首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasitic plants are increasingly becoming the focus of research in many ecosystems. They have been shown to alter litterfall properties and decomposition rates in environments where they occur. Despite this recognition, the role of mistletoes in nutrient cycling in semi-arid savanna remains poorly understood. We investigated the litter input, element returns, and associated below-canopy soil nutrient concentrations of three mistletoe species (Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum) that parasitize Acacia karroo trees in a semi-arid savanna, southwest Zimbabwe. Element concentrations in mistletoe leaf litter were enriched relative to the host. Litterfall from mistletoes significantly increased overall litterfall by up to 173 %, with E. ngamicum and P. kalachariensis having greater litterfall than their host trees. Associated with these changes in litterfall was an increase in element returns and the below-canopy soil nutrient concentrations. The increase in nutrient returns was due to both the effect of enriched mistletoe litter and increased volumes of litterfall beneath host trees. Litterfall, element returns, and the below-canopy soil nutrient concentrations were significantly influenced by mistletoe density, with higher values at high mistletoe density. Overall, E. ngamicum and P. kalachariensis had greater influence on litterfall, element returns, and soil nutrient concentrations than V. verrucosum. These findings are consistent with current understanding of enhanced nutrient cycling in the presence of parasitic plants particularly in nutrient-poor ecosystems. We conclude that the introduction of nutrients and associated increase in resource heterogeneity play an important role in determining ecosystem structure and function in semi-arid savannas.  相似文献   

2.

Aims

The below-canopy soil moisture content and litter-layer arthropod abundance and diversity of Acacia karroo trees parasitized by each of three mistletoe species (Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum) and uninfected A. karroo trees were investigated in semi-arid savanna, southwest Zimbabwe.

Results

The soils below the canopies of mistletoe-infected trees were significantly low in moisture content compared to those beneath uninfected A. karroo trees. Nevertheless, arthropod species diversity was greater by up to 34 % below the canopies of mistletoe-infected trees than beneath uninfected A. karroo trees, with greater abundances beneath trees infected by E. ngamicum and P. kalachariensis. In addition, the majority of the arthropod species associated with mistletoe-infected trees had litter as their dominant foraging substrate.

Conclusions

Our findings show that mistletoes increase the abundance and diversity of litter-dwelling and –foraging arthropods due to increase in the quality and quantity of litterfall beneath mistletoe-infected trees. By altering the below-canopy arthropod communities and soil moisture content, mistletoes have potential to modify ecosystem processes such as decomposition, soil process rates, and nutrient cycling. Therefore, we suggest that the resulting increase in resource heterogeneity plays an important role in determining the structure and functioning of semi-arid savanna ecosystems.  相似文献   

3.
Both nutrient cycling and nutrient relationships between mistletoe and host have been widely studied; yet it is unclear whether high nutrient concentrations commonly found in mistletoes affect rates of nutrient cycling. To address this question, we assessed 13 elements in the leaf litter of a temperate eucalypt forest in southern New South Wales, comparing concentrations from trees (Eucalyptus blakelyi, E. dwyeri, and E. dealbata) with and without the hemiparasitic mistletoe Amyema miquelii. Results were in accord with previous research on fresh leaves showing that concentrations of many elements were higher in the mistletoe than the host. This was not the case for all elements; most notably for N, where concentrations were significantly lower in the mistletoe. However, the return of all elements increased with mistletoe infection because of the combined effect of enrichment in mistletoe tissues and high rates of mistletoe litterfall. Annual returns of N and P in leaf litter increased by a factor of 1.65 and 3 respectively, with the greatest increase being for K by a factor of 43 in spring. These increased element returns were not significantly influenced by any changes in host leaf litter quality, as mistletoe infection was not found to affect host element concentrations. Mistletoe infection also altered the spatial and temporal distribution of element returns because of the patchy occurrence of mistletoes and extended period of mistletoe litterfall compared with the host. These findings provide a mechanistic explanation for the role of mistletoes as a keystone resource and, together with comparable results from root‐parasitic plants in boreal tundra and cool‐temperate grasslands, suggest that enhancing nutrient return rates may be a generalized property of parasitic plants.  相似文献   

