首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Estimating the geographic range of a species can be complicated by insufficient occurrence data and a lack of information about range limit determinants. Accurate estimates of species distributions are needed to assess the impacts of anthropogenic actions and for exploring evolutionary and ecological processes that maintain biological diversity. After documenting several extralimital locations for Black‐fronted Ground‐Tyrants (Muscisaxicola frontalis; Tyrannidae), we questioned the accuracy of the current winter range estimate. We provide specimen and observation records from central and southern Peru that represent new information about the winter distribution of Black‐fronted Ground‐Tyrants. We used ecological niche models generated from new extralimital records and records from the winter range to assess the current range estimate. We also tested winter and extralimital niche models for model equivalency using a resampling technique available through Maxent and ENM Tools. Niche models developed with locations from the winter range predicted with high probability (>90%) the area of the extralimital records. Reciprocally, niche models developed with the extralimital locations predicted the majority of the winter range locations, although the probability was lower for some locations and the most southerly points were not included in the prediction. The test for model equivalency did not distinguish the two models, suggesting the possibility that the extralimital records were from poorly sampled areas of the true winter range. Smaller scale habitat associations of Black‐fronted Ground‐Tyrants, such as a preference for sparsely vegetated slopes, were documented that were more specific than published accounts. Finally, we present the first case of frugivory in Muscisaxicola with the identification of Cumulopuntia boliviana ignescens (Cactaceae) seeds and pericarp in all five stomach samples of Black‐fronted Ground‐Tyrants collected in southern Peru.  相似文献   

2.
The National Agricultural Productivity & Reconciliation Ecology Centre (NAPREC) held its inaugural conference in Deniliquin in the southern Murray–Darling Basin, NSW, Australia, 4–5 October 2017, and attracted an engaged group of farmers, researchers, industry and government representatives. The theme of the conference was ‘Positive Partnerships for Pathways to Sustainable Agriculture and Biodiversity’. It explored the application of Reconciliation Ecology and the value of the human elements of natural resource management within the context of the southern Murray–Darling Basin.  相似文献   

3.
Summary With limited evidence linking Australia's Murray‐Darling Basin fish species and flooding, this study assessed annual variation in abundance and recruitment levels of a small‐bodied, threatened floodplain species, the Southern Pygmy Perch (Nannoperca australis), in floodplain habitats (creeks, lakes and wetlands) in the Barmah‐Millewa Forest, Murray River, Australia. Spring and summer sampling over a 5‐year period encompassed large hydrological variation, including 1 year of extended floodplain inundation which was largely driven by an environmental water release, and 2 years of severe regional drought. Recruitment and dispersal of Southern Pygmy Perch significantly increased during the floodplain inundation event compared with the other examined years. This study provides valuable support for an environmental water allocation benefiting a native species, and explores the link between flooding and its advantages to native fish. This suggests that the reduced flooding frequency and magnitude as a result of river regulation may well be a major contributing factor in the species’ decline in the Murray‐Darling Basin.  相似文献   

4.
Degradation of instream habitats in the northern Murray–Darling Basin has occurred through numerous stressors, including siltation, clearing of bankside vegetation, intrusion of livestock and impacts of pest species. A better understanding of habitat preferences of native fish species could help guide future instream habitat restoration actions. The habitat choices of seven native fish species, juvenile Murray Cod (Maccullochella peelii), juvenile Golden Perch (Macquaria ambigua ambigua), juvenile Silver Perch (Bidyanus bidyanus), adult Murray–Darling Rainbowfish (Melanotaenia fluviatilis), adult Olive Perchlet (Ambassis agassizii), adult Un‐specked Hardyhead (Craterocephalus stercusmuscarum fulvus) and adult carp gudgeons (Hypseleotris spp.) were tested in preference troughs to help inform potential habitat restoration actions in the Condamine catchment. Each species was given a choice between pair combinations of open sandy habitat, submerged macrophytes, emergent plants and rocky rubble. Habitat preferences varied between species. Murray Cod, Golden Perch, carp gudgeons and Olive Perchlets preferred structure over open sandy habitat, whilst juvenile Silver Perch, Un‐specked Hardyhead and Murray–Darling Rainbowfish did not avoid open sandy habitats. Juvenile Murray Cod preferred rocky rubble habitat over all other habitat choices. Use of complex rock piles to provide nursery habitat for Murray Cod populations is a potential restoration option. Introduction of rock could also benefit Golden Perch and carp gudgeons. Use of emergent plants, submerged macrophytes and rocky rubble for habitat restoration all appear to have merit for one or more species of small‐bodied fishes or juvenile stages of larger sized fishes. Rocky rubble or floating attached macrophytes could be viable restoration options in areas too turbid to establish submerged macrophytes. These habitat interventions would complement existing actions such as re‐snagging and provision of fish passage to assist with sustainable management of native fish populations.  相似文献   

