首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated variation in body size of the widely distributed Neotropical bat Chiroderma villosum across its entire range. Our objective was to verify if the size-related geographic variation in the species is related to environmental variables. We took 13 measurements of 410 specimens from 198 localities in Mesoamerica and South America, and collected information on latitude, longitude, altitude, precipitation, and temperature, totalling 22 variables. We detected clinal variation in size related to latitude and longitude, with a pattern that conforms to the Bergmann's rule. Clinal variation of size along longitude was influenced by the taxonomic component, with subspecies C. v. jesupi being smaller than C. v. villosum. In contrast the latitudinal cline was explained by temperature seasonality and precipitation, with a 14% increase in size between the north and south extremes of the range. In other words, size of individuals is larger in areas with more seasonal oscillations in temperature and with lower precipitation. Our results support the notion that low temperatures alone do not explain large size of mammals in high latitudes. One hypothesis is that large size is favoured in more seasonal climates because somatic growth is faster when resources are abundant, and also larger animals can endure food scarcity better than small ones. We also postulate that pressures related to interspecific competition and resource use may be more intense in more areas marked by seasonal climatic variations. Specifically, a larger size in seasonal areas may allow individuals to explore a wider niche. We suggest that future approaches, refining regional variation in the diet of C. villosum may serve as a further test to this hypothesis.  相似文献   

2.
A phylogenetic comparative analysis of geographic variation in body size of an obligately hibernating marmotine species (Anatolian ground squirrels, Spermophilus xanthoprymnus) is presented in relation to environmental variables that pertain to four principal hypotheses (heat conservation, heat dissipation, primary productivity, and seasonality hypotheses). Adult Anatolian ground squirrels (78 males and 90 females) were collected from ten geographic localities in Anatolia for use in morphometric analyses. First, the study tested whether significant variation in body size occurs over the geographic range of S. xanthoprymnus. Then, to understand the possible cause(s) of the observed pattern of geographic variation in body size of Anatolian ground squirrels, four hypotheses were tested, separately and simultaneously, using a phylogenetic comparative method. Overall, food availability (primary productivity hypothesis) and, especially in males, over‐winter fasting endurance (seasonality hypothesis) are likely the primary underlying mechanisms generating the observed pattern of increasing body size towards colder, more seasonal environments, with higher summer precipitation and productivity (or a Bergmannian size pattern). © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 695–710.  相似文献   

3.
Aim The patterns and causes of ecogeographical body size variation in ectotherms remain controversial. In amphibians, recent genetic studies are leading to the discovery of many cryptic species. We analysed the relationships between body size and climate for a salamander (Salamandrina) that was recently separated into two sibling species, to evaluate how ignoring interspecific and intraspecific genetic structure may affect the conclusions of ecogeographical studies. We also considered the potential effects of factors acting at a local scale. Location Thirty‐four populations covering the whole range of Salamandrina, which is endemic to peninsular Italy. Methods We pooled original data and data from the literature to obtain information on the snout–vent length (SVL) of 3850 Salamandrina females; we obtained high‐resolution climatic data from the sampled localities. We used an information‐theoretic approach to evaluate the roles of climate, genetic features (mitochondrial haplogroup identity) and characteristics of aquatic oviposition sites. We repeated our analyses three times: in the first analysis we ignored genetic data on intraspecific and interspecific variation; in the second one we considered the recently discovered differences between the two sibling species; in the third one we included information on intraspecific genetic structure within Salamandrina perspicillata (for Salamandrina terdigitata the sample size was too small to perform intraspecific analyses). Results If genetic information was ignored, our analysis suggested the existence of a relationship between SVL and climatic variables, with populations of large body size in areas with high precipitation and high thermal range. If species identity was included in the analysis, the role of climatic features was much weaker. When intraspecific genetic differences were also considered, no climatic feature had an effect. In all analyses, local factors were important and explained a large proportion of the variation; populations spawning in still water had a larger body size. Main conclusions An imperfect knowledge of species boundaries, or overlooking the intraspecific genetic variation can strongly affect the results of analyses of body size variation. Furthermore, local factors can be more important than the large‐scale parameters traditionally considered, particularly in species with a small range.  相似文献   