4.
March WA  Watson DM 《Oecologia》2007,154(2):339-347
The importance of litter in regulating ecosystem processes has long been recognised, with a growing appreciation of the differential contribution of various functional plant groups. Despite the ubiquity of mistletoes in terrestrial ecosystems and their prominence in ecological studies, they are one group that have been overlooked in litter research. This study evaluated the litter contribution from a hemiparasitic mistletoe, Amyema miquelii (Lehm. ex Miq.) Tiegh., in an open eucalypt forest (Eucalyptus blakelyi, E. dwyeri and E. dealbata), at three scales; the forest stand, single trees and individual mistletoes. Litter from mistletoes significantly increased overall litterfall by up to 189%, the amount of mistletoe litter being proportional to the mistletoe biomass in the canopy. The high litter input was due to a much higher rate of mistletoe leaf turnover than that of host trees; the host litterfall and rate of leaf turnover was not significantly affected by mistletoe presence. The additional litter from mistletoes also affected the spatial and temporal distribution of litterfall due to the patchy distribution of mistletoes and their prolonged period of high litterfall. Associated with these changes in litterfall was an increase in ground litter mass and plant productivity, which reflects similar findings with root-parasitic plants. These findings represent novel mechanisms underlying the role of mistletoes as keystone resources and provide further evidence of the importance of parasites in affecting trophic dynamics.  相似文献   

5.
Five sets of herbivore exclosures situated in mesic and semi‐arid savannas in Hluhluwe‐iMfolozi Park, South Africa were used to investigate the effects of mammal browsers and savanna type on plant traits relating to leaf nutrient content, defense, and growth in seven Acacia species. Mostly, browsing did not significantly affect leaf nutrient content but for a few species (i.e., increasing foliar N and P, decreasing C/N, and total polyphenols). Browser effects on structural defenses tended to be more pronounced than for leaf nutrient content and chemical defenses, particularly for semi‐arid species, resulting in longer, thicker, and denser spines, and a lower bite size index on browsed plants for most semi‐arid species. Browsing had no significant effect on growth rates for all species. Secondly, we investigated the effect of savanna type (mesic vs. semi‐arid) on the same set of plant traits and growth rates. A trade‐off in defense strategy was evident where mesic species had lower quality leaves and invested more heavily in growth and chemical defenses, while semi‐arid species generally had higher nutrient content leaves and invested more in structural defenses and higher levels of ramification. These findings suggest that the previously documented trade‐off in plant growth, resprouting ability and architecture between herbivore versus fire‐adapted savanna woody species can possibly be extended to include browse quality and defense type.  相似文献   

6.
为探讨沙漠公路防护林地表凋落物的分解速率和养分释放动态对施肥的响应,采用凋落物分解袋法,对塔里木沙漠公路防护林地乔木状沙拐枣(Calligonum arborescens)同化枝、梭梭(Haloxylon ammodendron)同化枝和多枝柽柳(Tamarix ramosissima)枝凋落物在施肥处理下的分解及养分释放特征进行研究。结果表明:经过420d的分解,3种凋落物质量残留率在对照(不施肥)、施用氮肥、施用磷钾复合肥处理间存在显著性差异(P0.05)。乔木状沙拐枣同化枝、梭梭同化枝和多枝柽柳枝在对照处理下的质量残留率分别为56.95%、31.32%和50.24%。施肥处理下3种凋落物均呈现出梭梭同化枝分解速率最快,多枝柽柳枝次之,乔木状沙拐枣同化枝分解最慢。施用磷钾复合肥极显著提高了3种凋落物的分解速率(P0.01);施用氮肥则促进多枝柽柳枝的分解,抑制乔木状沙拐枣和梭梭同化枝的分解。凋落物分解过程中,对照组3种植物凋落物的C、N、P和K元素均呈现净释放状态;施肥后凋落物的N、P和K元素呈现出富集-释放的模式。凋落物初始P含量和C/N、C/P比值是分解初期的主导因素,初始K、木质素、纤维素含量和C/N、木质素/N比值是分解后期的主要控制因素。研究表明,施肥显著影响沙漠公路防护林地表凋落物的分解,增加防护林地表凋落物的养分归还量,延后养分释放的时间,改善塔里木沙漠公路防护林地的土壤肥力。凋落物初始C/N比值是预测塔里木沙漠凋落物分解的重要因素,且不同分解时期影响凋落物分解的初始化学组成有所差异。  相似文献   