5.
Flooding is often considered a stimulus for production of fish in floodplain rivers. In the southern Murray–Darling Basin (MDB), Australia, however, few native fish species have been shown to use the floodplain for spawning, and recruitment has been positively and negatively associated with flooding. In 2010/11, extensive flooding in the lower River Murray provided an opportunity to investigate the recruitment response of Golden Perch (Macquaria ambigua ambigua) following 10 years of drought and floodplain isolation. Annual variation in Golden Perch abundance and recruitment were investigated in anabranch and main channel habitats at Chowilla in the floodplain geomorphic region of the lower River Murray over a 7‐year period incorporating the flood and 6 years of in‐channel flow. Spatial variation in recruitment in the lower River Murray was also investigated by comparing the age structure of Golden Perch in the swamplands/lakes, gorge and floodplain geomorphic regions. Golden Perch abundance in the Chowilla region increased significantly postflooding compared with drought years. Age structures indicated that increased abundance was due predominantly to fish spawned during the flood (2010/11) and the previous year (2009/10), which was characterised by in‐channel flows. Age structure was similar in the nearby Katarapko Anabranch system indicating a uniform postflood recruitment response in the floodplain geomorphic region. Juvenile Golden Perch from the 2010/11 and 2009/10 cohorts were less apparent in the gorge and swamplands/lakes regions. Golden Perch have flexible life histories and will spawn and recruit in association with in‐channel rises in flow and overbank flows, but significant increases in abundance in the lower River Murray may result from overbank flooding. Contemporary approaches to flow restoration in the MDB emphasise overbank flows and floodplain processes. We suggest, however, that environmental flow management that incorporates floodplain and in‐channel processes, at appropriate spatio‐temporal scales, will result in more robust populations of Golden Perch.  相似文献   

6.
Prolonged flooding in 2010/11 ended a decade of drought and produced a large‐scale hypoxic blackwater event across the southern Murray‐Darling Basin, Australia. The hypoxic conditions caused fish kills and Murray crayfish Euastacus armatus to emerge from the water onto the river banks to avoid the poor water quality. This study examined the medium‐term impact of this blackwater event on Murray crayfish populations in the Murray River, where approximately 1800 km of the main channel were affected by hypoxia. Murray crayfish populations were surveyed in July 2012, along a 1100‐km section of the Murray River at 10 sites affected by hypoxic blackwater and six sites that were not affected, and data were compared with surveys of the same sites undertaken in July 2010, four months before the hypoxic blackwater event (before‐after‐control‐impact experimental design). Murray crayfish abundance in 2012 (post‐blackwater) was significantly lower at blackwater affected sites (81% reduction from 2010), but not at non‐affected sites. The hypoxic blackwater impacted Murray crayfish of both sexes and all size‐classes in a similar manner. The results demonstrate that prolonged periods of hypoxia can markedly impact populations of the long‐lived and slow‐growing Murray crayfish despite the species ability to emerge from hypoxic water. The findings highlight important challenges for the management of both the recreational fishery for this species and riverine flows in relation to hypoxic blackwater events.  相似文献   

