. Intensifying human land uses are leading to rapid changes in the fire regimes, with consequences for ecosystem functioning and composition. We undertake a novel analysis describing spatial patterns in the fire regime of the Serengeti‐Mara ecosystem, document multidecadal temporal changes and investigate the factors underlying these patterns. We used MODIS active fire and burned area products from 2001 to 2014 to identify individual fires; summarizing four characteristics for each detected fire: size, ignition date, time since last fire and radiative power. Using satellite imagery, we estimated the rate of change in the density of livestock bomas as a proxy for livestock density. We used these metrics to model drivers of variation in the four fire characteristics, as well as total number of fires and total area burned. Fires in the Serengeti‐Mara show high spatial variability—with number of fires and ignition date mirroring mean annual precipitation. The short‐term effect of rainfall decreases fire size and intensity but cumulative rainfall over several years leads to increased standing grass biomass and fuel loads, and, therefore, in larger and hotter fires. Our study reveals dramatic changes over time, with a reduction in total number of fires and total area burned, to the point where some areas now experience virtually no fire. We suggest that increasing livestock numbers are driving this decline, presumably by inhibiting fire spread. These temporal patterns are part of a global decline in total area burned, especially in savannahs, and we caution that ecosystem functioning may have been compromised. Land managers and policy formulators need to factor in rapid fire regime modifications to achieve management objectives and maintain the ecological function of savannah ecosystems.  相似文献   

16.
Question: What is the effect of frequent low intensity prescribed fire on foliar nutrients and insect herbivory in an Australian eucalypt forest? Location: Lorne State Forest (Bulls Ground Frequent Burning Study), mid‐north coast, New South Wales, Australia. Methods: Eighteen independent sites were studied representing three experimental fire regimes: fire exclusion (at least 45 years), frequently burnt (every 3 years for 35 years) and fire exclusion followed by the recent introduction of frequent burning (two fires in 6 years). Mature leaves were collected from the canopy of Eucalyptus pilularis trees at each site and analysed for nutrients and damage by invertebrate herbivores. Results: Almost 75% of all leaves showed some signs of leaf damage. The frequency of past fires had no effect on carbon and nitrogen content of canopy leaves. These results were consistent with assessments of herbivore damage where no significant differences were found in the amount of invertebrate herbivory damage to leaves across fire treatments. Conclusions: This eucalypt forest displayed a high degree of resilience to both frequent burning and fire exclusion as determined by foliar nutrients and damage by insect herbivores. Fire frequency had no detectable ecological impact on this aspect of forest health.  相似文献   

17.
Fire regimes shape plant communities but are shifting with changing climate. More frequent fires of increasing intensity are burning across a broader range of seasons. Despite this, impacts that changes in fire season have on plant populations, or how they interact with other fire regime elements, are still relatively understudied. We asked (a) how does the season of fire affect plant vigor, including vegetative growth and flowering after a fire event, and (b) do different functional resprouting groups respond differently to the effects of season of fire? We sampled a total of 887 plants across 36 sites using a space‐for‐time design to assess resprouting vigor and reproductive output for five plant species. Sites represented either a spring or autumn burn, aged one to three years old. Season of fire had the clearest impacts on flowering in Lambertia formosa with a 152% increase in the number of plants flowering and a 45% increase in number of flowers per plant after autumn compared with spring fires. There were also season × severity interactions for total flowers produced for Leptospermum polygalifolium and L. trinervium with both species producing greater flowering in autumn, but only after lower severity fires. Severity of fire was a more important driver in vegetative growth than fire season. Season of fire impacts have previously been seen as synonymous with the effects of fire severity; however, we found that fire season and severity can have clear and independent, as well as interacting, impacts on post‐fire vegetative growth and reproductive response of resprouting species. Overall, we observed that there were positive effects of autumn fires on reproductive traits, while vegetative growth was positively related to fire severity and pre‐fire plant size.  相似文献   

18.
Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning.  相似文献   

19.
A new fire model is proposed which estimates areas burnt on a macro‐scale (10–100 km). It consists of three parts: evaluation of fire danger due to climatic conditions, estimation of the number of fires and the extent of the area burnt. The model can operate on three time steps, daily, monthly and yearly, and interacts with a Dynamic Global Vegetation Model (DGVM), thereby providing an important forcing for natural competition. Fire danger is related to number of dry days and amplitude of daily temperature during these days. The number of fires during fire days varies with human population density. Areas burnt are calculated based on average wind speed, available fuel and fire duration. The model has been incorporated into the Lund‐Potsdam‐Jena Dynamic Global Vegetation Model (LPJ‐DGVM) and has been tested for peninsular Spain. LPJ‐DGVM was modified to allow bi‐directional feedback between fire disturbance and vegetation dynamics. The number of fires and areas burnt were simulated for the period 1974–94 and compared against observations. The model produced realistic results, which are well correlated, both spatially and temporally, with the fire statistics. Therefore, a relatively simple mechanistic fire model can be used to reproduce fire regime patterns in human‐ dominated ecosystems over a large region and a long time period.  相似文献   

20.
This study shows how high‐resolution (~15 cm) simultaneous colour and infra‐red digital aerial photography can be used to map both fire severity and, particularly, fire extent, in forest in south‐eastern Australia. The results show that this methodology is capable of detecting and mapping burnt and unburnt edges under unaffected forest canopy (i.e. still green) – that is, revealing the mosaic of burnt and unburnt areas that often result from planned landscape burning under mild weather conditions (i.e. with little of the brownish canopy scorch that results from more intense bushfires). This has important implications for both fuel management and ecology. It can answer the basic questions of fire and biodiversity managers following planned burning –’how much of the planned area burnt, and, within the burnt area, what aspects were burnt, and how hot did they burn?’ The analysis of fire extent by aspect showed that about 80% of southern and eastern aspects remained unburnt during broadscale autumn prescribed burning, with many of these moister aspects potentially providing longer unburnt refuges over multiple burn rotations. The fire severity and extent mapping products, produced using the methodology outlined in this study, have the potential to substantially increase the understanding of the ecological and fuel outcomes of landscape‐scale autumn prescribed burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号