7.
Decomposition is a vital ecosystem process, increasingly modified by human activity. Theoretical frameworks and empirical studies that aim to understand the interplay between human land‐use, macro‐fauna and decomposition processes have primarily focused on leaf and wood litter. For a whole‐plant understanding of how land‐use and macro‐fauna influence decomposition, investigating root litter is required. Using litterbags, we quantified rates of root decomposition across contrasting tropical savanna land‐uses, namely wildlife and fire‐dominated protected areas and livestock pastureland without fire. By scanning litterbags for termite intrusion, we differentiated termite and microbial driven decomposition. Root litter was buried underneath different tree canopies (leguminous and non‐leguminous trees) and outside canopies to account for savanna landscape effects. Additionally, we established a termite cafeteria‐style experiment and common garden to explore termite selectivity of root litter and root trait relationships, respectively. After one year, we found no significant differences in root litter mass loss between wildlife dominated areas and pastureland. Instead, we found consistent species differences in root litter mass loss across land‐uses and additive and non‐additive effects of termites on root decomposition across plant species. Termite selectivity for root litter species occurred for both root and leaf litter buried near termite mounds, but was not explained by root traits measured in the common garden. Termite foraging was greater under leguminous tree canopies than other canopies; however, this did not influence rates of root decomposition. Our study suggests that land‐use has a weak direct effect on belowground processes in savannas. Instead, changes in herbaceous species composition and termite foraging have stronger impacts on belowground decomposition. Moreover, termites were not generalist decomposers of root litter, but their impact varies depending on plant species identity and likely associated root traits. This root litter selectivity by termites is likely to be an important contributor to spatial heterogeneity in savanna nutrient cycling.  相似文献   

8.
9.
Woody encroachment can lead to a complete switch from open habitats to dense thickets, and has the potential to greatly alter the biodiversity and ecological functioning of grassy ecosystems across the globe. Plant litter decomposition is a critical ecosystem process fundamental to nutrient cycling and global carbon dynamics, yet little is known about how woody encroachment might alter this process. We compared grass decay rates of heavily encroached areas with adjacent nonencroached open areas in a semi‐arid South African savanna using litterbags that allowed or excluded invertebrates. We also assessed the effect of woody encroachment on the activity of termites— dominant decomposer organisms in savanna systems. We found a significant reduction in decomposition rates within encroached areas, with litter taking twice as long to decay compared with open savanna areas. Moreover, invertebrates were more influential on grass decomposition in open areas and termite activity was substantially lower in encroached areas, particularly during the dry season when activity levels were reduced to almost zero. Our results suggest that woody encroachment created an unfavourable environment for invertebrates, and termites in particular, leading to decreased decomposition rates in these areas. We provide the first quantification of woody encroachment altering the functioning of African savanna ecosystems through the slowing of aboveground plant decomposition. Woody encroachment is intensifying across the globe, and our results suggest that substantial changes to the carbon balance and biodiversity of grassy biomes could occur.  相似文献   

10.
Termite mounds by creating patches of increased resource availability (e.g. water and nutrients) are a major source of spatial heterogeneity in savannas. Likewise, mistletoes via input of nutrient-rich litter alter nutrient and water availability increasing environmental heterogeneity in semi-arid savanna. Despite this recognition, the influence of termitaria and mistletoe on soil properties and plant community have not been investigated together. We established eight 100 m2 plots each on termitaria, under mistletoe-infected trees and in the surrounding savanna and examined the soil properties and the structure of Securinega virosa (Euphorbiaceae) and Euclea divinorum (Ebenaceae) in semi-arid savanna, southwest Zimbabwe. Soil properties significantly differed among the sampling sites (p = 0.001) with soils of increasing clay, soil moisture, pH and phosphorus, calcium and ammonium concentrations occurring on termite mounds. Soils under mistletoe-infected trees were associated with silt, organic matter, sodium, potassium, magnesium and nitrate and the surrounding savanna was associated with soils of increasing sand content. Plant structure also differed significantly between sites with greater basal area of both S. virosa and E. divinorum on termitaria relative to mistletoe-infected trees and the surrounding savanna. However, the stem density of S. virosa was greater under mistletoe-infected trees than on termitaria and in the surrounding savanna. Plant structural variables of individuals of the same species were affected by different soil properties across treatments. The major patterns showed that plant structure was influenced positively by soil moisture and nitrate and negatively by phosphorus on termitaria; positively by clay, soil moisture and ammonium and negatively by potassium under mistletoe-infected trees; and by phosphorus and calcium in the surrounding savanna. These findings show that soil properties, plant structure and their relationships differ between termitaria, mistletoe-infected trees and surrounding savanna, and these differences are suggested to increase heterogeneity in soil resources availability and vegetation structure in semi-arid savanna.  相似文献   