7.
Localized catastrophic events can dramatically affect fish populations. Management interventions, such as stocking, are often undertaken to re‐establish populations that have experienced such events. Evaluations of the effectiveness of these interventions are required to inform future management actions. Multiple hypoxic blackwater events in 2010–2011 substantially reduced fish communities in the Edward‐Wakool river system in the southern Murray‐Darling Basin, New South Wales, Australia. These events led to extensive fish kills across large sections of the entire system following a period of prolonged drought. To expedite recovery efforts, 119 661 golden perch Macquaria ambigua and 59 088 Murray cod Maccullochella peelii fingerlings were stocked at five locations over 3 years. All fish stocked were chemically marked with calcein to enable retrospective evaluation of wild or hatchery origin. Targeted collections were undertaken 3 years post‐stocking to investigate the relative contribution of stocking efforts and recovery via natural recruitment in the system. Of the golden perch retained for annual ageing (n = 93) only nine were of an age that could have coincided with stocking activities. Of those, six were stocked. The dominant year‐class of golden perch were spawned in 2009; before the stocking programme began and prior to blackwater events. All Murray cod retained (n = 136) were of an age that coincided with stocking activities, although only eight were stocked. Among the Murray cod captured, the dominant year‐class was spawned in 2011, after the blackwater events occurred. The results from this study provide first evidence that natural spawning and recruitment, and possibly immigration, were the main drivers of golden perch and Murray cod recovery following catastrophic fish kills. Interpreted in the context of other recent examples, the collective results indicate limited benefit of stocking to existing connected populations already naturally recruiting in riverine systems.  相似文献   

8.
To facilitate future research in freshwater fish recruitment response to environmental flow delivery, size‐at‐age and growth models are presented for eight fish species occurring in south‐eastern Australia; three small‐bodied species and the juvenile 0+ age classes of five large‐bodied species. Otolith increments were used to estimate the daily age of golden perch Macquaria ambigua, bony bream Nematalosa erebi, common carp Cyprinus carpio; Murray cod Maccullochella peelii, freshwater eel‐tailed catfish Tandanus tandanus, Australian smelt Retropinna semoni, un‐specked hardyhead Craterocephalus stercusmuscarum fulvus and Murray–Darling rainbowfish Melanotaenia fluviatilis. Linear growth models provided the best fit for length‐at‐age data of juvenile 0+ age large‐bodied species; whereas von Bertalanffy growth functions provided the best fit to length‐at‐age data of small‐bodied species. The results provide novel baseline data for future research in this area.  相似文献   

9.
Aim The funnelweb spider Macrothele calpeiana is endemic to the southern half of the Iberian Peninsula, but recent occurrence records from localities in Spain, North Africa and other regions of Europe, which are distant from its native populations, suggest human‐mediated dispersal, probably associated with the commercial export of olive trees. The main goal of this study was to assess the environmental suitability of these new records and to discuss the spider’s potential to become an invasive species, mainly in new regions across Central Europe and the Mediterranean Basin. Location Central Europe, Mediterranean Basin. Methods Using presence points from the Iberian native populations of M. calpeiana and a set of climatic variables, four presence‐only algorithms (BIOCLIM, DOMAIN, GARP and Maxent) were applied to model the potential distribution of the spider. The models were transferred to Central Europe and the Mediterranean Basin, and the locations of the new records in both the occupied and potential environmental spaces were screened. Results The four models were generally congruent in predicting the existence of a suitable climate for the species across the Mediterranean Basin, although BIOCLIM and DOMAIN yielded more constrained predictions than GARP and Maxent. Whereas the new records from Central Europe were located far from the occupied and potential climatic spaces, those from the Iberian Peninsula were not. Main conclusions Climatic suitability together with propagule pressure owing to human activities will certainly enhance the opportunities for M. calpeiana to colonize new areas across the Mediterranean Basin. The species has invaded areas beyond its native range, and those new locations located in the Iberian Peninsula and North Africa show environmental suitability for the spider and deserve long‐term monitoring. Although the new locations in Central Europe were not predicted by the climate models and the persistence of the species seems improbable, the possibility of rapid evolution or phenotypic plasticity processes raises the need for caution over the possibility of a future spread of M. calpeiana across Europe. Stronger controls over the transport of trees must be applied, and further studies on the ecology of the spider are imperative to assess the possible impact on the invaded ecosystems.  相似文献   