4.
We tested the validity of Bergmann’s rule and Rosenzweig’s hypothesis through an analysis of the geographical variation of the skull size of Otaria flavescens along the entire distribution range of the species (except Brazil). We quantified the sizes of 606 adult South American sea lion skulls measured in seven localities of Peru, Chile, Uruguay, Argentina, and the Falkland/Malvinas Islands. Geographical and environmental variables included latitude, longitude, and monthly minimum, maximum, and mean air and ocean temperatures. We also included information on fish landings as a proxy for productivity. Males showed a positive relationship between condylobasal length (CBL) and latitude, and between CBL and the six temperature variables. By contrast, females showed a negative relationship between CBL and the same variables. Finally, female skull size showed a significant and positive correlation with fish landings, while males did not show any relationship with this variable. The body size of males conformed to Bergmann’s rule, with larger individuals found in southern localities of South America. Females followed the converse of Bergmann’s rule at the intraspecific level, but showed a positive relationship with the proxy for productivity, thus supporting Rosenzweig’s hypothesis. Differences in the factors that drive body size in females and males may be explained by their different life-history strategies. Our analyses demonstrate that latitude and temperature are not the only factors that explain spatial variation in body size: others such as food availability are also important for explaining the ecogeographical patterns found in O. flavescens.  相似文献   

5.
Two primary patterns of body size variation have been recorded in ectotherms in relation to latitudinal/altitudinal shifts. In some, body size increases with increasing latitude/altitude whereas, in others, body size decreases with increasing latitude/altitude. This clinal variation is generally assumed to be caused by local adaptation to environmental conditions however the selective variable(s) (temperature, humidity, diet quality, etc.) is still heavily debated. Here we investigate geographic variation in body size of dark and pale color morphs of males of the bush-cricket lsophya rizeensis collected from 15 locations along an elevation gradient ranging from 350 to 2 500 m. Using an information theoretical approach we evaluate the relative support of four different hypotheses (the temperature size rule, the moisture gradient hypothesis, the seasonal constraint hypothesis, and the primary productivity hypothesis) explaining body size variation along the altitudinal gradient. Body size variation in pale color morphs showed a curvilinear relationship with altitude while dark color morphs showed no variation in body size. Body size variation in pale color morphs was highly correlated with precipitation and temperature seasonality values thus giving strong support for the moisture gradient and seasonal constraint hypothesis. Our results reinforce the importance of gradients in humidity and seasonality over temperature in the creation of altitudinal body size clines and the role of selection for resistance to stress factors in the establishment of these clines. Whether a body size cline is observed or not might also depend on the phenotypic properties of the individuals, like coloration.  相似文献   

6.
Theory predicts that within‐population differences in the pace‐of‐life can lead to cohort splitting and produce marked intraspecific variation in body size. Although many studies showed that body size is positively correlated with fitness, many argue that selection for the larger body is counterbalanced by opposing physiological and ecological selective mechanisms that favour smaller body. When a population split into cohorts with different paces of life (slow or fast cohort), one would expect to detect the fitness–size relationship among and within cohorts, that is, (a) slower‐developing cohort has larger body size and higher fitness than faster‐developing cohort, and (b) larger individuals within each cohort show higher fitness than smaller individuals. Here, we test these hypotheses in capture–mark–recapture field surveys that assess body size, lifespan, survival and lifetime mating success in two consecutive generations of a partially bivoltine aquatic insect, Coenagrion mercuriale, where the spring cohort is slower‐developing than the autumn cohort. As expected, body size was larger in the slow‐developing cohort, which is consistent with the temperature‐size rule and also with the duration of development. Body size seasonal variation was greater in slow‐developing cohort most likely because of the higher variation in age at maturity. Concordant with theory, survival probability, lifespan and lifetime mating success were higher in the slow‐developing cohort. Moreover, individual body size was positively correlated with survival and mating success in both cohorts. Our study confirms the fitness costs of fast pace‐of‐life and the benefits of larger body size to adult fitness.  相似文献   