11.
The present study explores the xylem‐tapping parasitism by mistletoe (Tapinanthus oleifolius) on native tree species along the Kalahari Transect (KT) using the stable isotopes of carbon and nitrogen. Mistletoe‐host pairs were collected at three geographical locations along the KT rainfall gradient in the 2005 and 2006 wet seasons. Foliar total carbon, total nitrogen and their stable isotope compositions (δ13C and δ15N) were measured. Heterotrophy (H) was calculated using foliar δ13C values of mistletoes and their hosts as an indicator of proportion of carbon in the mistletoes derived from host photosynthate. Based on the mistletoe H‐value and relationship between the mistletoe foliar δ15N and their host foliar δ15N, the results showed that mistletoes along the KT derived both nitrogen and carbon from their hosts. Mistletoes may regulate water use in relation to nitrogen supply. The proportion of carbon in the mistletoes derived from host photosynthate was between 35% and 78%, and the degree of heterotrophy was species‐specific with only limited annual variation. The study emphasizes the importance of incorporating parasitic associations in future studies on studying carbon, water and nutrient cycling along the Kalahari.  相似文献   

12.
Large herbivores may alter carbon and nutrient cycling in soil by changing above- and below-ground litter decomposition dynamics. Grazing effects may reflect changes in plant allocation patterns, and thus litter quality, or the site conditions for decomposition, but the relative roles of these broad mechanisms have rarely been tested. We examined plant and soil mediated effects of grazing history on litter mass loss and nutrient release in two grazing-tolerant grasses, Lolium multiflorum and Paspalum dilatatum, in a humid pampa grassland, Argentina. Shoot and root litters produced in a common garden by conspecific plants collected from grazed and ungrazed sites were incubated under both grazing conditions. We found that grazing history effects on litter decomposition were stronger for shoot than for root material. Root mass loss was neither affected by litter origin nor incubation site, although roots from the grazed origin immobilised more nutrients. Plants from the grazed site produced shoots with higher cell soluble contents and lower lignin:N ratios. Grazing effects mediated by shoot litter origin depended on the species, and were less apparent than incubation site effects. Lolium shoots from the grazed site decomposed and released nutrients faster, whereas Paspalum shoots from the grazed site retained more nutrient than their respective counterparts from the ungrazed site. Such divergent, species-specific dynamics did not translate into consistent differences in soil mineral N beneath decomposing litters. Indeed, shoot mass loss and nutrient release were generally faster in the grazed grassland, where soil N availability was higher. Our results show that grazing influenced nutrient cycling by modifying litter breakdown within species as well as the soil environment for decomposition. They also indicate that grazing effects on decomposition are likely to involve aerial litter pools rather than the more recalcitrant root compartment.  相似文献   