10.
Aim To investigate the phylogeographic structure of the widespread freshwater prawn, Macrobrachium australiense, within and between major Australian drainage basins using mitochondrial sequence data. This will enable the investigation of historical connections between major drainages and examination of hypotheses of biogeographic associations among Australian freshwater basins. Location Inland, eastern and northern Australia. Methods Sequencing 16S rRNA and ATPase 6 protein coding mitochondrial DNA genes from M. australiense from 19 locations from inland, eastern and northern Australia. Results Within drainage basins, haplotype trees are monophyletic, with the exception of the Finke River from the Lake Eyre Basin. Macrobrachium australiense from the two main inland drainages, the Murray–Darling and Lake Eyre Basin are divergent from each other and do not form a monophyletic group, instead the Murray–Darling Basin haplotypes clade with eastern coastal haplotypes. Haplotypes from neighbouring eastern coastal drainages were found to be quite divergent from each other. Main conclusions The phylogeographic relationships among M. australiense suggest that the two major inland drainages, the Murray–Darling Basin and the Lake Eyre Basin, are not biogeographically closely associated to each other. Instead the Murray–Darling Basin is more closely allied with the eastern coastal drainages across the Great Dividing Range. Despite their proximity the neighbouring southeast Queensland coastal Mary and Brisbane Rivers are also biogeographically divergent from each other. The results also indicate that the Finke River appears to have been isolated from the remainder of the Lake Eyre Basin catchment for a significant period of time.  相似文献   

11.

Ground-based visual assessment of crown condition is a cornerstone of tree condition assessment globally, and numerous condition assessment approaches have evolved to address the needs and perspectives of different users. In Australia’s iconic Murray–Darling Basin (MDB), stands of floodplain eucalypts are increasingly vulnerable to a range of interacting stressors related to climate change and over-extraction of water for consumptive and agricultural use. A standardised approach developed in 2008 for assessing floodplain trees within the MDB provides extensive guidance to ensure field data is collected consistently. However, there is minimal instruction on how to interpret data, and consequently a range of evaluation approaches have evolved. The lack of a standardised reporting framework generated by these different approaches makes it difficult for floodplain managers and environmental water holders to make repeatable, robust decisions for prioritising water allocations across competing locations. To provide improved lines of evidence to support decision making, this paper describes a ‘best-practise’ approach to calculating a tree condition score from field data. Within, we document existing approaches in the southern Murray–Darling Basin, and recommend a method that meets the needs of floodplain managers as a pragmatic reporting, communication and decision support tool that does not require statistical analysis. Case studies and a revised conceptual model of tree decline and recovery are provided to demonstrate the validity of the recommended approach.

  相似文献   

12.
The river red gum (Eucalyptus camaldulensis Dehnh.) inhabits riparian zones and associated floodplains throughout Australia. Following changes to hydrological regime due to river regulation and prolonged drought in south‐eastern Australia, river red gum populations within the Murray–Darling Basin have suffered substantial decline. To better understand the effect of drought on river red gum genetic diversity, we examined single nucleotide polymorphism (SNP) variation in 12 candidate genes among six red gum floodplain forest sites in Yanga National Park, which had experienced contrasting levels of drought and associated decline over an eight‐year period. We also examined genetic diversity using these markers in five additional river red gum populations from the Murray–Darling Basin to place genetic diversity results from Yanga in a regional context. Tree condition was significantly lower and mortality higher in the most drought affected sites; however, differences in overall genetic diversity and divergence were not detected among sites. No evidence of genetic adaptation in response to drought in this set of candidate genes was detected when differentiation at individual SNP loci was examined. While the overall condition of E. camaldulensis was strongly influenced by hydrological regime, our results suggest the evolutionary potential of floodplain forests in Yanga were not immediately impacted by population decline linked with drought and changes in hydrological regime. We propose that due to low genetic structure among populations in the region, genetic diversity of river red gums within the Murray–Darling Basin might be effectively conserved during periods of extended drought by protecting representative populations.  相似文献   