7.
Aim We analysed body‐size variation in relation to latitude, longitude, elevation and environmental variables in Ctenomys (tuco‐tucos), subterranean rodents in the Ctenomyidae (Caviomorpha). We tested the existence of inter‐ and intraspecific size clines to determine if these rodents follow Bergmann's rule, to compare intra‐ and interspecific size trends and to assess the relevance of the subterranean lifestyle on these trends. Location South America, south of 15° latitude. Methods This paper is based on 719 specimens of tuco‐tucos from 133 localities of Argentina, Bolivia, Chile, Paraguay, Peru and Uruguay, representing 47 named species and 32 undescribed forms. Intraspecific analyses were performed for Ctenomys talarum Thomas, 1898 and the Ctenomys perrensi Thomas, 1896 species complex. Head and body length and weight were used for estimating body size. Geographical independent variables included latitude, longitude and altitude. Environmental independent variables were mean minimal and maximal monthly temperature, mean annual temperature, mean minimal and maximal precipitation, and total annual precipitation. To estimate seasonality, the annual variability of the climatic factors was calculated as their coefficients of variation and the difference between maximum and minimum values. Mean annual actual evapotranspiration (AET), and mean annual, January (summer) and July (winter) potential evapotranspiration (PET) values were also calculated for each locality, as well as annual, summer and winter water balance (WB). Statistical analyses consisted of simple and multiple regression and nonparametric correlation. Results Body size of Ctenomys decreases interspecifically from 15°00′ S to 48°15′ S and from 56°33′ W to 71°46′ W, and is positively correlated with ambient temperature and precipitation. The best predictors of body size according to multiple regression analyses were mean annual temperature, the difference between mean maximum and minimum annual temperatures, annual PET, the difference between summer and winter PET, and annual and winter water balance. These patterns are repeated, but not identically, at a smaller geographical scale within the species C. talarum and the superspecies C. perrensi. Main conclusions Tuco‐tucos follow the converse to Bergmann's rule at the interspecific level. At the intraspecific level some parallel trends were observed, but the smaller scale of these analyses, involving a very reduced variation of environmental factors, necessitates caution in interpreting results. The subterranean lifestyle probably insulates these rodents from the external temperature. The observed latitudinal body‐size gradients are more probably related to seasonality, ambient energy, primary productivity and/or intensity of predation.  相似文献   

8.
Geographic variation in body size and sexual dimorphism of the short‐nosed fruit bat (Cynopterus sphinx) was investigated in peninsular India. Bats were sampled at 12 localities along a 1200 km latitudinal transect that paralleled the eastern flanks of the Western Ghats. The geographic pattern of variation in external morphology of C. sphinx conforms to the predictions of Bergmann's Rule, as indicated by a steep, monotonic cline of increasing body size from south to north. This study represents one of the first conclusively documented examples of Bergmann's Rule in a tropical mammal and confirms that latitudinal clines in body size are not exclusively restricted to temperate zone homeotherms. Body size was indexed by a multivariate axis derived from principal components analysis of linear measurements that summarize body and wing dimensions. Additionally, length of forearm was used as a univariate index of structural size to examine geographic variation in a more inclusive sample of bats across the latitudinal transect. Multivariate and univariate size metrics were strongly and positively correlated with body mass, and exhibited highly concordant patterns of clinal variation. Stepwise multiple regression on climatological variables revealed that increasing size of male and female C. sphinx was associated with decreasing minimum temperature, increasing relative humidity, and increasing seasonality. Although patterns of geographic size variation were highly concordant between the sexes, C. sphinx also exhibited a latitudinal cline in the magnitude and direction of sexual size dimorphism. The size differential reversed direction across the latitudinal gradient, as males averaged larger in the north, and females averaged larger in the south. The degree of female‐biased size dimorphism across the transect was negatively correlated with body size of both sexes. Canonical discriminant analysis revealed that male‐ and female‐biased size dimorphism were based on contrasting sets of external characters. Available data on geographic variation in the degree of polygyny in C. sphinx suggests that sexual selection on male size may play a role in determining the geographic pattern of sexual size dimorphism.  相似文献   

9.
Evidence of sexual dimorphism in body size and the existence of morphological differences were studied in the yellow‐whiskered Greenbul Andropadus latirostris. We measured fresh body weight and seven linear parameters of external morphology in mature individuals of this species from three localities in Cameroon and two localities in Ghana. Based on general linear model analysis, we showed that males are significantly larger than females. We applied a discriminant analysis on eight morphometric parameters to create two discriminant functions, one for each country. The overall rate of well‐classified birds was 93.3% for Cameroon and 92.7% for Ghana. Wing length was the most accurate character for separating the sexes in both study areas. Significant sexual size dimorphism might be explained by sexual selection on male competitive ability and intraspecific competition. We also found morphological divergence in this species between the two study areas, including marked differences in size of the beak. This work provides statistical evidence of a substantial sexual size dimorphism in A. latirostris and geographic variation in morphology.  相似文献   