13.
Invertebrate herbivore outbreaks have important impacts on system biogeochemical cycling, but these effects have been poorly documented in African savanna ecosystems. In semi‐arid African savannas, outbreaks of the lepidopteran Imbrasia belina (mopane worm) affect discrete patches of the dominant Colophospermum mopane trees; larvae may completely defoliate trees for up to six weeks during each of the early and late growing seasons. We studied the impact of mopane worm outbreaks on the availability of nitrogen (N), phosphorus (P), and potassium (K) within mopane savanna by quantifying major nutrient pools in defoliated and non‐defoliated savanna patches, including leaves, leaf litter, worm frass, and the soil beneath trees. Within an outbreak area, approximately 44 percent of trees were infested, supporting ~29,000 worms/ha, leading to ~640 kg/ha dry weight frass deposition at 1.4 g of frass/day‐individual (fourth or fifth instar), compared with an average 1645 kg/ha dry weight of leaf on trees most of which should be deposited by litterfall at the end of the growing season. Frass had twofold higher P, 10 percent higher K, but equivalent N content than litter. Taking frass and litter deposition together, the N, P, and K contents added due to the outbreak event at our study site were 0.88, 5.8, and 2.8 times those measured in non‐outbreak patches, a pattern which was reflected in the nutrient contents of soil surfaces beneath defoliated trees. Invertebrate herbivory appears to be an important driver for mopane savanna but has been largely neglected.  相似文献   

14.
We tested the hypothesis that roads in arid central Australia modify roadside hydrology and nutrient patterns creating better habitat for mistletoes (Loranthaceae). In two areas of mulga woodland near Alice Springs where mulgas (Acacia aneura) are the principal mistletoe host, we compared mistletoe abundance, and host foliar water and nutrient content between roadside and interior (100 m from the road) sites. Mistletoes were significantly more abundant close to roadsides than at interior sites and mulgas had significantly higher foliar water contents at roadside compared to interior sites. Mulga foliar P and N levels were not, however, significantly different between roadside and interior sites. We conclude that roads exert a strong influence on the adjacent biota in arid central Australia primarily through facilitating water infiltration at roadside sites.  相似文献   

15.
Network theory in ecology has been central to understanding species co‐occurrence patterns, specialization and community stability. However, network theory has traditionally focused on the ‘higher’ trophic level where exploitation of network ‘partners’ (i.e. individual interactions in response to resource availability) have remained underappreciated. In this study we tested how clumping and host availability influenced mistletoe–host interactions in a semi‐arid woodland, central Australia. We used a hierarchical approach that evaluated individual interactions by modifying the traditional randomization technique to simulate clumping and host exploitation. Using published literature we then compared our results with mistletoes from other genera. We found that mistletoes clump on fewer trees than predicted, even though interaction strength was no different from random expectations, and we found no evidence that common trees were heavily infected as predicted by the host availability hypothesis. The rate of host exploitation (measured as the proportion of trees infected) in semi‐arid Australia is similar to that for mistletoe genera in other parts of the world. We hypothesize that specific host trees act as a focal point for infection that facilitates the spread and overall population size of mistletoes. Overall our results indicate that resources, such as the number of trees in a mistletoe network, are less important than clumping of individual plants. We suggest that exploitation of available resources may play a similar role in other networks that extend beyond antagonistic relationships such as parasite or herbivore interactions.  相似文献   

16.
Herbivores do not forage uniformly across landscapes, but select for patches of higher nutrition and lower predation risk. Macrotermes mounds contain higher concentrations of soil nutrients and support grasses of higher nutritional value than the surrounding savanna matrix, attracting mammalian grazers that preferentially forage on termite mound vegetation. However, little is known about the spatial extent of such termite influence on grazing patterns and how it might differ in time and space. We measured grazing intensity in three African savanna types differing in rainfall and foliar nutrients and predicted that the functional importance of mounds for grazing herbivores would increase as the difference in foliar nutrient levels between mound and savanna matrix grasses increases and the mounds become more attractive. We expected this to occur in nutrient‐poor areas and during the dry season when savanna matrix grass nutrient levels are lower. Tuft use and grass N and P content were measured along transects away from termite mounds, enabling calculation of the spatial extent of termite influence on mammalian grazing. Using termite mound densities estimated from airborne light detection and ranging (LiDAR), we further upscaled field‐based results to determine the percentage of the landscape influenced by termite activity. Grasses in close proximity to termite mounds were preferentially grazed at all sites and in both seasons, but the strength of mound influence varied between savanna types and seasons. In the wet season, mounds had a relatively larger effect on grazers at the landscape scale in the nutrient‐poor, wetter savanna, whereas in the dry season the pattern was reversed with more of the landscape influenced at the nutrient‐rich, driest site. Our results reveal that termite mounds enhance the value of savanna landscapes for herbivores, but that their functional importance varies across savanna types and seasons.  相似文献   