13.
Marginal populations are often geographically isolated, smaller, and more fragmented than central populations and may frequently have to face suboptimal local environmental conditions. Persistence of these populations frequently involves the development of adaptive traits at phenotypic and genetic levels. We compared population structure and demographic variables in two fucoid macroalgal species contrasting in patterns of genetic diversity and phenotypic plasticity at their southern distribution limit with a more central location. Models were Ascophyllum nodosum (L.) Le Jol. (whose extreme longevity and generation overlap may buffer genetic loss by drift) and Fucus serratus L. (with low genetic diversity at southern margins). At edge locations, both species exhibited trends in life‐history traits compatible with population persistence but by using different mechanisms. Marginal populations of A. nodosum had higher reproductive output in spite of similar mortality rates at all life stages, making edge populations denser and with smaller individuals. In F. serratus, rather than demographic changes, marginal populations differed in habitat, occurring restricted to a narrower vertical habitat range. We conclude that persistence of both A. nodosum and F. serratus at the southern‐edge locations depends on different strategies. Marginal population persistence in A. nodosum relies on a differentiation in life‐history traits, whereas F. serratus, putatively poorer in evolvability potential, is restricted to a narrower vertical range at border locations. These results contribute to the general understanding of mechanisms that lead to population persistence at distributional limits and to predict population resilience under a scenario of environmental change.  相似文献   

14.
Aim Climate changes are thought to be responsible for the retreat and eventual extinction of subtropical lauroid species that covered much of Europe and North Africa during the Palaeogene and early Neogene; little is known, however, of the spatial and temporal patterns of this demise. Herein we calibrate ecological niche models to assess the climatic requirements of Laurus L. (Lauraceae), an emblematic relic from the Tethyan subtropical flora, subsequently using these models to infer how the range dynamics of Laurus were affected by Plio‐Pleistocene climate changes. We also provide predictions of likely range changes resulting from future climatic scenarios. Location The Mediterranean Basin and Macaronesian islands (Canaries, Madeira, Azores). Methods We used a maximum‐entropy algorithm (Maxent) to model the relationship between climate and Laurus distribution over time. The models were fitted both to the present and to the middle Pliocene, based on fossil records. We employed climatic reconstructions for the mid‐Pliocene (3 Ma), the Last Glacial Maximum (21 ka) and a CO2‐doubling future scenario to project putative species distribution in each period. We validated the model projections with Laurus fossil and present occurrences. Results Laurus preferentially occupied warm and moist areas with low seasonality, showing a marked stasis of its climatic niche. Models fitted to Pliocene conditions successfully predicted the current species distribution. Large suitable areas existed during the Pliocene, which were strongly reduced during the Pleistocene, but humid refugia within the Mediterranean Basin and Macaronesian islands enabled long‐term persistence. Future climate conditions are likely to re‐open areas suitable for colonization north of the current range. Main conclusions The climatic requirements of Laurus remained virtually unchanged over the last 3 Myr. This marked niche conservatism imposed largely deterministic range dynamics driven by climate conditions. This species's relatively high drought tolerance might account for the survival of Laurus in continental Europe throughout the Quaternary whilst other Lauraceae became extinct. Climatic scenarios for the end of this century would favour an expansion of the species's range towards northern latitudes, while severely limiting southern populations due to increased water stress.  相似文献   