10.
Reproductive mode, ancestry, and climate are hypothesized to determine body size variation in reptiles but their effects have rarely been estimated simultaneously, especially at the intraspecific level. The common lizard (Zootoca vivipara) occupies almost the entire Northern Eurasia and includes viviparous and oviparous lineages, thus representing an excellent model for such studies. Using body length data for >10,000 individuals from 72 geographically distinct populations over the species' range, we analyzed how sex‐specific adult body size and sexual size dimorphism (SSD) is associated with reproductive mode, lineage identity, and several climatic variables. Variation in male size was low and poorly explained by our predictors. In contrast, female size and SSD varied considerably, demonstrating significant effects of reproductive mode and particularly seasonality. Populations of the western oviparous lineage (northern Spain, south‐western France) exhibited a smaller female size and less female‐biased SSD than those of the western viviparous (France to Eastern Europe) and the eastern viviparous (Eastern Europe to Far East) lineages; this pattern persisted even after controlling for climatic effects. The phenotypic response to seasonality was complex: across the lineages, as well as within the eastern viviparous lineage, female size and SSD increase with increasing seasonality, whereas the western viviparous lineage followed the opposing trends. Altogether, viviparous populations seem to follow a saw‐tooth geographic cline, which might reflect the nonmonotonic relationship of body size at maturity in females with the length of activity season. This relationship is predicted to arise in perennial ectotherms as a response to environmental constraints caused by seasonality of growth and reproduction. The SSD allometry followed the converse of Rensch's rule, a rare pattern for amniotes. Our results provide the first evidence of opposing body sizeclimate relationships in intraspecific units.  相似文献   

11.
Patterns of geographic variation in body size are predicted to evolve as adaptations to local environmental gradients. However, many of these clinal patterns in body size, such as Bergmann's rule, are controversial and require further investigation into ectotherms such as reptiles on a regional scale. To examine the environmental variables (temperature, precipitation, topography and primary productivity) that shaped patterns of geographic variation in body size in the reptile Calotes versicolor, we sampled 180 adult specimens (91 males and 89 females) at 40 locations across the species range in China. The MANOVA results suggest significant sexual size dimorphism in C. versicolor (F23,124 = 11.32, p < .001). Our results showed that C. versicolor failed to fit the Bergmann's rule. We found that the most important predictors of variation in body size of C. versicolor differed for males and females, but mechanisms related to heat balance and water availability hypotheses were involved in both sexes. Temperature seasonality, precipitation of the driest month, precipitation seasonality, and precipitation of the driest quarter were the most important predictors of variation in body size in males, whereas mean precipitation of the warmest quarter, mean temperature of the wettest quarter, precipitation seasonality, and precipitation of the wettest month were most important for body size variation in females. The discrepancy between patterns of association between the sexes suggested that different selection pressures may be acting in males and females.  相似文献   

12.
Within-species variation in animal body size predicts major differences in life history, for example, in reproductive development, fecundity, and even longevity. Purely from an energetic perspective, large size could entail larger energy reserves, fuelling different life functions, such as reproduction and survival (the “energy reserve” hypothesis). Conversely, larger body size could demand more energy for maintenance, and larger individuals might do worse in reproduction and survival under resource shortage (the “energy demand” hypothesis). Disentangling these alternative hypotheses is difficult because large size often correlates with better resource availability during growth, which could mask direct effects of body size on fitness traits. Here, we used experimental body size manipulation in the freshwater cnidarian Hydra oligactis, coupled with manipulation of resource (food) availability to separate direct effects of body size from resource availability on fitness traits (sexual development time, fecundity, and survival). We found significant interaction between body size and food availability in sexual development time in both males and females, such that large individuals responded less strongly to variation in resource availability. These results are consistent with an energy reserve effect of large size in Hydra. Surprisingly, the response was different in males and females: small and starved females delayed their reproduction, while small and starved males developed reproductive organs faster. In case of fecundity and survival, both size and food availability had significant effects, but we detected no interaction between them. Our observations suggest that in Hydra, small individuals are sensitive to fluctuations in resource availability, but these small individuals are able to adjust their reproductive development to maintain fitness.  相似文献   