17.
A series of papers have been published which describe the influence of vegetation and soil type on the Western Australian wheatbelt termite,Drepanotermes tamminensis (Hill), and also on its litter harvesting levels and contribution to the soil nutrient budget. This paper integrates these findings by means of a computer simulation model. The model consists of three modules which respectively describe the dynamics of litter on the ground, the dynamics of litter within termite mounds and how these in turn influence nutrient loads within the habitat. The outputs of the model suggest that this litter harvesting termite plays an important role in the nutrient dynamics of the area and it provides an estimate of the unmeasured variable, litter consumed in mounds by termites, which is consistent with measurements for other termite species with similar feeding habits.  相似文献   

18.
Insect herbivory can strongly influence ecosystem nutrient dynamics, yet the indirect effects of herbivore‐altered litter quality on subsequent decomposition remain poorly understood. The northern tamarisk beetle Diorhabda carinulata was released across several western states as a biological control agent to reduce the extent of the invasive tree Tamarix spp. in highly‐valued riparian ecosystems; however, very little is currently known about the effects of this biocontrol effort on ecosystem nutrient cycling. In this study, we examined alterations to nutrient dynamics resulting from beetle herbivory in a Tamarix‐invaded riparian ecosystem in the Great Basin Desert in northern Nevada, USA, by measuring changes in litter quality and decomposition, as well as changes in litter quantity. Generally, herbivory resulted in improved leaf litter chemical quality, including significantly increased nitrogen (N) and phosphorus (P) concentrations and decreased carbon (C) to nitrogen (C:N), C:P, N:P, and lignin:N ratios. Beetle‐affected litter decomposed 23% faster than control litter, and released 16% more N and 60% more P during six months of decomposition, as compared to control litter. Both litter types showed a net release of N and P during decomposition. In addition, herbivory resulted in significant increases in annual rates of total aboveground litter and leaf litter production of 82% and 71%, respectively, under the Tamarix canopy. Our finding that increased rates of N and P release linked with an increased rate of mass loss during decomposition resulting from herbivore‐induced increases in litter quality provides new support to the nutrient acceleration hypothesis. Moreover, results of this study demonstrate that the introduction of the northern tamarisk beetle as biological control to a Tamarix‐invaded riparian ecosystem has lead to short‐term stimulation of nutrient cycling. Alterations to nutrient dynamics could have implications for future plant community composition, and thus the potential for restoration of Tamarix‐invaded ecosystems.  相似文献   

19.
Abstract The effect of mistletoes Amyema preissii on the survival of fast growing trees of Acacia victoriae was investigated in arid central Australia. Trees with different levels of experimentally induced mistletoe infection were monitored for 4 years. Analysis of covariance failed to reveal a treatment effect of infection on host survival. Loss of trees early in the experiment reduced the statistical power of the analysis, and variable infection success and the establishment of bird-dispersed mistletoes on experimental trees blurred the distinction between treatments. However regression analysis showed a significant relationship between the volume of mistletoe and tree mortality. The implications for the design of future experiments are discussed.  相似文献   

20.
Tissue mineral concentrations of calcium, copper, iron, magnesium, manganese, nitrogen, phosphorus, potassium, sodium, and zinc, and long-term water-use efficiency (as estimated by δ13C±) were measured in the mistletoe Phoradendron leucarpum and its hosts to investigate the relationship between nutrient concentrations and water economies of the parasite and hosts. The mistletoe had mineral concentrations 0.97 to 2.88 times greater than the hosts. Mean long-term mistletoe water-use efficiency (-27.89±) was comparable to mean long-term host water-use efficiency (-27.69±) and generally greater than the water-use efficiency reported for most mistletoe species. Differences between mistletoe and host water-use efficiency ranged from +0.65 to -0.75± and were more similar to mistletoes found growing on nitrogen-fixing host species as reported in other studies. Mistletoe nutrient concentrations, in particular nitrogen, were not related to changes in mistletoe water-use efficiencies. Nutrient: calcium ratios indicated that mistletoes acquire nutrients in excess of that which can be delivered by the host xylem. These data are discussed relative to the passive vs. active theories of nutrient uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号