15.
Analyses of the interspecific differences in macropod home range size suggest that habitat productivity exerts a greater influence on range size than does body mass. This relationship is also apparent within the rock‐wallaby genus. Lim reported that yellow‐footed rock‐wallabies (Petrogale xanthopus xanthopus) inhabiting the semi‐arid Flinders Ranges (South Australia) had a mean home range of 170 ha. While consistent with the hypothesis that species inhabiting less productive habitats will require larger ranges to fulfil their energetic requirements, the ranges reported by Lim were considerably larger than those observed for heavier sympatric macropods. The aim of the current study was to document the home range dynamics of P. x. celeris in central‐western Queensland and undertake a comparison with those reported for their southern counterparts. Wallaby movements were monitored at Idalia National Park, between winter 1992 and winter 1994. Male foraging ranges (95% fixed kernel; 15.4 ha, SD = ±7.8 ha) were found to be significantly larger than those of female wallabies (11.3 ha, SD = ±4.9 ha). Because of varying distances to the wallabies' favoured foraging ground (i.e. an adjacent herb field), the direction in which the wallabies moved to forage also significantly affected range size. Mean home range size was estimated to be 23.5 ha (SD = ±15.2 ha; 95% fixed kernel) and 67.5 ha (SD = ±22.4 ha; 100% minimum convex polygon). The discrepancy between these two estimates resulted from the exclusion of locations, from the 95% kernel estimates, when the wallabies moved to a water source 1.5 km distant from the colony site. The observed foraging and home ranges approximated those that could be expected for a macropod inhabiting the semi‐arid zone (i.e. 2.4 times larger‐than‐predicted from body mass alone). Possible reasons for the disparity between the current study and that of Lim are examined.  相似文献   

16.
The world's freshwater biotas are declining in diversity, range and abundance, more than in other realms, with human appropriation of water. Despite considerable data on the distribution of dams and their hydrological effects on river systems, there are few expansive and long analyses of impacts on freshwater biota. We investigated trends in waterbird communities over 32 years, (1983–2014), at three spatial scales in two similarly sized large river basins, with contrasting levels of water resource development, representing almost a third (29%) of Australia: the Murray–Darling Basin and the Lake Eyre Basin. The Murray–Darling Basin is Australia's most developed river basin (240 dams storing 29,893 GL) while the Lake Eyre Basin is one of the less developed basins (1 dam storing 14 GL). We compared the long‐term responses of waterbird communities in the two river basins at river basin, catchment and major wetland scales. Waterbird abundances were strongly related to river flows and rainfall. For the developed Murray–Darling Basin, we identified significant long‐term declines in total abundances, functional response groups (e.g., piscivores) and individual species of waterbird (n = 50), associated with reductions in cumulative annual flow. These trends indicated ecosystem level changes. Contrastingly, we found no evidence of waterbird declines in the undeveloped Lake Eyre Basin. We also modelled the effects of the Australian Government buying up water rights and returning these to the riverine environment, at a substantial cost (>3.1 AUD billion) which were projected to partly (18% improvement) restore waterbird abundances, but projected climate change effects could reduce these benefits considerably to only a 1% or 4% improvement, with respective annual recovery of environmental flows of 2,800 GL or 3,200 GL. Our unique large temporal and spatial scale analyses demonstrated severe long‐term ecological impact of water resource development on prominent freshwater animals, with implications for global management of water resources.  相似文献   