13.
Mammals display considerable geographical variation in life history traits. To understand how climatic factors might influence this variation, we analysed the relationship between life history traits – adult body size, litter size, number of litters per year, gestation length, neonate body mass, weaning age and age at sexual maturity – and several environmental variables quantifying the seasonality and predictability of temperature and precipitation across the distribution range of five terrestrial mammal groups. Environmental factors correlated strongly with each other; therefore, we used principal components analysis to obtain orthogonal climatic predictors that could be used in multivariate models. We found that in bats, primates and even‐toed ungulates adult body size tends to be larger in species inhabiting cold, dry, seasonal environments, whereas in carnivores and rodents a smaller body size is characteristic of warm, dry environments, suggesting that low food availability might limit adult size. Species inhabiting cold, dry, seasonal habitats have fewer, larger litters and shorter gestation periods; however, annual fecundity in these species is not higher, implying that the large litter size of mammals living at high latitudes is probably a consequence of time constraints imposed by strong seasonality. On the other hand, the number of litters per year and annual fecundity were greater in species inhabiting environments with higher seasonality in precipitation. Lastly, we found little evidence for specific effects of environmental variability. Our results highlight the complex effects of environmental factors in the evolution of life history traits in mammals. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 719–736.  相似文献   

14.
We evaluate the correlation between intraspecific variation in egg size and population size in breeding British birds. Using information on abundance, range occupancy, migration status and phylogenetic relationships among species, we show that a wider geographical distribution rather than larger population size per se best predicts egg size variability. A similar result applies to wing length variability. Results from a phylogenetic path analysis suggest that geographical variation is the most parsimonious causal explanation for high intraspecific variation in common species.  相似文献   

15.
Summary Patterns of geographic variation in nine morphological characters of adult muskrats (Ondatra zibethicus) are investigated by multiple regression and canonical correlation analysis. Three variables describing the annual precipitation regimen account for 16 to 33% of the variance in each of the skeletal measurements. Highly variable precipitation patterns result in low rates of germination and survivorship for preferred aquatic food plants which in turn reduces average total food availability for muskrats. In large individuals nutritive demands may exceed supply, thus selection favors smaller body size in areas of low food availability.After removing the variation attributable to three precipitation variables, the residual variation in the morphological variables is exposed to canonical correlation analysis with a set of 10 environmental and geographic variables. A canonical variate loaded for climatic seasonality accounts for 60% of the variance in a canonical variate of the morphological residuals which load as a general body size variate. It is argued that seasonality is a major factor selecting for large body size in muskrats and other organisms. During seasonal periods of resource abundance natural selection favors individuals with rapid growth to a large size, while concurrently enhancing survivorship through oncoming periods of resource shortage.  相似文献   

16.
Acoustic signals are employed to support the correct designation of species and enables the discrimination between individuals. We analyzed both intra and interindividual variability of the advertisement call of Physalaemus centralis on the basis of specimens recorded in eight localities of the Cerrado in central Brazil. Within-individual variation, most of the call parameters were static properties. Both spectral and temporal call properties were dynamic between individuals. All call proprieties varied more between individuals than within an individual. Our study adds important data for future studies on the taxonomy and phylogeny of the P. cuvieri clade.  相似文献   

17.
The magnitude and direction of sexual size dimorphism (SSD) may vary considerably within and among taxa, and the primary causes of such variation have not been thoroughly elucidated. For example, the effect of abiotic factors is frequently attributed to explain intra‐ and interspecific variation in SSD. Rensch's rule, which states that males vary more in size than females when body size increases, has rarely been tested in bats. Therefore, whether bats follow Rensch's rule remains unclear, particularly when females are larger than males. We investigated whether four bat species presented SSD, as well as whether their body sizes varied within each sex across localities, testing the hypothesis that intraspecific SSD varies substantially depending of sampling localities. We finally examined whether bats followed Rensch's rule by simultaneously using intraspecific and interspecific approaches. Although SSD was not observed for most bat species within each locality, the females of three of the four captured species exhibited differences in body size between particular localities. Usually the females varied more in size than did males across localities, mostly exhibiting a female‐biased SSD. Significant differences in SSD were observed (i.e. mean values of the sexual dimorphism index), even though Rensch's rule was not followed.  相似文献   