17.
During Pleistocene glacial‐interglacial cycles, the geographic range is often assumed to have shifted as a species tracks its climatic niche. Alternatively, the geographic range would not necessarily shift if a species can adapt in situ to a changing environment. The potential for a species to persist in place might increase with the diversity of habitat types that a species exploits. We evaluate evidence for either range shift or range stability between the last glacial maximum (LGM) and present time in the chisel‐toothed kangaroo rat (Dipodomys microps), an endemic of the Great Basin and Mojave deserts. We modeled how the species’ range would have changed if the climatic niche of the species remained conserved between the LGM and present time. The climatic models imply that if D. microps inhabited the same climatic niche during the LGM as it does today, the species would have persisted primarily within the warm Mojave Desert and expanded northwards into the cold Great Basin only after the LGM. Contrary to the climatic models, the mitochondrial DNA assessment revealed signals of population persistence within the current distribution of the species throughout at least the latest glacial‐interglacial cycle. We concluded that D. microps did not track its climatic niche during late Pleistocene oscillations, but rather met the challenge of a changing environment by shifting its niche and retaining large portions of its distribution. We speculate that this kind of response to fluctuating climate was possible because of ‘niche drifting’, an alteration of the species’ realized niche due to plasticity in various biological characters. Our study provides an example of an approach to reconstruct species’ responses to past climatic changes that can be used to evaluate whether and to what extent taxa have capacity to shift their niches in response to the changing environment – information becoming increasingly important to predicting biotic responses to future environmental changes.  相似文献   

18.
Summary The impact of water diversion on fish populations is a global issue. Many countries have invested substantial funding into research and implementation strategies to ensure fish are protected at diversions that take water out of rivers for agriculture and other human uses. The most common management action is the installation of fish screens, and a wide range of designs are presently available that suit a large range of diversions. The Murray–Darling Basin is the largest catchment in Australia and has been substantially developed over the past 100 years to store and divert water for that protect fish from escaping into the irrigation systems. Recent studies have determined that water diversions have substantial impacts on native fish populations, but there are presently no coordinated efforts for mitigation strategies. The purpose of this review is to highlight aspects of successful screening programmes worldwide and identify those that could be directly applied to the Murray–Darling Basin. The development of similar programmes in the United States, New Zealand and the United Kingdom has identified that sufficient information and technology exists to inform the development of fish screening programmes. There is no need to commence implementation from first principles, and substantial progress can be achieved by applying successful aspects of other programmes. By identifying existing designs, defining ecological targets, developing generalised guidelines appropriate for local conditions and engaging the community, a co‐ordinated and successful fish screening programme could be directly applied to the Murray–Darling Basin. This would have substantial benefits for the long‐term sustainability of native fish without compromising water supply requirements.  相似文献   

19.
This study reports the length–weight relationship estimates (LWRs) for 19 fish species inhabiting low order headwater streams in the Sinos River basin of southern Brazil. Between 2010 and 2014, 19 species at 47 sites were sampled in 10 sub‐basins by electrofishing in winter and summer. For two species, Bryconamericus iheringii and Phalloceros caudimaculatus, the estimates in this study offer new maximum size ranges compared to previous studies.  相似文献   

20.
Evidence is accumulating that some arcto‐boreal plant taxa persisted through the last glacial maximum (LGM) in Alaska and adjacent Canada. However, the spatial patterns of glacial persistence and associated postglacial colonization remain largely unknown. In this study, we investigated the LGM refugia of an alder (Alnus) species complex (n = 3 taxa) and assess the spatiotemporal dynamics of Alnus in this vast region. Specifically, we conducted high‐throughput DNA sequencing (ddRADseq) on Alnus foliar samples collected from a dense population network to investigate patterns of genetic structure and infer the presence of glacial lineages. Species distribution modeling (SDM) was used to investigate the probability and possible locations of glacial persistence. These analyses were integrated and then compared with fossil pollen data to identify the locations of refugial populations and spatial patterns of postglacial colonization. Our genetic analyses revealed two glacial lineages with separate geographic origins for each Alnus taxon, suggesting that the genus persisted in multiple LGM refugia. Non‐overlapping hindcast distributions based on SDMs further support the presence of multiple, spatially distinct refugia. These ddRADseq and SDM results, in conjunction with reassessment of fossil pollen records, suggest that Alnus expanded from several population nuclei that existed during the LGM and coalesced during the Holocene to form its present range. These results challenge the unidirectional model for postglacial vegetation expansion, implying that climate buffering associated with landscape heterogeneity and adaptation to millennial‐scale environmental variability played important roles in driving late‐Quaternary population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号