18.
According to Bergmann's rule, individuals of a given species tend to be larger in colder (northern) climates. Traditional explanation points to the relatively lower surface‐to‐volume ratio in larger animals and, consequently, relatively lower costs of thermoregulation. We examined intraspecific covariation of body size with geographical location and climate in five species of Sorex shrews, animals that are among the smallest extant mammals. The condylobasal length of skull (CBL), compiled from literature data and measured on museum specimens, was used as an indicator of the overall body size of shrews. Surprisingly, in three out of five shrew species, the CBL was negatively correlated with latitude, and the same trend, although not statistically significant, was found in the fourth species. In general, shrews were smaller in colder areas, as evidenced by the positive correlations between the CBL and temperature. In two species, these positive correlations appeared when the effect of longitude was held constant in the partial correlation analysis. Characteristically, the strongest negative correlation with latitude and positive with temperatures was found in S. minutus, the smallest species under study. Shrews were in general larger in environments with high actual evapotranspiration. Body mass reviewed in S. araneus paralleled the pattern found in the CBL variation in this species, i.e. it decreased northward, both in summer‐ and winter‐caught animals. In addition, contrary to the widely accepted ? but not rigorously tested ? belief, body mass recession from summer to winter (the Dehnel Effect) did not correlate with latitude. We concluded that shrews followed the converse to Bergmann's rule, and hypothesize that part of their body size variation along the west‐east axis may be explained by character displacement. We also hypothesize that scarcity of food, especially in winter, is a major factor selecting for small body size in shrews in northern areas, as smaller individuals should require less food. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 78 , 365–381.  相似文献   

19.
Body size of insects with flexible life cycles is expected to conform to the saw‐tooth model, a model in which the relationship between size and developmental time depends on length of the growing season. In species with high variability in terms of voltinism, however, more complex patterns can be expected. Few empirical studies have demonstrated the existence of such relationships, or whether climatic factors contribute to these relationships. In this study, we investigated the geographic variation in body size of the Chinese cockroach, Eupolyphaga sinensis Walker (Blattaria: Polyphagidae), which has a variable life cycle length. The sizes of adults – collected from 14 localities ranging from temperate to subtropical zones in China – were measured, using body length, body width, and pronotum width as parameters. The relationship between size, latitude, and climate factors (encompassing 10 variables) was then investigated. We found that the body size of E. sinensis varied considerably with latitude: cockroaches were larger at low and high latitudes, but smaller at intermediate latitudes. Thus, the relationship between climate and body size conformed to a saw‐tooth pattern. Results indicate that two factors were significantly associated with body size clines: season length and variability in life cycle length. Our results also demonstrated that climatic factors contribute to latitudinal clines in body size, which has important ecological and evolutionary implications. It can be expected that global climate change may alter latitudinal clines in body size of E. sinensis.  相似文献   

20.
  • The study of intraspecific seed packaging (i.e. seed size/number strategy) variation across different populations may allow better understanding of the ecological forces that drive seed evolution in plants. Juniperus thurifera (Cupressaceae) provides a good model to study this due to the existence of two subspecies differentiated by phenotypic traits, such as seed size and cone seediness (number of seeds inside a cone), across its range.
  • The aim of this study was to analyse seed packaging (seed mass and cone seediness) variation at different scales (subspecies, populations and individuals) and the relationship between cone and seed traits in European and African J. thurifera populations.
  • After opening more than 5300 cones and measuring 3600 seeds, we found that seed packaging traits followed different patterns of variation. Large‐scale effects (region and population) significantly contributed to cone seediness variance, while most of the seed mass variance occurred within individuals. Seed packaging differed between the two sides of the Mediterranean Sea, with African cones bearing fewer but larger seeds than the European ones. However, no differences in seed mass were found between populations when taking into account cone seediness. Larger cones contained more pulp and seeds and displayed a larger variation in individual seed mass.
  • We validated previous reports on the intraspecific differences in J. thurifera seed packaging, although both subspecies followed the same seed size/number trade‐off. The higher seediness and variation in seed mass found in larger cones reveals that the positive relationship between seed and cone sizes may not be straightforward.We hypothesise that the large variation of seed size found within cones and individuals in J. thurifera, but also in other fleshy‐fruited species, could represent a bet‐hedging strategy for dispersal.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号